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Abstract

While type causality helps understand general relationships
such as the etiology of a disease (smoking causing lung can-
cer), token causality aims to explain causal connections in
specific instantiated events, such as the diagnosis of a specific
patient (Ravi’s developing lung cancer after a 20-year smok-
ing habit). Understanding why something happened, as in
these examples, is central to reasoning in such diverse cases
as the diagnosis of patients, understanding why the US finan-
cial market collapsed in 2007 and finding a causal explanation
for Obama’s victory over Clinton in the US primary. How-
ever, despite centuries of work in philosophy and decades of
research in computer science, the problem of how to rigor-
ously formalize token causality and how to automate such
reasoning has remained unsolved. In this paper, we show how
to use type-level causal relationships, represented as temporal
logic formulas, together with philosophical principles, to rea-
son about these token-level cases. Finally, we show how this
method can correctly reason about examples that have tra-
ditionally proven difficult for both computational and philo-
sophical theories to handle.

Introduction
When we want to determine what is responsible for a pa-
tient’s symptoms, why a stock plummeted in value, or the
reason a particular candidate won an election, what we want
to know is what caused these particular events. But rather
than finding a general relationship, such as “smoking causes
lung cancer”, we want to find whether a particular one, such
as “Bob’s smoking caused his lung cancer” is true. In or-
der to do this in an automated way, we need an understand-
ing of the general relationships (called type-level causality)
and how these relate to the singular cases (called token-
causality). We also need a system for combining this knowl-
edge in a rigorous, automated, way.

While the problem of general causal inference has been
studied in our prior work (Kleinberg and Mishra 2009) as
well as that of other computer scientists (Pearl 2000), we
cannot immediately use these inferences to explain token
cases. A type-level relationship may indicate that a token
case is likely to have a particular cause, but it does not ne-
cessitate this. Just as the relationship between smoking and
lung cancer does not mean that all lung cancers are caused
by smoking, we cannot immediately propose that a type-
level cause is a token-cause. We must first establish whether

the type-level relationship has been instantiated and take into
account that we may wish to also assess the role of other hy-
potheses, including rare factors. In some cases we will not
even know if the potential cause occurred, we may only have
indirect information such as whether other causes and effects
of the potential cause occurred. Finally, our intuition would
tell us that a type-level relationship between smoking and
lung cancer does not allow for smoking to cause lung cancer
within a matter of hours. However, without such time con-
straints explicitly included in the inferred relationships – or
such instances explicitly excluded in the token case (using
this background knowledge and intuition), we will fall prey
to potential misinterpretations.

The proposed methodology will incorporate solutions to
all of these difficulties. Since the inferred logical relation-
ships include time windows between cause and effect, we
will infer relationships of the form “smoking causes lung
cancer in 15-30 years”, preventing cases such as a person
beginning smoking and developing lung cancer within two
days from being an instance of this type-level relationship.
Methods that only test whether a general relationship is ful-
filled, and do not have detailed time information as part
of this general relationship, cannot avoid such scenarios
without much manual filtering of the events and relation-
ships tested. In general, our approach will be to infer the
type-level causes as proposed in prior work (Kleinberg and
Mishra 2009), and use the fact that these are represented by
probabilistic temporal logic to our advantage – determining
whether the facts of a token-case fit the known type-level re-
lationship (computing the probability of this being the case
when it is unknown whether causal relationships were in-
stantiated) and using the known type-level strength of the
relationships to rank the possible explanations for a token
case.

