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Abstract. A series of papers, all under the title of Algorithmic Algebraic Model
Checking (AAMC), has sought to combine techniques from algorithmic alge-
bra, model checking and dynamical systems to examine how a biochemical hy-
brid dynamical system can be made amenable to temporal analysis, even when
the initial conditions and unknown parameters may only be treated as symbolic
variables. This paper examines how to specialize this framework to metabolic
control analysis (MCA) involving many reactions operating at many dissimilar
time-scales. In the earlier AAMC papers, it has been shown that the dynamics
of various biochemical semi-algebraic hybrid automata could be unraveled using
powerful techniques from computational real algebraic geometry. More specifi-
cally, the resulting algebraic model checking techniques were found to be suit-
able for biochemical networks modeled using general mass action (GMA) based
ODEs. This paper scrutinizes how the special properties of metabolic networks–
a subclass of the biochemical networks previously handled–can be exploited to
gain improvement in computational efficiency. The paper introduces a general
framework for performing symbolic temporal reasoning over metabolic network
hybrid automata that handles both GMA-based equilibrium estimation and flux
balance analysis (FBA). While algebraic polynomial equations over Q[x1, . . ., xn]
can be symbolically solved using Gröbner bases or Wu-Ritt characteristic sets,
the FBA-based estimation can be performed symbolically by rephrasing the al-
gebraic optimization problem as a quantifier elimination problem. Effectively, an
approximate hybrid automaton that simulates the metabolic network is derived,
and is thus amenable to manipulation by the algebraic model checking techniques
previously described in the AAMC papers.

1 Introduction
Recently, several biologists have convincingly argued for a systems level analysis, as
opposed to the traditional reductionist approach of molecular biology [13, 7, 12]. When
aimed at understanding the holistic properties of the dynamics of biochemical networks,
this approach could not only lead to giant leaps in our elucidation of the basic sci-
ence of biology, but could also contribute more directly to many practical applications,
e.g., the drug and vaccine discovery process, diagnosis, agricultural and manufactur-
ing technologies, and synthetic biology of the future. Algebraic analysis may hold the
? The work reported in this paper was supported by two grants from NSF ITR program.



key to success of this venture, as it enables obtaining richer answers to deeper ques-
tions, even when both initial conditions and rate parameters can only be presented as
symbolic variables. It is hoped that this methodology will expose important algebraic
functional relationships among the emergent phenomena, the kinetic parameters and the
initial conditions, thus revealing many fundamental unifying principles of biology. The
starting point for this approach is the fundamental general mass action (GMA) law of
chemical kinetics, which supplies a system of ordinary differential equations (ODEs)
governing the rate of change of the concentrations of interacting biochemicals. Let kis
denote the rate constants, nis the number of molecules that appear in the reactions,
and W js their concentrations. Then, the continuous dynamics within each state may be
described through the GMA-based ODEs [11, 27, 58]:

Ẇh = +{Σ j∈h+n jk jΠ j
i Wi}−{Σ j∈h−n jk jΠ j

i Wi}. (1)

Each equation above is an algebraic differential equation consisting of two affine sum-
mation terms: a positive term representing synthesis (all processes producing Wh) and
a negative term representing degradation (all processes consuming Wh). The number of
Wjs (an integer) multiplied in each term is equal to the number of molecules of reactants
(and similarly, products) in that reaction (e.g., higher order terms like 100kW 3

i W 10
j W 5

k
are possible4).

For tools analyzing GMA ODEs, their ability to handle unknown parameters or
uncertainties in their estimates becomes crucial as kinetic parameters are seldom mea-
sured under ideal conditions [14]. In response to this challenge, we have extended the
GMA models to the algebraic domain, by developing decidable and approximable tech-
niques for symbolic temporal analysis within our Algorithmic Algebraic Model Check-
ing (AAMC) framework, described in a series of publications [46, 41, 40, 6, 39, 42]. In
this framework, the process of numerically integrating the differential equations and
extracting a simpler examinable representation is substituted with an algebraic proce-
dure (based on Computational Real Algebraic Geometry [37, 15, 38]) that can answer
complex queries about the symbolic states of the system.

In this paper, we specialize this approach to metabolism, which is comprised of the
complex enzyme-catalyzed pathways (excluding signal transduction and genetic regu-
lation) that produce and consume the “metabolites” in any living cell. The system of
ODEs for metabolic networks lends itself to simplification and efficient analysis be-
cause of three key properties [17]: (1) A subset of the metabolites interact with each
other through reactions much faster than the rest of the system; (2) These fast reac-
tions always reach a quasi-equilibrium state, which is local (involving only this subset
of metabolites) and momentary (it is modulated by the slower reactions in the rest of
the system); (3) Mass is conserved during such equilibrium recomputation, and the
equilibrium configuration is completely determined by the total concentration of the
metabolites. Powerful computational methods have emerged to exploit this structure
of metabolic networks; in these methods, only the dynamic GMA simulation of the
slow reactions are performed, while, under the assumption that the fast reactions re-
spond quickly, the equilibria of the fast reactions are recomputed at each time-step. A

4 Though negative and real exponents can be indirectly handled, we restrict our analyses to terms
with non-negative integer exponents.



list of the most prominent methods that venture in this direction would include the fol-
lowing: tendency modeling [57], dynamic flux balance analysis [33], hybrid static +
dynamic simulation [65], intrinsic low dimensional manifolds [52] and singular pertur-
bation analysis [19, 32]. This paper builds upon several concepts from the earlier studies
to arrive at a trichotomic characterization of the metabolites – the slow irreversible dy-
namic reactants X , the fast reversible quasi-equilibrium reactants Y and the interface
reactants Z. Their properties are elaborated below:

1. Dynamic Reactants: All the reactions involving these metabolites (denoted by
X) are modeled using detailed general mass action-based differential equations.
Typically, these reactions are understood to be slow and irreversible, with dynamics
of the form: Ẋ = F(X ,Z,K), where K are the symbolic (rate) parameters.

