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Abstract. What is systems biology? What can biologists gain from an attempt
to algebraize the questions in systems biology? Starting with plausible biologi-
cal theses, can one algebraically model them and then manipulate them to sug-
gest meaningful hypotheses? Using these hypotheses, can one measure and mine
suitable experimental data to validate or refute these hypotheses? Through these
intertwined processes of measuring, mining, modeling and manipulating biolog-
ical systems, can one generate the set of theses and hypotheses upon which sys-
tems biology will be founded? This review provides one algorithmic-algebraist’s
somewhat idiosyncratic response to these and other related questions, but also
aims to persuade young algebraists to examine the possible role they and algebra
can play to enrich this subject.

1 Hypotheses Non Fingo: Hooke Meets Newton

Over the last few years, Sir Robert Hooke, a somewhat maligned, but still a very fasci-
nating English experimental scientist, had begun to feature unexpectedly prominently in
practically all my public presentations on Systems Biology. Initially, what had attracted
me to the story of Hooke, was the uncanny resemblance he bore to many contemporary
scientists in terms of their insistence on data, observations and hypotheses, their appar-
ent non-rigorous and intuitive approaches to scientific questions, but most inexplicably,
their protracted and debilitating open rivalries over the questions of recognition. But,
as I learned more about Hooke’s life and views, it also became clearer that his indirect
influence on the way we think about science today is only surpassed by the opinions of
only a handful of other contemporary thinkers, with some of whom Hooke fought bitter
and hopeless semi-philosophical battles. They have, thus, unwittingly lent us a useful
perspective that is worth examining with some care. How the emerging field of systems
biology could establish itself, how it should face its trials and tribulations along the way,
and how it could be a significant component of the “new new” biology, etc., could all
be examined from the points of view of these 17th century scientists—a viewpoint that
remains anachronically and peculiarly relevant even today.

Robert Hooke (1635-1703) was an experimental scientist, mathematician, architect,
and astronomer. He was also the first Secretary of the Royal Society from 1677 to 1682,
and because of his wide ranging interests, Hooke has been variously described as the
“England’s Da Vinci.” His work Micrographia of 1665 contained his microscopical
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investigations, which included the first identification of biological cells, an enduring
discovery that has maintained its central place in subsequent developments in biology
for more than three centuries. In his drafts of Book II, Newton had referred to him as the
most illustrious Hooke—“Cl[arissimus] Hookius.” However, not long after, Hooke be-
came involved in a bitter dispute with Sir Isaac Newton over the priority of the discovery
of the inverse square law of gravitation. In a letter Hooke wrote to Halley, he complained
about omission of credit given to his discovery of the properties of gravity, “which of
late Mr. Newton has done me the favour to print and publish as his own inventions.” In
response Newton wrote back to Halley, “Now is this not very fine? Mathematicians that
find out, settle & do all the business must content themselves with being nothing but dry
calculators & drudges I beleive[sic] you would think him a man of a strange unsocia-
ble temper”—perhaps still a common protest of many unhappy mathematicians whose
contributions have been ignored or forgotten. In a more well-known letter that Newton
wrote directly to Hooke, he famously said, “If I have seen further[sic] than other men,
it is because I have stood on the shoulders of giants”—where, of course, the giants
Newton was alluding to were Kepler and Galileo, and not the dwarfish, small-minded
and short-tempered likes of Hooke! When Christopher Wren was brought in to resolve
this rather strangely English war-of-words, Wren diplomatically described the disagree-
ment using Clairaut’s characterization of “the great distance between a glimpsed truth
and a demonstrated truth”—raising perhaps, the question of relative roles that should
be ascribed to the inductive hypothesis-driven science with respect to the deductive
principle-driven science—theses vs. hypotheses.