We will first discuss related approaches in both philoso-
phy and computer science then briefly review our type-level
inference procedure before discussing our method for token-
level reasoning and some examples to see how they are han-
dled by the theory. Our approach will give results consistent
with intuition in difficult cases where time is important, and
will do this without full knowledge of the token events or a
priori knowledge of a model.
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Related work
Philosophy
There have been two facets to the problem: how can we
(and should we) combine type- and token-level information;
and once we make such a choice, how can we reason about
token-causality? Among philosophers, there is no consen-
sus on the solution to the first problem: we may learn type-
level claims first and then use these to determine token level
cases (Woodward 2005); the type-level relationships may
follow as generalizations of token-level relationships (Haus-
man 2005); or they may be treated as entirely different sorts
of causation (Eells 1991). For the second problem, there
have been a number of approaches, each with its own advan-
tages and drawbacks. Counterfactual methods, introduced
by Lewis (1973) ask whether the effect would have occurred
in the absence of some causal factor. If not, then that fac-
tor causes the effect. However, in cases where there are
two events that both occurred, where each alone could have
caused the effect, we then find that neither caused it. In later
work, Lewis amended this to mean that dependencies are not
based solely on whether events occur, but rather how, when
and whether one event occurs depends on how, when and
whether the other event occurs (Lewis 2000).

Another approach, due to Eells (1991), uses probability
trajectories. Here we compare the probability of the effect
before and after the cause occurs and up until the effect fi-
nally occurs in order to find a variety of relationships such
as “because of”, “despite”, or “independently of”. This ap-
proach is difficult to implement in practice, as it’s rare to
have enough information to be able to construct such a tra-
jectory. In the philosophical approaches, a primary prob-
lem has been the practical implementation of these reason-
ing systems. Except in simple cases, being able to know the
cause in a token case requires extensive background knowl-
edge. Thus it has continued to be desirable to see what use
type-level inferences can be for these token cases.

Logic and AI
Computational approaches have traditionally looked at the
problem of beginning with a type-level model, and then us-
ing this to assess a particular case. These models may take
the form of Bayesian networks or logical specifications of
the system.

Approaches in logic have focused on the problem of rea-
soning about the results of actions on the system (Lin 1995;
Thielscher 1997) or diagnosing the causes of system mal-
functions based on symptoms (visible errors)(Poole 1994;
Lunze and Schiller 1999). In particular, there has been a fo-
cus on reasoning about the indirect effects (ramifications) of
actions. That is, how to take into account the effect of an
action and propagate its changes on the world. Much work
in this area stems from that of McCarthy and Hayes (1969),
who introduced the situation calculus as a method of reason-
ing about causality, ability and knowledge, bringing together
philosophical and logical representations of the world. Since
then a number of modifications have been proposed (Lin
1995; Giordano, Martelli, and Schwind 2000), all of which
aim to determine what could follow from an event or ac-

tion. However, our problem is to look backward and find
why what happened happened. Further, it is limiting to have
to begin with a model, as we are rarely given any model in
the cases of interest, and the problem of model inference
is nontrivial. Work on fault diagnosis may seem closer to
our approach, and generally allows for uncertainty about
whether or not faults occurred and probabilistic relation-
ships between faults and symptoms. These methods seek
an explanation for something unusual and assume we begin
with a set of causal knowledge or model specification. Here
causality is usually interpreted in the sense of conditional
dependence, and is most similar to the definitions employed
in graphical models (Pearl 2000), where (absent) edges be-
tween nodes indicate conditional (in)dependence. The no-
tion of when these events occur and how much time may be
between them is not captured, though the output, like ours,
is a ranking of possible causes for a fault.

Most recently, Hopkins and Pearl (2007) have proposed
a framework drawing on earlier work on structural mod-
els (Halpern and Pearl 2001) as well as the work on situ-
ation calculus. Structural models had previously been used
to link graphical models (Pearl 2000) to the counterfactu-
als introduced by Lewis. In this more recent adaptation, it
is shown that counterfactuals may instead be modeled us-
ing the situation calculus, however one must still specify all
dependencies - including those of counterfactuals. Here, a
causal model is a situation calculus specification of the sys-
tem (including preconditions of actions, etc.) and a poten-
tial situation and one may test whether a formula (here, it
may be given a counterfactual interpretation) holds given the
constraints on execution of the system (e.g. action precon-
ditions).

The relationship between type and token
Previous approaches require that one must either begin with
a model, know the truth values of all variables, or have a
deterministic system. In contrast, we will infer relationships
(temporal logic formulas with a causal interpretation) from
time series data and then assess the support of each of these
hypotheses for a token case.