2. Quasi-Equilibrium Reactants: All the reactions involving these metabolites (de-
noted by Y ) are modeled in terms of their dynamic equilibria alone. They always
participate in at least one reaction as a substrate and in at least one reaction as a
product. Typically, these reactions are understood to be fast and reversible, with
dynamics of the form: Ẏ = G(Y,Z,K).

3. Interface Reactants: These reactants (denoted by Z) interact with both the dy-
namic reactants and the quasi-equilibrium reactants. Thus, their general mass ac-
tion based flow equations (from slow reactions) are modified because of the fast
reactions with the quasi-equilibrium reactants, giving rise to dynamics of the form:
Ż = D(X ,Z,K)+P(Y,Z,K).

Example 1. Consider a simple metabolic network composed of just two reactions: a

slow irreversible reaction A + B ks→ R + S, and a fast reversible reaction E + S
k f


kr

C.
This reaction could describe an enzymatic process involving, say, an enzyme (E) and
substrate (S) interacting to produce the enzyme substrate complex (C). We wish to
study how an external slow reaction producing the substrate can control the equilib-
rium configuration. Let us denote the metabolite concentrations, [E], [S], [C], by the
letters e, s, and c, respectively. The dynamic reactants X are A, B and R. The quasi-
equilibrium reactants Y are E and C. The interface reactant Z is S. Their flow equations
are: ȧ = ḃ =−ṙ =−ksab, ė =−ċ = krc−k f es and ṡ = ksab+krc−k f es. The dynamics
are often rephrased using the flux variables U1 = ksab, U2 = krc and U3 = k f es. �

The existing tools [59] for metabolic networks are all structured primarily on analy-
ses that use numerical simulation, numerical perturbation, random sampling and param-
eter sweeping techniques. A list of tools in this category includes: Gepasi [35], Systems
Biology Workbench [23], E-Cell [54] and BioSpice [29]. Conclusions about the behav-
ior of the network are often made by alternating between (a) tracing specific trajecto-
ries over a suitable time frame and then (b) verifying temporal logic properties such
as reachability or safety [56, 8, 2]. The slow reactions in metabolic networks are typi-
cally modeled and analyzed as per this approach. The fast reaction systems are typically
subject only to a quasi-equilibrium characterization with minimal dynamic characteri-
zation. Some of the popular techniques following this strategy are: Metabolic Control
Analysis (MCA) [21], Metabolic Flux Analysis (MFA) [31], Flux Balance Analysis
(FBA) [28], Cybernetic approaches [43] and Metabolic Pathway Analysis (MPA) [49].



While the algebraic estimation of the equilibrium concentrations has been studied ex-
tensively [8, 36, 64, 3], in contrast, a directed effort to handle both GMA-based simula-
tion and direct equilibrium estimates (via GMA or FBA) algebraically seems conspicu-
ously absent.

Rather than pursuing the traditional numerical simulation based analysis, this paper
suggests an entirely symbolic algorithmic algebraic framework for the unified analysis
of metabolic networks. It proceeds by first mathematically characterizing the hybrid dy-
namical system to which metabolic networks correspond, and then integrating general
mass action [11] and flux balance analysis [28] based equilibrium estimation. Next the
paper shows that the algebraic equilibrium description is decidable, both using GMA
and FBA. Our proof of the decidability of the algebraic approach are based on the well-
established Gröbner basis and characteristic set techniques [5, 47, 62, 18] for solving
polynomial equations, and the decidability of semi-algebraic5 optimization using real
quantifier elimination [55]. The paper then examines how to move from the equilib-
rium description to its derivative (rate of change), which can then be combined with
the ODEs of the slow reactants to complete an algebraic description of the metabolic
network. These steps directly lead to efficient algebraic model-checking, since, at this
point, they have ensured that all the interactions operate at roughly the same time scale.
Hence a bigger time-step suitable for the slow interactions is sufficient (as opposed to
the smaller time-step that would have been necessary for the fast reactions), be it for
simulation or algebraic temporal logic analysis, based on the techniques described in
the earlier AAMC papers.

2 Preliminaries: Algebraic Analysis of a Biochemical Hybrid
System

Biochemical systems are conveniently approximated as hybrid automata operating in
one of many discrete states (or modes). In each state, the continuous evolution of dif-
ferent chemicals, reactions, assumptions and ODEs predominate, with discrete transi-
tions to other states possible under certain guard conditions, leading to the variables
being reassigned as per the reset relations. Within each state, the temporal properties of
the network of interacting biochemicals are captured algebraically by the flow relation
(from GMA-based ODEs) that relates two neighboring system-states at time instants
t and t + h, and the biochemical interactions (synthesis, degradation, multimerization,
etc.) that occur in that short time interval h.

In the Algorithmic Algebraic Model Checking approach [46, 41, 40, 6, 39, 42], it was
shown how most temporal logic query-answering can be expressed as a series of quan-
tifier elimination problems over the reals. The resulting mathematical problem has been
known to be decidable [55] and elementarily computable (e.g., using Qepcad [22] or
Redlog [16]), though computationally expensive – time complexity, unfortunately, still
remains doubly exponential in the number of variables. For such analyses to be possible,
each discrete state should have only polynomial ODEs, with the guard, reset and invari-

5 Unquantified first-order formulæ over the theory of reals (i.e., over (R,+,×,=,<)); see [37,
15, 38] for details.



ant relations also being semi-algebraic (Boolean combinations of polynomial equations
and inequalities), thus yielding a new class of hybrid systems, as defined below:

Definition 1. Semi-Algebraic Hybrid Automata: [46, 41] A k-dimensional hybrid
automaton is a septuple, H = (W , V, E, Init, Inv, Flow, Jump), consisting of the follow-
ing components:

– W = {W1, . . . , Wk} and W ′ = {W ′
1, . . . , W ′

k} are two finite sets of variables ranging
over the reals R;

– (V,E) is a directed graph of discrete states and transitions;
– Each discrete state v∈V is labeled by “Init”(initial), “Inv”(invariant) and “Flow”

labels of the form Initv[W ], Invv[W ], and Flowv[W,W ′, t,h]
– Each edge e ∈ E is labeled by a “Jump” condition of the form Jumpe[W,W ′] ≡