What is the nature of “TRUTH” in biology, and how is it to be sought? Hooke saw
biology as an observational science; he wrote in Micrographia, “The truth is, the sci-
ence of Nature has already been too long made only a work of the brain and the fancy.
It is now high time that it should return to the plainness and soundness of observations
on material and obvious things,” —a view supporting hypothesis-driven experimenta-
tion that advances science through steps of falsification or validation. Newton, on the
other hand, championed a search for deep and unifying principles. Newton shunned
hypotheses; his motto stated in Principia was “Hypotheses non fingo.” (“I feign no hy-
potheses.”) Newton’s viewpoints are probably best stated by his most ardent disciple,
Halley; in his rather ornately titled essay ‘The true Theory of the Tides, extracted from
that admired Treatise of Mr. Issac Newton, Intituled, Philosophiae Naturalis Principia
Mathematica,’ he wrote the following: “Truth being uniform and always the same, it is
admirable to observe how easily we are enabled to make out very abstruse and difficult
matters, when once true and genuine Principles are obtained.”

Biology still remains an observational science; it continues to move through the toils
of a vast army of scientists each examining a small subsystem of a favored organism, as
the scientists sharpen their intuitions, build upon guesses, conjectures, and hypotheses,
and refine their ideas in many small steps—occasionally interrupted by a great leap, a
grand vision or a comprehensive shift in paradigm. If subtle principles are to be brought
to light, they must wait for serendipity. It has been argued that life is complex, it does
not yield to few small neat explanations or pigeon-holing, and if there is a unifying
principle in biology, it is that there is no unifying principle in biology.
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Can ideas from algorithms and algebra be brought to bear to systematically hunt
for principles and patterns that will reveal a grand unified theory of biology? Are their
design rules at play in how these systems evolve, interact, and self-assemble? What
algebraic tools must we build, if we wish to create a global view of biology? What
can be automated to make computers work on tasks that are humanly impossible? Is
algebraic systems biology the answer to the problems of biology?

2 Systems Biological Models

2.1 Processes

We start with the following taxonomy into which the cellular biochemical processes are
typically organized, as described below.

GENETIC REGULATION: The oft-repeated “central dogma of biology” states that bio-
chemical information in cells is encoded primarily in the Deoxyribo Nucleic Acid
(DNA) molecules. DNA is transcribed into messenger Ribo Nucleic Acid (mRNA),
and the mRNA then is translated into proteins at the ribosomes. Genetic regulation
is the process of modulation of the expression of the relevant genes at the correct loca-
tions and times, and is keyed by specific proteins called transcriptional factors. Through
transcriptional factors and other ancillary modulators, proteins, the products of genes,
themselves partake in this genetic regulatory process, thus giving rise to complex inter-
action networks; such proteins interact with regions of the DNA to effect modulation of
how genes are transcribed. The binding of the transcription machinery and the transcrip-
tional factors to the DNA involves complex protein-DNA-protein interactions, where,
more often than not, the structural modification of the DNA (such as euchromatin and
heterochromatin regions) and the protein has to be accounted for.

The rate of gene transcription, the post-transcriptional mechanisms that affect mRNA
half-life (i.e., stability) and the formation of the mRNA-ribosome complex are other
aspects of genetic regulation. Similarly, there are post-translational mechanisms for pro-
tein modification such as phosphorylation of key residues, multimerization, chaperone-
guided complex formation, protein-folding control, and genetic control by small
interfering RNA (siRNA).

SIGNAL TRANSDUCTION: The cell responds to external signals through receptors,
which may be on its surface or in its cytoplasm. The signal is transmitted to the interior
through messengers, which induce the desired response to the external signal. Typi-
cally, a ligand binds to a trans-membrane receptor whose conformation subsequently
changes. This change is detected by proteins bound to it (usually on the cytoplasmic
side), or is manifested as a change in the receptor’s chemical properties. Subsequently,
second messenger molecules amplify the signal and communicate it to the target(s).
Alternatively, the ligand can directly enter the cell through non-specific channels and
then bind to the receptors inside the cell. Small molecules like calcium often participate
in these pathways, where most of the reactants are enzymatic proteins. The net result
of the signal transduction pathway is an appropriate response by the specific subcellu-
lar component. Very often, the signaling pathway results in the nuclear localization of
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transcription factors, leading to the transcription (or shutting down) of corresponding
genes. The binding of the signaling molecule with the receptor, the modification of the
structure of the receptor and associated proteins (with the receptor sometimes acting
as an enzyme) and dispatching of second messengers are the activities near the cell
membrane. Receptor desensitization, internalization and regeneration are other com-
plex sub-processes, thus altering the physical properties of binding and diffusion.