Type-level inference
We will give a brief overview of our approach to type-
level inference before discussing how to use these type-level
causes for token-level cases. In prior work (Kleinberg and
Mishra 2009) we created a new framework for causal infer-
ence, where cause and effect are described in terms of prob-
abilistic computation tree logic (PCTL) formulas (Hansson
and Jonsson 1994), and checked to see if they are satisfied
in time series data (traces) using model checking. Then, to
determine which of these possible inferred causal relations
are significant, we compute the average difference a cause
makes to its effect, using the concept of multiple hypothesis
testing to determine at what level something is statistically
significant (Efron 2004).

Temporal logic The logic used, PCTL, allows us to rea-
son about formulas with probabilities as well as deadlines.
With a set of atomic propositions A, formulas are defined
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relative to a structure (called a discrete time Markov chain
(DTMC)) K = 〈S, si,T,L〉. This structure consists of a fi-
nite set of states, S; an initial start state, si; a total transi-
tion function, T, giving the probability of transition between
pairs of states; and a labeling function, L, giving the propo-
sitions true at each state. Note that in practice we will not
usually have or infer these structures, but will perform the
model checking procedure relative to a trace or set of traces.

Then the two types of formulas, state (those that hold
within a state) and path (those that hold along a sequence
of states) are defined as:

1. Each atomic proposition is a state formula.
2. If f and g are state formulas, so are ¬f, f∧ g, f∨ g, and
f→ g.

3. If f and g are state formulas, and t is a nonnegative integer
or ∞, fU6tg and fU6tg are path formulas.

4. If f is a path formula and 0 6 p 6 1, [f]>p and [f]>p are
state formulas.

The “Until” (U) formula in (3) means that the first subfor-
mula (f1) must hold at every state along the path until a state
where the second subformula (f2) holds, which must hap-
pen in less than or equal to t time units. The modal operator
“Unless” (U) is defined the same way, but with no guarantee
that f2 will hold. In that case, f1 must hold for a minimum of
t time units. Path quantifiers analogous to those in CTL may
also be defined, allowing use of the “always” (A), “exists”
(E), “globally” (G) and “finally” (F) operators:

Af ≡ [f]>1,
Ef ≡ [f]>0,

Gf ≡ fU6∞false, and

Ff ≡ true U6∞f.
We will also make use of the “leads-to” operator, to which
we have added a lower time bound:

f;>t1,6t2
>p g ≡ AG[(f→ F>t1,6t2

>p g)]. (1)

This is interpreted to mean that for every path, from every
state, if f holds, then g will hold in between t1 and t2 time
units with probability p. If t1 = t2, this case simply says it
takes exactly t1 time units for g to hold after f holds. For
a full discussion of PCTL as well as the problem of model
checking PCTL formulas, see the original paper by Hansson
and Jonsson (1994).

Conditions for causality We will infer causal relation-
ships – leads-to formulas where c and e may be any state
formulas – from time series observations (called traces). We
assume there is some underlying true model for a system and
the traces we observe are sequences of states the system has
occupied. Then, the basic condition for causality is that c
must be earlier than e and c raises the probability of e. Note
that these are the minimum conditions, meaning that there
could be a smaller window of time between c and e.
Definition 1. We say c is a prima facie cause of e if the fol-
lowing conditions all hold (relative to a trace, set of traces,
or model):

1. F6∞
>0 c,

2. c;>1,6∞
>p e, and

3. F6∞
<p e.

This captures the primary feature of probabilistic theories
of causality, but this simple definition erroneously admits
many spurious causal relations. For instance, a barometer
falls before it rains and seems to raise the probability of rain,
but it does not cause the rain. Thus we need to further assess
which of these potential causes are significant, comparing
them with other possible explanations for the effect.

Significance of causes In order to determine whether a
prima facie cause is significant, we will compare the average
difference it makes to its effect given, pair-wise, each of the
other prima facie causes of the same effect. That means that
if there is only one other factor with respect to which the po-
tential cause makes only a small difference, it may still have
a high average value. With X being the set of prima facie
causes of e, we compute

εavg(c, e) =

∑
x∈X\c

εx(c, e)

|X \ c|
, (2)

where

εx(c, e) = P(e|c∧ x) − P(e|¬c∧ x). (3)

Finally, we use this εavg to determine c’s significance.
Definition 2. A prima facie cause, c, of an effect, e, is an
ε-insignificant cause of e if εavg(c, e) < ε.
Definition 3. A prima facie cause, c, of an effect, e, that is
not an ε-insignificant cause of e is an ε-significant, or just-
so, cause.