Guarde(W ) ∧ Resete(W,W ′)
– Init, Inv, Flow, and Jump are all semi-algebraic. �

Within each state of a biochemical hybrid dynamical system, the network of inter-
acting biochemicals is modeled using variables that represent their concentrations (see
Eqn. 1). The semi-algebraic hybrid automaton structure requires that the continuous
dynamics of each discrete state v be captured in the flow relation Flowv[W,W ′, t,h] that
connects the symbolic state W of the system at time t with the symbolic state W ′ at
time t +h. To derive an approximate flow relation, the polynomial differential equations
describing the continuous evolution are integrated using one of the symbolic schemes
(e.g., the Taylor series, the linear Euler or the higher degree Runge-Kutta). The error is
controlled by an upper bound on the time spent in one continuous step, as we aim for
over- or under-approximating the flow equations (also see [30]). Thus, we can write the
flow equations for the biochemical dynamical system as shown here6:

Flowv[W,W ′, t,h] ≡ {W ′ = W +hẆ(W,K)}.

Here, W represents the vector of concentrations at time t, Ẇ is the vector of first tem-
poral derivatives (from the GMA-based ODEs) expressed as a polynomial in W and
the rate constants K (and t, if necessary as with many time-variant systems), and W ′ is
the approximate value of W (t + h) (with O(h2) error, in the case of the Euler forward
integration). Note that the incompleteness that results from following the biochemical
traces using a fixed time step (chosen based on the desired integration error bound) that
plagues numerical methods is not alleviated in the algebraic procedure detailed here.

Since the guard, resets and invariants are also restricted to be Boolean combinations
of polynomial equations and inequalities, the complete transition relation (see Defn. 3 –
Semantics of Hybrid Automata in [41]) of the biochemical hybrid dynamical system can
be written in terms of a semi-algebraic expression. Once such a relation is derived, tem-
poral logic analysis can be performed to algebraically characterize global and emergent
dynamical properties of the biochemical network (for example, see the analysis of the
Delta-Notch pathway using Timed Computation Tree Logic in the tool Tolque [41]).

6 Without loss of generality, in this paper, we will adopt the Euler forward symbolic integration
scheme [41] to compute the trajectories of the metabolic reactions.



3 Algebraic Analysis of Metabolic Hybrid Systems

The basic outline of our algebraic procedure is as follows:

1. Start with a complete general mass action based hybrid automaton model of the
entire metabolic network, with symbolic variables (parameters) substituted in place
of unknowns.

2. Within each discrete state:
(a) Identify sub-networks of reversible fast reactions (using information from bio-

chemistry literature).
(b) Compute the dynamic equilibrium concentrations and fluxes of the fast sub-

networks. This step can be performed accurately over the GMA model using
the Gröbner basis and Wu-Ritt characteristic set techniques (see Sec. 3.1). Sim-
ilar analysis can also be obtained from the FBA approach, using algebraic op-
timization (see Sec. 3.2). Irrespective of which algorithm is used, we formulate
an algebraic description of the equilibrium state of the reactants participating
in fast reactions. (In some cases, this equilibrium description might yield dif-
ferential equations – see Defn. 5 and Note 1)

3. Now the entire hybrid system is ready to be simulated or analyzed using a time-
step appropriate for the slow biochemical reactions, with the fast reactants in each
discrete state updated as determined by the equilibrium relations (or in some cases,
the new differential equations) derived in Step 2(b).

Steps 1, 2(a) and 3 are part of the standard procedure [57, 33, 65], and there is no need
for a new algebraic version. This paper provides the necessary mathematical details for
Step 2(b), where we wish to symbolically characterize the momentary quasi-equilibria
that the fast variables (interface and quasi-equilibrium metabolites) reach in response
to a change in the slow interactions (dynamic reactants) at each time-step. We first
formally capture the dynamical system to which the subclass of metabolic networks
corresponds, as constrained by our assumptions (see Sec. 1 for details).

Definition 2. Metabolic Dynamics: A metabolic network comprises the slow irre-
versible dynamic reactants X, the fast reversible quasi-equilibrium reactants Y , the in-
terface reactants Z that participate in both slow and fast reactions, and symbolic (rate)
parameters K, such that the following differential algebraic equations hold:

Ẋ = F(X ,Z,K) , Ẏ = G(Y,Z,K) , Ż = D(X ,Z,K)+P(Y,Z,K). �

As before, let X , Y and Z be the concentrations of the dynamic, quasi-equilibrium and
interface metabolites respectively, at time t — the start of the integration step. The goal
is to derive the Flow({X ,Y,Z},{X ′,Y ′,Z′},h,K) relation (in each discrete state7 of the
semi-algebraic hybrid automaton of the metabolic network) that expresses the algebraic
values of the concentrations X ′, Y ′ and Z′ at time t +h in terms of their concentrations at
time t, the small time-step h and the rate parameters K (and time t, if required to capture

7 The subscript v denoting the discrete state and the explicit time variable t are dropped for
clarity from the Flowv notation.



some other external aspects of the dynamics). The flow equations of the dynamic reac-
tants X do not involve any simplification and are directly given by the Euler forward
approximation as X ′ = X +hF(X ,Z,K). Thus,

Flow({X ,Z,Y},{X ′,Z′,Y ′},h,K) ≡

{ X ′ = X +hF(X ,Z,K) ∧ Flow({Z,Y},{Z′,Y ′},h,K).

Thus, the essence of the problem is the expression of Flow({Z,Y},{Z ′,Y ′},h,K) — the
flow of the quasi-equilibrium and interface reactants, algebraically. As a result of the
way we have formulated the problem, the complete set of constraints, which must be
true to achieve quasi-equilibrium are given by:

Definition 3. Quasi-Equilibrium Relation:

E (Z,Y,K) ≡ {P(Z,Y,K) = 0 ∧ G(Y,Z,K) = 0} �

GMA follows the straightforward approach of solving the quasi-equilibrium equations
to obtain the exact concentrations. FBA instead guesses what the equilibrium fluxes
must be by optimizing some function, without using the kinetic parameters K; the exact
concentrations are then obtained by substituting the concentration terms for the flux
variables. The algebraic versions of the two procedures and their mathematical details
are further elaborated below.