METABOLISM: Metabolism represents almost all processes that are not genetic reg-
ulatory or signal transducing. The gigantic set of biochemicals needed by the cell are
continuously produced and consumed by complex enzyme catalyzed pathways. These
comprise the metabolic network. They essentially govern the matter and energy cycles
of a cell— the way energy and matter are obtained, transformed and consumed by liv-
ing organisms. Photosynthesis for example is the process by which light energy is con-
verted into chemical energy during sugar (e.g., glucose) formation. During respiration,
the oxidation of glucose transforms the energy into Adenosine Tri-Phosphate (ATP).
While the ATP-cycle and photosynthesis comprise the well-known energy metabolism,
carbohydrate metabolism deals with Glycolysis and Phosphates, lipid metabolism per-
tains to Triacyl Glycerol and Fatty Acids, and amino acid metabolism mostly refers to
Glutamate and Urea.

OTHER PROCESSES: Biology is complex, and of course, there are still more aspects
to cellular biology beyond this simple trichotomic characterization. These include the
biophysics of DNA packaging, small interfering RNA (siRNA), protein folding and
DNA-protein interaction, cell adhesion, non-transcriptional regulatory pathways, cellu-
lar compartments and related spatio-temporal phenomena, cell proliferation, and cell
migration. While the modeling approaches suggested here, when further augmented
with suitable stochastic and spatial formalisms, will generalize as well, I will not em-
phasize those applications directly in my discussion here.

2.2 Models

Algorithmic algebraic models of biological systems are created through a process of
conceptual simplification. Models, created in this fashion, must strike a balance among
fidelity, expressivity and ability to be manipulated algorithmically. For this purposes, the
different component parts and processes in the biochemical domain may be represented
at different levels of abstraction [22,37]. I summarize some of the major approaches
below, but will guide the discussion towards hybrid automata representation, a very
general and powerful model for these systems.

LOGICAL MODELING: The state of the reactant is captured through a finite number
of abstract-states (where intermediate expression levels are assumed to have the same
behavior), and functions are used to describe the new states (concentration range) of the
chemical species, given their old states. The transitions between states can be assumed
to occur synchronously or (more accurately) asynchronously. In the simplest case, only
two states (“on” and “off”) are used, and Boolean algebra is used to describe the dy-
namics. Literature on Concurrent Transition Systems [20,19] and Pathway (Rewrite)
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Logic [25] provides good expositions of logical modeling. Kappler et al. [38] demon-
strate how to extend simple Boolean networks by using ordinary differential equations
to capture the concentration, while Boolean functions continue to determine the rates
of the reactions. The probability of being in a state is sometimes a more reasonable
measure to estimate, as in the case of Sachs et al. [57], who use Bayesian networks
to model cell signaling pathways. Similarly, Shmulevich et al. [58] describe the use of
probabilistic Boolean networks to model genetic regulatory networks and determine the
long-term joint probabilistic behavior of a few selected genes. Platzer et al. [55] simu-
late the embryonic development of C. elegans by assuming Boolean states for the genes
and synchronously updating at each time step based on an interaction matrix. Batt et al.
[12] have applied model checking theory on biochemical systems modeled though
qualitative simulation.