Then, the primary problem becomes one of determining
an appropriate threshold for ε. In prior work (Kleinberg
and Mishra 2009) we have shown how this problem may
be treated as one of multiple hypothesis testing, where we
aim to control the false discovery rate. Here, each prima fa-
cie cause is a hypothesis, and we want to find the level at
which an εavg is statistically significant. Since we are test-
ing a multitude of hypotheses (normally from hundreds to
thousands), we will also infer the null hypothesis from the
data using the empirical Bayesian formulation introduced by
Efron (2004). We assume that the number of true positives is
small relative to the total number of hypotheses tested, thus
the εavg values will mostly fit a normal distribution, with
deviations from this distribution indicating non-null tests.
Thus once we determine an ε ′ such that for all εavg > ε ′,
the FDR is less than some small threshold (such as 0.01), ε ′

becomes our threshold.

The connecting principle
We will now use the strength associated with our type-level
causes to assess the strength of the token-level claims. One
way of relating these two levels of causality is by using the
Connecting Principle, introduced by Sober (1986). The ba-
sic idea is that the support of a particular token hypothesis
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(such as Bob’s smoking caused his lung cancer) is propor-
tional to the strength of the type level relation (such as smok-
ing causes lung cancer).

Definition 4. Connecting Principle: if C is a causal factor
for producing E in population P of magnitude m, then its
support is given by:

S{C(t1) token caused E(t2)|C(t1) and E(t2)

token occurred in P} = m.

The value of the support, S(H|E), which measures the sup-
port of H given E, can range from −1 to +1. Here C and E
are types of causes and effects and the time-indices indicate
the token events that occur in a particular place and time,
represented by ti. The measure ofm used by Sober is1:

m =
∑
i

[P(E|C∧ Ki) − P(E|¬C∧ Ki)]× P(Ki), (4)

where the Kis are the background contexts and this mea-
surement denotes the magnitude of causal factor C for effect
E in population P. The background contexts are formed by
holding fixed all factors in all possible ways. With factors
x1, x2, x3, one possible background context is x1∧x2∧¬x3.

For a particular token case, according to Sober, the rel-
evant population may be defined using whatever is known
about the case. So, if a person’s age and weight are known,
then the population is one comprised of individuals with
those properties. If less is known, perhaps only that he is
a U.S. citizen, then the relevant population is U.S. citizens.
Note that in our method there could be separate structures
for these populations (with this explicitly noted), or each
bit of information defining the population could simply be
a proposition, thus creating one structure that allows vary-
ing results based on additional properties that must hold. 2

The main principle here is that a known type-level rela-
tionship between some c and e is good evidence for c caus-
ing e, if we see that both c and e have occurred. Clearly, the
type-level relationship alone is not enough, the relata must
actually be instantiated. In both Sober’s method and ours,
the type-level causes are precisely such because of their fre-
quency of observation in some population. That is, if we
find that 80% of people who develop disease X die shortly
after, then this gives us reason to believe that if we observe a
new patient who contracts disease X and dies, this is another
instance of the disease being fatal.

Token-level reasoning
We assume that we begin with some set of inferred type-
level causes and their significance scores, and some set of
facts about the scenario such that these tell us which propo-
sitions are true and false at which times. Then, our goal is to
assess the significance of the type-level causes for the token

1This is also called the average degree of causal significance
(ADCS), and was introduced by Eells (1991).

2Note that in this case, saying that something is true for a pop-
ulation, where the population is defined by properties p1,p2...pn
means testing whether, in addition to the formulas for the causal
relationships, p1 ∧ p2 ∧ · · ·pn holds.

case. The result will be a weight for each of the potential
causes, corresponding to the hypothesis that it was a token-
level cause. In some cases a model might be known, but
when it is not we assume we have the original time series
traces used to infer the type-level causes. We will now re-
frame Sober’s principle for our purposes, using our measure
of significance and allowing incomplete information.