3.1 General Mass Action based Approximation

Since the quasi-equilibrium characterization (see Defn. 3) involves only equalities, the
relation E is effectively just a system of polynomial equations, which needs to be solved
for Z and Y . The issue of simultaneous solution of polynomial equations, especially in
the context of biochemical networks, has been addressed before [4, 8, 36]. The well-
established methods for solving such systems of simultaneous multivariate polynomial
equations with symbolic parameters are to be found in the Gröbner Basis algorithm [5]
and the Wu-Ritt characteristic set [47, 62] algorithm. Their many implemented forms
include PoSSo [10], CoCoA [9] and Macaulay-2 [20].

In the case of metabolic dynamical systems, the system of polynomial equations
can be solved more easily by exploiting the fact that the concentration of each chemical
form of a metabolite at pseudo-equilibrium is dictated by the total concentration of its
different chemical forms. In other words, each substrate of each reaction involving at
least one interface metabolite (Z) also as a substrate, is associated with a mass conserva-
tion equation. As suggested in the literature [57, 33, 65], the total concentration of these
substrate metabolites in their many chemical forms at equilibrium is captured using
equilibrium pool variables T . The mass conservation equations T = M (Z,Y ) have the
form: Ti = Σ j∈PooliWj, where Pooli represents the set of the different chemical forms
Wj, in which the i-th substrate metabolite exists. Effectively, as a result of the struc-
ture of metabolic pathways, the equilibrium concentrations of Z and Y are expressible
in terms of the equilibrium pool concentrations T . The simplified GMA equilibrium
relation may thus be expressed as:



Definition 4. GMA Equilibrium Relation:

EGMA(Z,Y,T,K) ≡ {Z = EZ(T,K) ∧ Y = EY (T,K)},

where EZ and EY represent the solutions obtained using the Gröbner basis technique
over {P(Z,Y,K) = 0 ∧ G(Y,Z,K) = 0 ∧ T = M (Z,Y )}. �

We are now ready to construct Flow({X ,Y,Z,T},{X ′,Y ′,Z′,T ′},h,K) – the continuous
flow expression, which connects the state of the system {X ,Y,Z,T} at time t and the
state of the system {X ′,Y ′,Z′,T ′} at time t +h. During the quasi-instantaneous recom-
putation of the equilibrium point, the total concentrations of the pool variables T can be
assumed to remain unchanged. This assumption is justifiable because the time required
for re-establishing the equilibrium is negligible compared to the time-step used for sim-
ulating the slow reactions. Consequently, the change in the concentrations attributed to
the slow reactions is negligible compared to the effect of the equilibrium recomputa-
tion (which only redistributes the metabolites among the different chemical forms being
added in each equilibrium pool variable). Thus, the ODEs for Z and Y can be directly
approximated from EZ and EY by differential calculus:

Ż ≈
dEZ(T,K)

dt =
∂EZ(T,K)

∂T .
dT
dt =

∂EZ
∂T H,

where Ṫi = Σ j∈PooliẆj = Hi(X ,Y,Z,K). The same applies to Y as well. Thus we have
our final result:
Definition 5. GMA-Approximated Metabolic Dynamics:

FlowGMA({X ,Y,Z,T},{X ′,Y ′,Z′,T ′},h,K) ≡

{(X ′ = X +hF(X ,Z,K)) ∧ (T ′ = T +hH(X ,Y,Z,K) ∧

(Z′ = Z +hŻ(T,X ,Y,Z,K) ∧ (Y ′ = Y +hẎ(T,X ,Y,Z,K))},

where : Ẋ = F(X ,Z,K) , Ṫ = H(X ,Y,Z,K),

Ż(T,X ,Y,Z,K) ≈
∂EZ
∂T H & Ẏ (T,X ,Y,Z,K) ≈

∂EY
∂T H �

3.2 Flux Balance Analysis based Approximation
Flux Balance Analysis [28] aims to estimate the steady-state flux distribution using the
stoichiometric matrix and the input and output fluxes of the system to constrain the so-
lution space, without relying on any kinetic parameters. Since the number of fluxes is
always greater than the number of metabolites, the system of linear flux equations is
under-determined. FBA overcomes this hurdle by assuming that the biochemical net-
work would have so evolved as to optimize certain physiologically important functions
such as growth. Thus, the essence of flux balance analysis is optimizing a function under
the set of equilibrium and other external constraints.

The general optimization (in its maximization formulation) problem can be rephrased
as follows: for all values U that differ from the optimal value Ǔ and still satisfy the con-
straints C (U,V ) involving parametric variables V (not being optimized), the value of



the function F (U,V ) is, by definition, less than F (Ǔ ,V ). This step immediately leads
to the following characterization of {Ǔ ,V}:

Definition 6. Optimization Relation: Optimize(Ǔ ,F (U,V ),C (U,V )) ≡
C (Ǔ ,V )

∧

{∀U, (U 6= Ǔ ∧ C (U,V )) ⇒ (F (U,V ) < F (Ǔ ,V )) } �

If C is semi-algebraic and F is polynomial, then Optimize(Ǔ ,F (U,V ),C (U,V )) is
a quantified semi-algebraic set. Gröbner bases or characteristic sets cannot be used to
solve this optimization problem as they can handle only equations and not inequality
relations. Instead, the general technique of real quantifier elimination [55] has to be
employed to perform the algebraic optimization [1]. In addition to quantifier elimination
tools like Qepcad [22] and Redlog [16], specialized systems such as the Maple-based
Symbolic-Numeric toolbox for Real Algebraic Constraints (SyNRAC) [63] could also
be exploited for performing algebraic optimization.