DIFFERENTIAL EQUATIONS: If instead the concentrations are represented exactly in
the real continuous domain, the ordinary differential equations (ODEs) of the dynamics
directly follow from the law of general mass action (GMA) [21,39,59]. For instance,
in the reaction aA + bB ←→ cC + dD, the rate of the forward reaction v f ≡ k f [A]a[B]b

and the rate of the backward reaction vb ≡ kb[C]c[D]d , where k f and kb are the for-
ward and backward rate constants respectively and the rate of individual reactants is
1
cĊ = 1

d Ḋ = − 1
a Ȧ = − 1

b Ḃ = (v f − vb). As a compromise between discrete and con-
tinuous representations, qualitative differential equations can be used with qualitative
states corresponding to the different concentration ranges [12,23]. Partial differential
equations are necessary for spatially distributed models, e.g., pde’s, sde’s, or reaction-
diffusion equations.

HYBRID SYSTEMS: Many biological systems, such as the cell, follow a combination
of discrete and continuous behaviors, which cannot be characterized in a proper way
using either only discrete or only continuous models. On one hand, their evolution is
ruled by a continuous dynamical law concerning substance concentrations and gradi-
ents, and, on the other hand, such a dynamical law may change discretely depending
on the system status itself. Because of their hybrid nature, part discrete and part con-
tinuous, such systems are named hybrid systems. To model hybrid systems, Alur et al.
introduced the notion of hybrid automata in [3]. Intuitively a hybrid automaton is a
“finite-state” automaton with continuous variables, which evolve according to a set of
continuous laws characterizing each discrete mode of the automaton itself. The use of
hybrid automata for modeling biomolecular networks has been described by Alur et al.
[1] and Mishra et al. [46]. Amonlirdviman et al. [7] demonstrated the utility of hy-
brid systems by modeling Drosophila planar cell polarity. Starting with the S-System
formulation of Savageau and Voit [60], Antoniotti et al. [11] used an additional automa-
ton to broaden the set of representable systems, subsequently using full-fledged hybrid
automata [10]. Ghosh et al. presented both delta-notch [29,28] and protein signaling
network [30] models based on the hybrid automaton formalism. Casagrande et al. [16]
suggested a simple (and decidable) hybrid automaton model for the E. coli chemotaxis.
Lincoln and Tiwari [43] detail hybrid automaton modeling of biochemical networks,
while Hu et al. [36] describe stochastic hybrid system modeling of subtilin production
in Bacillus subtilis. More recently, Drulhe et al. [24] have described piecewise-affine
models of genetic regulatory networks.
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ALGEBRAIC HYBRID AUTOMATA, TEMPORAL LOGIC AND ALGORITHMS: To cre-
ate a comprehensive theoretical framework for systems biology, what is needed is an
appropriate generalization of discrete-time systems, classical temporal logic, possible-
world models of temporal logic given by Kripke (e.g., Kripke structures), model check-
ing algorithms based on graph theoretic analysis, etc. to this richer and more powerful
domain. However, the generalization must be suitably powerful to capture reasoning
processes closely resembling what is used by the biologists, and yet it should also be
appropriately constrained so that these systems can be reasoned by feasible computa-
tional means. At the least, the resulting problems should be decidable (computable). We
seek such a framework below by a judicious amalgamation of symbolic algebra (using
decision procedures of semi-algebraic geometry), sufficiently constrained dense-time
logic and algebraic models based hybrid automata. We start with a discussion of such
hybrid automata and their reachability problem.

3 Algebraic Systems Biological Models

The subject Algorithmic Algebraic Model Checking was introduced to examine con-
nections between systems biology, dynamical systems, modal logic and computability,
and how they can be useful in the biological context. Towards this aim, one could begin
by addressing the symbolic model checking problem for a new class of hybrid models
arising in systems biology – semi-algebraic hybrid systems, introduced in the first pa-
per of our “AAMC” (Algorithmic Algebraic Model Checking) series [53]. There, our
goal was to characterize the widest range of automata that admit sound albeit expensive
mathematical techniques, as opposed to focusing on a very narrow class of systems that
often prematurely sacrifice genralizability for the sake of efficiency.

We built upon and integrated many existing ideas: e.g., semi-algebraic hybrid au-
tomata, the Blum-Shub-Smale model of “real” computation and TCTL (a powerful
temporal logic formalism suitable for our setting)—more formally defined below.