The set of possible token causes
We start with the question of selecting the hypotheses that
should be examined in the token case. First, we note that
an insignificant type-level cause can be a token-level cause.
In fact, a token-level cause does not have to be even a
prima facie type-level cause. We want to be able to con-
sider such cases, and not immediately rule out factors that
are not causes at the token level. Let us recall that we are
calculating the support of token causal claims - with the pre-
sumption that we are interested in those with high levels of
support. If two possible token causes took place on a par-
ticular occasion and one is a type-level genuine cause while
the other is a type-level insignificant cause, the more likely
explanation for the effect is that it was token caused by the
type-level genuine cause. That is, if we have a number of
token causal hypotheses, those with the highest support will
be those with the highest value for εavg – our just-so or
genuine causes. Thus, if we know that a just-so cause of the
effect in question took place, we do not need to examine any
insignificant or non-prima facie causes of the effect, as the
only other causes that may have higher significance for the
effect are other just-so or genuine ones. If none of the just-
so or genuine causes occurred, then at that point we would
have to examine alternative hypotheses.

Support of a causal hypothesis
Since we may not always know whether a cause occurred,
we are thus interested in:

S(H) = S(H|E)× P(E), (5)

where S(H|E) is a measure of support defined by Sober.
That is, we want the support of a causal hypothesis, which
is the support for it given the evidence times the probability
of the evidence. However, since the evidence is that there is
a type level relationship between c and e and that c and e
occurred, then all of these are known to be true except for
whether c occurred. Thus the probability of the evidence
is really the probability of c. Then, using our measure of
significance, εavg, we define support as follows. We will
use the notation of c; e to denote our hypothesis H that c
“led-to” e in the token case. Note that this is not the leads-to
operator introduced earlier, but simply a shorthand. Keep-
ing in mind that there is a type-level relationship between c
and e and that these are actual events occurring at particu-
lar times and places, we omit numerical subscripts for the
moment.

Definition 5. Assume that e token-occurred in population P;
that the probability that c token-occurred in P is P(c); and
that εavg(c, e) is the strength of the type-level relationship
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between c and e. Then, the support for the hypothesis that c
token-caused e in P is:

S(c; e) = εavg(c, e)× P(c). (6)

In cases where we know that c and e have token-occurred
we are then computing the posterior support, where P(E)=1,
and this reduces to the case outlined by Sober, where the
probability of the evidence was always one. This means that
if we have full knowledge of a scenario, the support for each
possible explanation will be exactly equal to the strength of
the corresponding type-level relationship. However, when
we have missing data and are unsure as to whether or not a
possible cause occurred, the support for the hypothesis will
be weighted by the probability of the cause having occurred,
given what we have observed.

Calculating the probability of c
To calculate the probability of a particular cause token-
occurring, we can go back to our original data, using fre-
quencies (calculating the frequency of sequences of length
t where the evidence holds). However, if we have or have
inferred the structure of the system, we may use that instead.
In either case, first note that we are computing the posterior
probability of c, where our evidence is one sequence of ob-
servations, comprised of a conjunction of the facts about the
scenario. We will refer to this evidence as E. It will be eas-
ier to later represent the probability of ¬c than c and thus
we are now interested in P(c|E), which is by an application
of Bayes’ rule:

P(c|E) = 1 −
P(¬c∧ E)

P(E)
. (7)

Note that the facts we have about the current scenario will be
time-indexed such that we have facts at times t1, t2 and so
on, indexed relative to the beginning of the event or at times
such that we know their order and can calculate the elapsed
time between them. These facts constrain the set of states
our system has occupied (assuming our model of the system
is correct, or our data is representative of the system). If
q is true at t = 3 then at t3 the system must be in a state
labeled with q. Let us now construct the set F where each
fi ∈ F is the conjunction of facts that are known to be true
at time i, for i ∈ [0..t], where time 0 is the beginning of the
token event and the effect e occurred at time t. When for a
particular i there are no known facts of that time then fi =
true. Otherwise, a particular fi might be something like
(asbestos ∧ smoking). We may also limit the evidence
considered to known causes and effects of c.