Unlike the GMA-based approach which uses concentrations to describe the dynam-
ics, FBA uses the flux variables: U j ≡ n jk jΠ j

i Wi. For metabolic networks, the flux vari-
ables may be divided into Uzx ≡Uz∪Ux∪Uz∧x and Uzy ≡Uz∧y∪Uy based on whether the
reactions are fast or slow8: reactions in which only Zis and/or Xis participate contribute
the slow flux terms Uzx; reactions in which Zis and Yis interact and those in which only
Yis interact contribute the fast flux terms Uzy. Thus the metabolic dynamics (see Defn.
2) may be rephrased as:

Ẋ = FU(Uzx) , Ẏ = GU (Uzy) , Ż = DU (Uzx)+PU(Uzy).

Let C (Uzy,Uzx) represent the semi-algebraic constraints on the kinetic parameters, rates
of change, bounds on parameters, energy balance equations, etc. Let F (Uzy,Uzx) rep-
resent the function that the metabolic network is assumed to be optimizing. Thus, the
complete set of equations and inequalities that needs to be true at the equilibrium pre-
dicted by FBA may be represented thus:

Definition 7. FBA Equilibrium Relation:

EFBA(Ǔzy,Uzx) ≡ { Optimize(Ǔzy,F (Uzy,Uzx),C (Uzy,Uzx)) ∧

GU (Ǔzy) = PU(Ǔzy) = 0 }. �

Consistent with the static optimization based dynamic flux balance analysis approach
[33], it is assumed that at the beginning of each small time interval h, the fast reactions
optimize growth (or some other physiological function) by re-establishing equilibrium
(Uzy) based on the current concentrations of the fast and dynamic reactants (Uzx). The
slow reactions are then integrated assuming that these fluxes stay constant over that time
period h. Thus, the FBA-based dynamics can now be characterized algebraically as:

Definition 8. FBA-Approximated Metabolic Dynamics:

FlowFBA({X ,Y,Z},{X ′,Y ′,Z′},h,K) ≡

{EFBA(Uz′′y′ ,Uzx) ∧ X ′ = X +hF(X ,Z′′,K) ∧ Z′ = Z′′ +hD(X ,Z′′,K)}

where Ui ≡ nikiΠ i
jWj. �

8 Note that since X and Y do not interact, there are no Ux∧z terms.



Remark 1. Alternatively, one could perform FBA using the concentration variables
themselves. Let C (Z′,Y ′,Z,Y,K) represent the semi-algebraic constraints on the ki-
netic parameters, rates of change, bounds on parameters, energy balance equations, etc.
Let O(Z′,Y ′,Z,Y ) represent the function9 that the metabolic network is assumed to
be optimizing. Since FBA assumes that the kinetic parameters K are unavailable, the
effective set of constraints over which the optimization must be performed may be ob-
tained by eliminating K from the accurate equilibrium relation E (see Defn. 3). Note
that if K is not eliminated, the equilibrium is exactly defined by the relation E ; hence
there is no room for optimization. Further, the existential quantifier captures the as-
sumption that there exist some kinetic parameters (involved in the genetic variation,
and discovered during evolution via natural selection) for which the network optimizes
the physiologically relevant function (i.e., its “fitness” function). Thus, the dynamics
may be approximated thus:

O(Z′,Y ′,Z′′,Y ) ≡ ∃K,{C (Z′,Y ′,Z′′,Y,K) ∧ E (Z′,Y ′,K)},

EFBA(Z′′,Y,Z′,Y ′) ≡ Optimize({Z′,Y ′},F (Z′,Y ′,Z′′,Y ),O(Z′,Y ′,Z′′,Y )) &
FlowFBA({X ,Y,Z},{X ′,Y ′,Z′},h,K) ≡

{(X ′ = X +hF(X ,Z,K)) ∧ (Z′′ = Z +hD(X ,Z,K)) ∧ EFBA(Z′′,Y,Z′,Y ′)}.

The validity and utility of this approach need to be investigated further.

Note 1. In some cases, the solution after optimization and substitution with the concen-
tration variables might be a set of polynomial equations, which can then be solved (by
Gröbner basis like methods, say) to yield the general solution

FlowFBA({Y,Z},{Y ′,Z′},h,K) ≡ {Z′ = EZ(Z,Y,T,K) ∧ Y ′ = EY (Z,Y,T,K)}.

Then, we can write:

Ż =
∂EZ
∂Z Ż +

∂EZ
∂Y Ẏ +

∂EZ
∂T Ṫ , Ẏ =

∂EY
∂Z Ż +

∂EY
∂Y Ẏ +

∂EY
∂T Ṫ .

By solving these two equations, one can obtain the general solution:

Ẏ =

∂EY
∂Z

∂EZ
∂T

1− ∂EZ
∂Z

+ ∂ EY
∂ T

1−
∂EY
∂Z

∂EZ
∂Y

1− ∂EZ
∂Z

− ∂ EY
∂Y

Ṫ , Ż =
∂ EZ
∂Y Ẏ + ∂ EZ

∂ T Ṫ
1− ∂ EZ

∂ Z
.

Also note that {Ż = ∂ EZ
∂ T Ṫ , Ẏ = ∂ EY

∂ T Ṫ} derived in the GMA based approximation is
just a special case where ∂ E

∂Y = ∂ E
∂ Z = 0.

4 Example
Our approach is now illustrated on the Example 1 introduced earlier. Recall that X =
{A,B,R}, Y = {E,C} and Z = {S}.

9 The primed variables may be necessary to capture relations involving the rate of change of
concentrations.



4.1 GMA-Based Approximation

The only reaction with an interface metabolite as a substrate is E + S
k f


kr

C. The mass-
conservation equations can be written for the two substrates E and S as eT = e+ c and
sT = s + c, where eT and sT are the new equilibrium pool variables. At equilibrium,
E ({s},{e,c},K) ≡ {(k f es− krc = 0)}, i.e., k f es = krc. Rewriting in terms of the equi-
librium pool variables, we get k f (eT − c)(sT − c) = krc. Let k = k f /kr. In the general
case, we would solve these equations using the Gröbner basis technique. Here, these
quadratic equations can be solved directly, under the constraint that all concentrations
are non-negative, leading to the solution:

EGMA ≡ {c =
(sT + eT +1/k)−

√

(sT + eT +1/k)2−4(sT + eT )

2 ∧

e = eT − c ∧ s = sT − c}.