Definition 1 Semi-Algebraic Set [45,47]. Every quantifier-free boolean formula com-
posed of polynomial equations and inequalities defines a semialgebraic set (i.e., un-
quantified first-order formulæ over the reals - (R,+,×,=,<)). �

Definition 2 Semi-Algebraic Hybrid Automata [53]. A k-dimensional hybrid au-
tomaton is a 7-tuple, H = (Z, V , E, Init, Inv, Flow, Jump), consisting of the following
components:

– Z = {Z1, . . . , Zk} a finite set of variables ranging over the reals R;
– (V,E) is a directed graph of discrete states and transitions;
– Each vertex v ∈V is labeled by “Init”(initial), “Inv”(invariant) and “Flow” labels;
– Each edge e ∈ E is labeled by a “Jump” condition;
– Init, Inv, Flow, and Jump are semi-algebraic. �

Definition 3 Semantics of Hybrid Automata. Let H = (Z, V , E, Init, Inv, Flow, Jump)
be a hybrid automaton of dimension k.
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– A location � of H is a pair 〈v, R〉, where v ∈V is a state and R ∈ R
k is an assignment

of values to the variables of Z. A location 〈v, R〉 is said to be admissible, if Invv(R)
is satisfied.

– The continuous reachability transition relation
h−→
C

forces the state invariant to hold

at every point except the end-point along the evolution curve determined by the
flow equations during the h(> 0) time units from the current time t0:

〈v,R〉 h−→
C

〈v,S〉 iff(
Flowv(R,S,t0,h) ∧ ∀S′,h′ ∈ [0,h) Flowv(R,S′, t0,h′) ⇒ Invv(S′)

)
,

where Flowv(R,S,t,h) is a relation between the continuous state R at time t and
the continuous state S after h time units in the discrete state v. It is “well-defined”
in the sense that ∀R,S,t,h Flowv(R,S, t,h) ⇒ {∀h′ ∈ [0,h) ∃S′ Flowv(R,S′, t,h′)}.

– The discrete reachability transition relation
0−→
D

ensures that both parts of the zero-

time jump1 — the guard condition which needs to be satisfied just before the tran-
sition is taken, and the reset condition which determines the values after the tran-
sition, are satisfied.

〈v,R〉 0−→
D

〈u,S〉 iff 〈v,u〉 ∈ E ∧ Jumpv,u(R,S).

– The transition relation T of H connects the possible values of the system vari-
ables before and after one step — a discrete step for a time h = 0 or a continuous
evolution for any time period h > 0:

T (� h−→ �′) = {h = 0 ∧ �
0−→
D

�′} ∨ {h > 0 ∧ �
h−→
C

�′}.

– A trace of H is a sequence �0,�1, . . ., �n, . . . of admissible locations such that

∀i ≥ 0, ∃hi ≥ 0, T (�i
hi−→ �i+1). �

Definition 4 Finite-Dimensional Machine Over R: [13]. A finite dimensional ma-
chine M over R consists of a finite directed connected graph with four types of nodes:
input, computation, branch and output.

In addition the machine has three spaces: input space IM , state space SM and output
space OM of the form Rn,Rm,R l , respectively, where n,m and l are positive integers.

1. Associated with the input node is a linear map I : IM → SM and a unique next
node β1.

2. Each computation node η has an associated computation map, a polynomial (or
rational) map gη : SM → SM given by m polynomials (or rational functions) g j :
Rm → R, j = 1, · · · ,m, and a unique next node βη .

1 Jumpv,u(R,S) ≡ Guardv,u(R)∧Resetv,u(R,S).
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3. Each branch node η has an associated branching function, a nonzero polynomial
function hn : SM → R.

4. Each output node η has an associated linear map Oη : SM → OM and no next
node. �

Theorem 1 Path Decomposition Theorem: [13]. For any machine M over R the
following properties hold.

1. For any T > 0, the time-T halting set of M : ΩT (=
⋃

γ∈ΓT
νγ ) is a finite disjoint

union of basic semi-algebraic sets (respectively, basic quasi-algebraic sets, in the
unordered case), where ΓT is the set of time-T halting paths and νγ is the initial
path set.