Remember that there is a previously inferred relationship
such as:

c;>x,6y
p e, (8)

between c and e (and c and emay themselves be logical for-
mulas) where we assume y > x and that we are computing
P(c). Then, when computing the numerator of the fraction
in Equation (7) we add to the original fi’s, forming a new set
F ′ such that f ′i ∈ F ′ = fi ∧ c if t− y 6 i 6 t− x. For both
numerator and denominator, we proceed in the same man-
ner, with the only difference being the addition of ¬c to the

fis in F ′. The negated c means that c did not occur in such
a way as to satisfy the formula representing the relationship
between c and e. Thus we are calculating the probability of
c not having happened during that time window - given e’s
occurrence and all other known facts about the case.

Thus, when we do not have a model, the probability,
P(¬c∧E)

P(E) , will be the number of times the sequence of facts
in F ′ is true along the trace, divided by the number of times
the sequence F is true. For a set of traces, these would cor-
respond to the number of traces in which each set holds.
When we have a model, the probability is as follows. With
K = 〈S, si,T,L〉 being the structure representing the sys-
tem, and where states satisfying each fj ∈ F

⋃
F ′ have been

labeled as such and all states are labeled with true, then for
0 6 t < ∞, the probability of the set of paths beginning
in s0 (the start state of the system) where each sj |=K fj,
and the paths are of length t, is given by the following re-
currence, where we begin with j = t and s = s0:

P(j, s) = if j = 0 and ft−j ∈ labels(s) then 1
else if ft−j /∈ labels(s) then 0

else
∑
s′∈S

T(s, s ′)× P(j− 1, s ′).
(9)

We will repeat this procedure twice, once for the numerator
and once for the denominator, thus calculating the probabil-
ity of each cause having occurred using Equation (7).

Procedure for assigning support to causes
Recall that we have sets of type-level genuine, just-so, and
insignificant causes of the token-effect in question. Then
to determine the support for each we must first test which
of these are satisfied by the token-level observations. For
the causes whose truth value we cannot determine, we use
the above procedure to determine their probability given the
observations. Recall that the support for each hypothesis is
the previously computed εavg - weighted by the probability
of the evidence. That is, the largest possible value of the
support for a token hypothesis is its associated εavg (since
the probability can be at most one). If any genuine or just-
so type-level causes have occurred, this means that they will
have the highest values of this support. As our goal is to find
the likeliest causes - those with the most support - we can
begin by taking these sets and testing whether any of their
members are true on the particular occasion.

That is, with C being the set of just-so and genuine causes
of the token-effect, e, and F being the set of known time-
indexed facts, we test whether each c ∈ C is true on this
occasion given the facts. This means determining whether
the components of the formulas occurred in such a way as
to satisfy the causal relationship. Thus if the formula is
q ;>1,62 e and we know q at t1 and e at t2, the formula
would be true in this token instance, while if the facts were
instead that q at t1 and e at t4, it would be false. Now note
that q could have been a formula itself, meaning we would
have to initially determine the times at which it is true. Let
us recall the types of formulas and discuss their truth values:

1. An atomic proposition, g, is true at time t if it actually
occurred at t.
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2. With g and h being state formulas, ¬g is true at t if g is
not true at t. Then, g ∧ h is true at t if both g and h are
true at t; g∨ h is true at t if at least one of g or h is true
at t and g→ h is true at t if at least one of ¬g or h is true
at t.

3. Where f and g are state formulas, and s is a nonnega-
tive integer or ∞, the path formula fU6sg is true for a
sequence of times, beginning at time t if there exists an
0 6 i 6 s such that at time t + i the state formula g is
true and ∀j : 0 6 j < i the state formula f is true at t + j.
The path formula fU6sg is true for a sequence of times
beginning at time t if either fU6sg is true beginning at t
or ∀j : 0 6 j 6 s, f is true at t+ j.