Observe that Ṫ is: {ṡT = ṡ+ ċ = ksab, ėT = ė+ ċ = 0}. Thus,

ˆ̇c =
∂c
∂T Ṫ =

∂c
∂ sT

ṡT =
1
2 (1− 2(sT + eT +1/k)−4

2
√

(sT + eT +1/k)2−4(sT + eT )
)ksab

ˆ̇e = −ċ , ˆ̇s = ksab− ċ. Thus, we get :
FlowGMA ({{a,b,r},{s},{e,c},{eT ,sT}},

{{a′,b′,r′},{s′},{e′,c′},{e′T ,s′T}},h,k) ≡
{(a′ = a+hȧ) ∧ (b′ = b+hḃ) ∧ (r′ = r +hṙ) ∧ (s′ = s+h ˆ̇s) ∧

(e′ = e+h ˆ̇e) ∧ (c′ = c+h ˆ̇c)∧ (e′T = eT +hėT )∧ (s′T = sT +hṡT )}.

4.2 FBA-Based Approximation
Observe that Uzx = Uz∧x = {U1} and Uzy = Uz∧y = {U2,U3}. Let C ({U2,U3},{U1})
represent the external constraints under which the network is assumed to be optimizing
the function F ({U2,U3},{U1}). Thus, the equilibrium may be characterized as:

EFBA({Ǔ2,Ǔ3},{U1}) = C ({Ǔ2,Ǔ3},{U1}) ∧

{∀U2,U3, (U2 6= Ǔ2 ∨ U3 6= Ǔ3) ∧ C ({U2,U3},{U1})

⇒ F ({U2,U3},{U1}) < F ({Ǔ2,Ǔ3},{U1})}

∧ Ǔ2 = Ǔ3.

This leads to the complete flow characterization:

FlowFBA ({{a,b,r},{s},{e,c}},
{{a′,b′,r′},{s′},{e′,c′}},h,{ks,k f ,kr}) ≡

{EFBA({U2,U3},{U1}) ∧

a′ = a+hȧ ∧ b′ = b+hḃ ∧ r′ = r +hṙ ∧ s′ = s′′ +hṡ},

where U1 = ksab, U2 = k f e′s′′, U3 = krc′, ȧ = ḃ = −ṙ = −ksab, and ṡ = ksab+ krc′−
k f e′s′′.



5 Discussion

Several extensions of the mathematical theory [37, 15] are necessary for the approach
to be more practical and useful. To improve computational complexity, it is necessary
to develop more efficient, albeit less general, techniques for equilibrium estimation: for
instance, applications of the Wu-Ritt characteristic set algorithm [34], resultant compu-
tation followed by eigen decomposition [60], and heuristics for choosing among them
[45]. To reduce the computational overload due to the algebraic optimization involved
in FBA, some less universal quantifier elimination approaches may be used [61, 26].
More recent efforts at efficient optimization include the following: constraint logic pro-
gramming with first-order constraints CLP(RL) [53] based on Redlog [16], systems
theoretic algebraic optimization [25], and semidefinite programming [44].

In additional to the purely algebraic research described previously, several Systems
Biology extensions and applications also necessitate further investigation. For instance,
the relative merit of flux-based and concentration-based characterization of dynamics
(see Remark 1) has to be further investigated, in terms of both the complexity gain and
the repertoire of constraints that can be handled (such as Minimization of Metabolic
Adjustment (MOMA) [50] and Regulatory On-Off Minimization (ROOM) [51]). Sim-
ilarly, an integration with singular perturbation analysis-like methods [52, 19, 32] can
potentially help automate the classification of the metabolic system interactions as fast
and slow, and the decomposition into sub-modules of a large network. Other approxi-
mate methods to estimate the equilibrium fluxes (e.g., cybernetic modeling [43]) may
also become more powerful when extended into the algebraic domain. Another impor-
tant perspective comes from the mathematically rigorous approaches being developed
in non-linear Control Theory [24, 48]. A related thorny problem that remains to be
properly addressed is the semi-automatic (approximate) translation of a one-state bio-
chemical dynamical system into a multi-state hybrid system.

In summary, we have exploited techniques from the AAMC approach to enable effi-
cient analysis of metabolic networks. This paper shows how the numerical procedure for
exploiting the inherent multi-time-scale quasi-equilibrium structure of metabolic net-
works could be extended to the algebraic domain, using techniques from Computational
Real Algebraic Geometry: namely, real quantifier elimination, Gröbner bases, Wu-Ritt
Characteristic sets, and algebraic optimization. Our approach is thus an algebraic gen-
eralization of numerical approaches, as typified by tendency modeling [57], dynamic
flux balance analysis [33] and hybrid static + dynamic simulation [65]. The more gen-
eral mathematical approaches [52, 19, 32] make fewer assumptions about the structure
of metabolic networks, and can be incorporated into the proposed framework. Further,
the paper provides a uniform algebraic framework to handle two distinct approaches for
equilibrium estimation: (i) solving the general mass action-based polynomial equations
and (ii) optimizing the flux distribution using flux balance analysis. Thus, the paper
demonstrates how a standard biochemistry problem description can be automatically
transformed into an entirely algebraic dynamical system specification. This algebraic
framework can potentially elicit a powerful symbolic functional description of the dy-
namical behavior of the metabolic network, in terms of the quasi-equilibrium states of
its fast reversible sub-networks. This algebraic approach is to be contrasted with the
conventional analysis, which involves performing numerical integration of the ordinary



differential equations (ODEs), time-course data assimilation, visualization and model-
checking of concentration-traces.