2. The halting set of M : ΩM (=
⋃

γ∈ΓM′ νγ ) is a countable disjoint union of basic
semi-algebraic (respectively, basic quasi-algebraic) sets, where ΓM′ is the set of
minimal halting paths.

3. For γ ∈ ΓM (the set of halting paths of M ), the input-output map ΦM restricted to
νγ – ΦM|νγ is a polynomial map, or a rational map if R is a field. �

Definition 5 The Mandelbrot Set [44]. M is the subset of the set of complex numbers
C that remains bounded when subject to the following iterative procedure: f0(c) = c ,
fn+1(c) = fn(z)2 + c. Formally, the complement M ′ of the Mandelbrot set is defined as

M ′ = {c ∈ C | fn(c) → ∞ as n → ∞}.

It is to be noted that fi(c) ≥ 2 implies that eventually fn(c) → ∞. �

Definition 6. The Mandelbrot Hybrid Automaton consists of

– One discrete state with invariant False and two continuous variables x and y.
– Flow1 : { x′ = x ∧ y′ = y } (no continuous evolution).
– One Discrete State Transition: 1 → 1 with Jump1 : (x′ = x2 −y2 +Cr)∧(y′ = 2xy+

Ci), where Cr and Ci are two constants (real numbers).
– Only possible trace: zeno path of infinite self-loops. �

Theorem 2 Undecidability Of The Mandelbrot Set: [13]. The Mandelbrot set2 can-
not be expressed as the countable union of semi-algebraic sets over R, and hence not
decidable over R. �

Definition 7 TCTL[2]. It has the following syntactic structure:

φ ::= p | ¬φ | φ1 ∨φ2 | φ1∃U φ2 | φ1∀U φ2 | z.φ .

Its associated semantics is described below:

– z.: The freeze quantification “z.” binds the associated variable z to the current
time. Thus the formula z.φ(z) holds at time t iff φ(t) does.

2 The corresponding 2-dimensional set of real numbers.
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– φ1∀U φ2 and φ1 ∃U φ2: universal (on all paths) and existential (on at least one
path) “until” operators. For φ1 U φ2 to be true on a path, φ2 is required to be true
somewhere along the path, and φ1 is required to be true all along the path up to
(but not necessarily at) that point. �

Remark 1. The basic notations are often extended by the following syntactic abbrevia-
tions [2].

1. p ∃U≤max q ≡ p ∃U (q∧z.(z ≤ max)) and p ∀U≤max q ≡ p ∀U (q∧z.(z ≤ max)):
“subscripted” Until operators (max is the time-bound).

2. (∀F p ≡ true ∀U p) and (∃F p ≡ true ∃U p: “eventuality” operators.
3. (∀G p ≡ ¬∃F¬p) and (∃G p ≡ ¬∀F¬p): “invariance” operators.

Definition 8 Single-Step Until Operator, �, [35]. The formula p � q holds if p ∨ q
is true all along “one step” of the hybrid system and q is true at the end of the
transition. �

Definition 9 T μ-Calculus Syntax: [35]. φ ::= X | p | ¬φ | φ1 ∨φ2 | φ1 �φ2 | z.φ | μX .φ ,
where μ is the least-fixpoint operator3. Thus,

– Existential Until: p ∃U q = μX .(q ∨ (p � X))
– Universal Until:4 p∀U q = ¬(¬q ∃U (¬p ∧¬q)) �

3.1 What Questions Can and Cannot Be Answered

One may now wish to devise algorithmic algebraic solutions to various kinds of queries
(in TCTL) to examine interesting properties and invariants about the hybrid automata
that model biochemical systems. The simplest and perhaps the most important question
that one can ask about these systems is the symbolic state reachability problem: namely,
can one reach a particular state from an initial state by following the dynamics of the
hybrid automaton which may be described symbolically? A more relevant biological
question could be to provide a symbolic description of the initial conditions (states)
from which the biological system (modeled via a semi-algebraic hybrid automaton)
can reach a desired state (say, apoptosis state for a cancer cell), or avoid certain un-
safe states. In this sense, algebraic descriptions in systems biology can be a potent tool.
However, the immediate answers to these questions are depressingly negative. Thus, our
community needs to engage in many years of focused work to devise a mature algebraic
systems biological toolset. We and others have made some progress by exploiting ap-
proximations, bounded reachability analysis, etc. or by suitably constraining the power
of the family of hybrid automata studied [54,52,50,17,15,49,51,48,14]. But much more
remains to be done!

Just to summarize few of the positive steps in this direction, we mention the follow-
ing two different approaches: The first way is to identify hybrid automaton classes for
which the problem is decidable and to use such classes to model hybrid systems. In the
last ten years, many decidable classes have been discovered [3,6,56,40,41,18], but, be-
cause of the restrictions imposed on them to achieve decidability, often they cannot be

3 The greatest-fixpoint ν can be expressed as ¬μX .(¬φ [X := ¬X ]).
4 This translation is valid only when q is “finitely variable” over all premodels [35].
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easily applied in the analysis of real biological systems. The second way is approximate
analysis, like bounded model checking [31,27], abstract interpretation [4,5], or quotient
reduction [32,33,34], to obtain a partial (or approximate) result for the model check-
ing problem (e.g., the property holds for at least ten seconds starting from the initial
condition).

On other approaches that resemble the systems described here, we enumerate few
recent results: Anai [8] and Fränzle [26] independently suggested the use of quantifier
elimination for the verification of polynomial hybrid systems. Anai and Weispfenning
subsequently expounded the use of quantifier elimination for the reachability analysis
of continuous systems with parametric inhomogeneous linear differential equations [9].
Fränzle went on to prove that progress, safety, state recurrence and reachability are
semi-decidable using quantifier elimination of semi-algebraic formulæ [26], and to de-
velop proof engines for bounded model checking [27]. Lafferiere et al. [42] have de-
scribed a quantifier-elimination-centric method for symbolic reachability computation
of linear vector fields. Many of these powerful techniques remain to be fully integrated
into the context that systems biology proposes.

We only present technical details of the following negative result, here. Rest can be
found in the reference [52].

Theorem 3 General Undecidability Of Reachability. For semi-algebraic hybrid
systems, reachability is undecidable even in Blum et al.’s “real” Turing machine
formalism.

Proof. Consider the Mandelbrot hybrid automaton defined earlier, with the complex
number C = Cr + ı.Ci. Let S(t) = x(t) + ı.y(t). After 1 discrete state transition (self-
loop), we get

S′(t) = {x(t)2 − y(t)2 +Cr}+ ı.{2x(t)y(t)+Ci} = {x(t)+ ı.y(t)}2 +{Cr + ı.Ci}
In other words, S′(t) = S2(t)+C which is the defining equation of the Mandelbrot Set.
Clearly, if there exists an evolution where |S(t)| ≥ 2 then we know that C does not
belong to the Mandelbrot set i.e. if the reachability query5 (x2 + y2 ≥ 4) is decidable, it
would imply that the Mandelbrot set is decidable, thus resulting in a contradiction. �

3.2 Final Thoughts

Lest some may mistakenly conclude that I have argued parochially in favor of theses
over hypotheses (equivalently, Newton over Hooke), I conclude this review with the
following beautiful quote from Hooke:

“So many are the links, upon which the true Philosophy depends, of which, if
any can be loose, or weak, the whole chain is in danger of being dissolved; it
is to begin with the Hands and Eyes, and to proceed on through the Memory,
to be continued by the Reason; nor is it to stop there, but to come about to the
Hands and Eyes again, and so, by a continuall passage round from one Faculty
to another, it is to be maintained in life and strength.”

It is hoped that someday, algebra will serve its role as a strong link between biological
theses and hypotheses— maintained in life and strength!

5 Reachable(p) ≡ ∃F (p).
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