4. With f being a path formula and 0 6 p 6 1, the state
formulas [f]>p and [f]>p are true at time t if there is a
sequence of times, beginning at t that satisfy the path for-
mula f.

Following this formulation, we may identify if any c ∈ C
is true on the occasion in question, in which case their sup-
port is simply the associated εavg values. However, if this
set is empty - either none occurred or we do not have enough
information to determine whether any occurred, we must
then calculate their probabilities, as described in the previ-
ous section. Note that we cannot assume that if the proba-
bility of a genuine or just-so cause is non-zero, then the sup-
port for the corresponding token hypothesis will be greater
than for any insignificant causes. We did not test whether
any insignificant causes actually occurred, so it is possible
that for a genuine cause, c, P(c) is low enough that despite
its higher value for εavg, an actually occurring (probabil-
ity = 1) insignificant cause has a larger value for the support
(εavg×P(c)). In the case where there are many insignificant
causes, testing whether each occurred may be computation-
ally intensive. It is possible to define a threshold such that
if the support for a cause is below it, insignificant and other
causes are examined, and to constrain the set of insignificant
causes to those which are true in the token case.

In any case, we begin with the probabilities, and thus sup-
port, for all genuine and just-so causes. When these values
are very low or zero, we must examine the other potential ex-
planations including our previously discarded type-level in-
significant causes, and perhaps even those that are not prima
facie causes. Further, it is possible that a negative cause -
one that normally prevents the effect - actually was the to-
ken cause. After examining all of these, the final result is
a set of possible explanations ranked by their support, with
those having the highest values being the preferred expla-
nations for the effect. We can also test any hypotheses of
interest to see how they relate to the token effect.

Examples

We first discuss a simple case to illustrate the proposed ap-
proach, and then present a few examples of the types of rea-
soning that have traditionally posed problems for theories of
causality.

Basic example
We begin with Alice and Bob, who each have a highly conta-
gious case of chickenpox, which their friend Chris has now
contracted.3 Let us assume we have already found one sig-
nificant type-level cause of contracting chickenpox (with all
other causes being insignificant). This is represented by:

T ;
>10,621
>p P. (10)

That is, touching or other close contact with a person who
has chickenpox (T ), causes the person who had this contact
to contract chickenpox (P) in between 10 and 21 days, with
probability p. Since we have found this to be a type-level
cause, we also have the associated value of εavg.

We have the following facts about the token case:

1. Observation begins at day 0, when both Alice and Bob
developed chickenpox;

2. Alice had lunch with Chris on day 1;

3. Bob went to Chris’s party, and greeted him with a hug, on
day 5;

4. Chris developed chickenpox on day 14;

5. The only significant cause of chickenpox is that in for-
mula (10).

Our type level relationship says that if T is true at some time
t then it can lead to P being true between time t + 10 and
t + 21. The facts we begin with are that Alice’s instance of
T is true at t = 1 and Bob’s at t = 5. To satisfy the causal
formula of (10), P would need to be true in the intervals
[11, 22] or [15, 26]. P is true at 14 and thus Alice’s contact
with Chris can be considered as a possible token-cause of P.
Now, for Bob’s contact to be a token cause of P, P would
need to be true at a time in [15, 26]. However, P is true at
t = 14, which means this causal relationship did not occur,
and it is not a possible token cause (since it could not lead to
P at the time at which P actually occurred). Thus in this case
our only potential token cause is Alice’s contact with Chris,
and the support for this token cause will be εavg(T ,P).

Varying efficacy of causes
Another case that is difficult to reason about is when two
causes of an effect both occur, but one is much stronger and
“trumps” the other. Continuing with the case of Alice, Bob
and Chris, let us say we now have two type-level relation-
ships:

T ;
>10,621
>p1

P, (11)

C;
>10,621
>p2

P. (12)

The first is identical to equation (10), but we have now added
a second relationship, denoting the fact that chickenpox may
also be spread through the air by coughing and sneezing.
Further let us say for the moment that p2 � p1. In this case
we have the following facts:

3Readers familiar with the philosophical literature on token
causality will notice that this case directly parallels the common
example of Billy and Suzy throwing rocks at a glass bottle.
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1. Observation begins at day 0, when both Alice and Bob
developed chickenpox;

2. Alice had lunch with Chris on day 1, but was careful to
avoid directly touching him;

3. Bob saw Chris in an elevator, and Bob coughed and
sneezed through their entire conversation on day 5;

4. Chris developed chickenpox on day 16;
5. The significant causes of chickenpox are those in formu-

las (11) and (12).
Now, we see that Alice’s contact with Chris is an instance of
the relationship in (11), while Bob’s is an instance of (12),
with both occurring in the time windows so as to satisfy
these formulas. Thus both Alice and Bob could have in-
fected Chris according to our type-level relationships. How-
ever, the εavg associated with the relationship in (12) will
be much higher than that for the relationship in (11), ow-
ing to the large difference in associated probabilities. Thus,
the support for Bob causing Chris’s chickenpox by cough-
ing on him, will be much larger than the support for Alice
causing Chris’s chickenpox by being in close contact with
him. While this case may seem as simple as the first, it can
be difficult to reason about using theories that do not take
into account the strength associated with the type-level rela-
tionships. For instance, in counterfactual theories we would
reason that had Bob not infected Chris, Alice would have,
and vice versa – thus fallaciously concluding that neither in
fact caused Chris’s illness. More detailed versions of these
theories would find that both contributed, but would not pro-
vide the ranking that we are able to provide.

Difficult case
Continuing with our running example, we will make the case
somewhat tricky. In this scenario, Bob once again has chick-
enpox and seems to pass it on to Chris by coughing near
him. However, this time Chris received the chickenpox vac-
cine shortly before he saw Bob. Surprisingly, he developed
the milder, less contagious form, that in rare cases is in fact
caused by the vaccine. Thus something that usually prevents
the effect apparently caused it in this case. The related type-
level relationships are:

C;
>10,621
>p1

P, (13)

V ;
>5,626
>p2

P. (14)

That is, as before, coughing and sneezing transmits the virus
with a high probability (p1). In general V causes ¬P, but
with probability p2 = 2% (which is far less than p1) it
causes P. Note that since p2 is so low, V is likely a type-level
negative cause of P (lowering its probability). The facts are
as follows:

1. Observation begins at day 0, when Bob developed chick-
enpox;

2. Chris received the chickenpox vaccine on day 2;
3. Bob saw Chris in an elevator, and Bob coughed and

sneezed through their entire conversation on day 5;
4. Chris developed chickenpox on day 16;

5. The related significant cause of chickenpox is that in for-
mula (13).

Recall that our procedure is to first identify the significant
type-level causes that actually occurred. Thus, we see that
Bob’s contact with Chris is an instance of the relationship
in (13), as the contact and Chris’s chickenpox occurred at
such times as to fulfill that relationship. We would not au-
tomatically test the contribution the vaccine made to Chris’s
illness. If we want to test the hypothesis that the vaccine
caused the chickenpox, we would see that that type-level
relationship was instantiated, with the support for the hy-
pothesis then being exactly equal to the associated εavg,
which will be less than that for the relationship associated
with Bob. Thus what we know to be the actual cause of the
illness has less support than something that did not cause this
particular instance. It is possible that if we had more specific
relationships related to the particular forms of chickenpox
(and involving more details such as genetic factors and so
on), we could find that the vaccine is likelier to cause this
type. However, note that in most cases we will not be om-
niscient and thus we would not know that the disease was
caused by the vaccine, thus it would be quite plausible that
the chickenpox occurred due to Bob’s coughing and despite
the vaccine.

Conclusion
We have shown how inferred type-level causes, represented
by logical formulas, may be used to reason about token-level
cases. This method captures information about the timing
of the general relationship and occurrence of actual events,
allowing automated reasoning about cases that were previ-
ously only correctly handled with intuition. Through exam-
ples we have shown how we may arrive at results consistent
with common sense and in what cases this type of reason-
ing is not adequate. In future work we will discuss how to
include other knowledge as well as the possibility that some
“facts” may be conflicting or incorrect.
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