In conclusion, we note the success of Algorithmic Algebraic Model Checking project,
which was initiated to integrate relevant theory in dynamical systems, model checking,
hybrid automata and systems biology, in an effort to establish a sound and rigorous
procedure for symbolic temporal reasoning over biochemical networks. While, in terms
of building a suitable theoretical foundation, it has been successful, it has also pointed
to newer theoretical and pragmatic problems that were unforeseen at the outset. One
apparent shortcoming of our approach is its computational complexity; but it is hoped
that this hurdle could be overcome, when the different avenues of extending these ideas
are explored in the theoretical and practical realms.

References

1. Hirokau Anai. On solving semidefinite programming by quantifier elimination. In Proceed-
ings of the American Control Conference, June 1998.

2. M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Reasoning about Biochemical Processes.
Cell Biochemistry and Biophysics, 38:271–286, 2003.

3. Michael P. Barnett. Computer algebra in the life sciences. SIGSAM Bull., 36(4):5–32, 2002.
4. M.P. Barnett, J.F. Capitani, J. Gathen, and J. Gerhard. Symbolic calculation in chemistry:

Selected examples. International Journal of Quantum Chemistry, 100:80–104, 2004.
5. B. Buchberger. Grobner bases: An algorithmic method in polynomial ideal theory. Recent

Trends in Multidimensional Systems Theory, pages 184–232, 1985.
6. A. Casagrande, V. Mysore, C. Piazza, and B. Mishra. Independent dynamics hybrid automata

in systems biology. In First International Conference on Algebraic Biology, 2005.
7. M. Cascante, L.G. Boros, B. Comin-Anduix, P. de Atauri, J.J. Centelles, and P.W.-N. Lee.

Metabolic control analysis in drug discovery and design. Nature Biotechnology, 20:243–249,
2002.

8. Ercan Celik and Mustafa Bayram. Application of grobner basis techniques to enzyme kinet-
ics. Applied Mathematics and Computation, 153:97–109, 2004.

9. CoCoATeam. CoCoA: a system for doing Computations in Commutative Algebra. Available
at http://cocoa.dima.unige.it, 2005.

10. European Commission. Posso: Polynomial system solving research project.
http://posso.dm.unipi.it, 1996.

11. A. Cornish-Bowden. Fundamentals of Enzyme Kinetics (3rd edn.). Portland Press, London,
2004.

12. A. Cornish-Bowden and M. L. Cardenas. Metabolic analysis in drug design. C. R. Biologies,
326:509–515, 2003.

13. A. Cornish-Bowden and M.L. Cardenas. Systems biology may work when we learn to un-
derstand the parts in terms of the whole. Biochemical Society Transactions, 33(3), 2005.

14. A. Cornish-Bowden and J.-H. S. Hofmeyr. Enzymes in context: Kinetic characterization of
enzymes for systems biology. The Biochemist, 27:11–14, 2005.

15. David A. Cox, John B. Little, and Don O’Shea. Ideals, Varieties, and Algorithms: An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra. Springer, 1996.

16. Andreas Dolzmann and Thomas Sturm. REDLOG: Computer algebra meets computer logic.
SIGSAM Bulletin (ACM Special Interest Group on Symbolic and Algebraic Manipulation),
31(2):2–9, 1997.

17. D. A. Fell. Understanding the Control of Metabolism. Portland Press, London, 1997.



18. G. Gallo and B. Mishra. Wu-ritt characteristic sets and their complexity. DIMACS series in
Discrete Mathematics and Theoretical Computer Science, 6:111– 136, 1991.

19. Z.P. Gerdtzen, P. Daoutidis, and W.S. Hu. Non-linear reduction for kinetic models of
metabolic reaction networks. Metab Eng., 6(2):140–54, Apr 2004.

20. Daniel R. Grayson and Michael E. Stillman. Macaulay 2, a software system for research in
algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

21. J-HS. Hofmeyr. Metabolic control analysis in a nutshell. In Proceedings of the Second
International Conference on Systems Biology, pages 291–300, 2001.

22. H. Hong. Quantifier elimination in elementary algebra and geometry by partial cylindrical
algebraic decomposition, version 13. WWW site www.eecis.udel.edu/∼saclib, 1995.

23. M. Hucka, A. Finney, Herbert M. Sauro, H. Bolouri, J. Doyle, and H. Kitano. The erato
systems biology workbench: Enabling interaction and exchange between software tools for
computational biology. In Proceedings of the Pacific Symposium on Biocomputing, 2002.

24. B. P. Ingalls. A control theoretic interpretation of metabolic control analysis.
http://www.math.uwaterloo.ca/ bingalls/Pubs/con.pdf (submitted), 2005.

25. Dorina Jibetean. Algebraic optimization with applications to system theory. PhD Thesis,
Department of Mathematics, Vrije University, Amsterdam, 2003.

26. Mats Jirstrand. Nonlinear control system design by quantifier elimination. J. Symbolic
Computation, 24:137–152, 1997.

27. J.P. Keener and J. Sneyd. Mathematical Physiology. Springer, New York, 1998.
28. Kauffman K.J., P. Prakash, and J.S. Edwards. Advances in flux balance analysis. Curr. Opin.

Biotechnol., 14:491–496, 2003.
29. Srikanta P. Kumar and Jordan C. Feidler. Biospice: A computational infrastructure for inte-

grative biology. OMICS: A Journal of Integrative Biology, 7(3):225–225, Sep 2003.
30. R. Lanotte and S.Tini. Taylor Approximation for Hybrid Systems. In M. Morari and

L. Thiele, editors, Hybrid Systems: Computation and Control (HSCC’05), volume 3414 of
LNCS, pages 402–416. Springer, 2005.

31. D.Y. Lee, H. Yun, S. Park, and S.Y. Lee. Metafluxnet: the management of metabolic reaction
information and quantitative metabolic flux analysis. Bioinformatics, 19(16):2144–6, 2003.

32. G. Litcanu and J. J. L. Velazquez. Singular perturbation analysis of camp signalling in
dictyostelium discoideum aggregates. J. of Mathematical Biology, 52(5):682 – 718, 2006.

33. R. Mahadevan, J. S. Edwards, and F. J. Doyle-III. Dynamic flux balance analysis of diauxic
growth in escherichia coli. Biophysical Journal, 83:1331–1340, September 2002.

34. Dinesh Manocha and John F. Canny. Multipolynomial resultant algorithms. J. Symbolic
Computation, 15:99–122, 1993.

35. P. Mendes. Biochemistry by numbers: simulation of biochemical pathways with gepasi 3.
Trends in Biochemical Sciences, 22:361–363, 1997.

36. M. Minimiari and M.P. Barnett. Solving polynomial equations for chemical problems using
grobner bases. Molecular Physics, 102(23-24):2521–2535, 2004.

37. Bhubaneswar Mishra. Algorithmic Algebra. Texts and Monographs in Computer Science.
Springer-Verlag, New York, 1993.

38. Bhubaneswar Mishra. Computational Real Algebraic Geometry, pages 740–764. CRC Press,
Boca Raton, FL, 2004.

39. V. Mysore, A. Casagrande, C. Piazza, and B. Mishra. Tolque – A Tool for Algorithmic
Algebraic Model Checking. In HSCC’06 Poster Session, March 2006.

40. V. Mysore and B. Mishra. Algorithmic Algebraic Model Checking III: Approximate Meth-
ods. In Infinity’05, volume 149(1) of ENTCS, pages 61–77, February 2006.

41. V. Mysore, C. Piazza, and B. Mishra. Algorithmic Algebraic Model Checking II: Decidabil-
ity of Semi-Algebraic Model Checking and its Applications to Systems Biology. In ATVA’05,
volume 3707 of LNCS, pages 217–233. Springer-Verlag, Oct 2005.



42. Venkatesh Mysore. Algorithmic Algebraic Model Checking: Hybrid Automata and Systems
Biology. Ph.D. Thesis, New York University, New York, USA, 2006.

43. A.A. Namjoshi and R. Doraiswami. A cybernetic modeling framework for analysis of
metabolic systems. Computers & chemical engineering, 29(3):487 – 498, 2005.

44. Pablo Parrilo and Sanjay Lall. Semidefinite programming relaxations and algebraic opti-
mization in control. European Journal of Control, 9(2-3):307–321, 2003.

45. S. Petitjean. Algebraic geometry and computer vision: Polynomial systems, real and complex
roots. Journal of Mathematical Imaging and Vision, 10:191–220, 1999.

46. C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, and B. Mishra. Algorithmic
Algebraic Model Checking I: The Case of Biochemical Systems and their Reachability Anal-
ysis. In CAV’05, volume 3576 of LNCS, pages 5–19. Springer-Verlag, 2005.

47. J.F. Ritt. Differential Algebra, volume XXXII. AMS Colloquium Publications, New York,
1950.

48. Herbert M. Sauro. The computational versatility of proteomic signaling networks. Current
Proteomics, 1:67–81, 2004.

49. C.H. Schilling, S. Schuster, B.O. Palsson, and R. Heinrich. Metabolic pathway analysis: Ba-
sic concepts and scientific applications in the post-genomic era. Biotechnol. Prog., 15:296–
303, 1999.

50. Daniel Segre, Dennis Vitkup, and George M. Church. Analysis of optimality in natural and
perturbed metabolic networks. PNAS, 99(23):15112–15117, November 12 2002.

51. T. Shlomi, O. Berkman, and E. Ruppin. Constraint-based modelling of perturbed organisms:
A room for improvement. In ISMB, 2004.

52. Sandeep Singh, Joseph M. Powers, and Samuel Paolucci. On slow manifolds of chemically
reactive systems. The Journal of Chemical Physics, 117(4):1482–1496, July 2002.

53. T. Sturm. Quantifier elimination-based constraint logic programming. Technical Report
MIP-0202, Fakultät für Mathematik und Informatik, Universität Passau, 2002.

54. K. Takahashi, K. Kaizu, B. Hu, and M. Tomita. A multi-algorithm, multi-timescale method
for cell simulation. Bioinformatics, 20(4):538–46, 2004.

55. A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of Califor-
nia Press, second edition, 1948.

56. A. Tiwari and G. Khanna. Series of Abstraction for Hybrid Automata. In C. J. Tomlin and
M. Greenstreet, editors, HSCC’02, volume 2289 of LNCS, pages 465–478. Springer, 2002.

57. D. Visser, R. van der Heijden, K. Mauch, M. Reuss, and S. Heijnen. Tendency modeling:
A new approach to obtain simplified kinetic models of metabolism applied to s. cerevisiae.
Metabolic Engineering, 2:252–275, 2000.

58. E. O. Voit. Computational Analysis of Biochemical Systems. A Pratical Guide for Bio-
chemists and Molecular Biologists. Cambridge University Press, 2000.

59. E.O. Voit. The dawn of a new era of metabolic systems analysis. Drug Discovery Today:
BioSilico, 2(5):182–189, 2004.

60. A. Wallack, I. Z. Emiris, and D. Manocha. MARS: A MAPLE/MATLAB/c resultant-based
solver. In Intl. Symposium on Symbolic and Alg. Computation, pages 244–251, 1998.

61. Volker Weispfenning. Simulation and optimization by quantifier elimination. J. Symb. Com-
put., 24(2):189–208, 1997.

62. Wu Wen-tsun. On the decision problem and the mechanization of theorem proving in ele-
mentary geometry. Scientia Sinica, 21(2):159–172, March-April 1978.

63. Hitoshi Yanami and Hirokazu Anai. Development of SyNRAC. In Computer Algebra Sys-
tems and Applications, CASA, 2005.

64. N. Yildirim. Use of symbolic and numeric computation techniques in analysis of biochemical
reaction networks. International Journal of Quantum Chemistry, 2005.

65. K. Yugi, Y. Nakayama, A. Kinoshita, and M. Tomita. Hybrid dynamics/static method for
large-scale simulation of metabolism. T. Biology and Medical Modelling, 2(42), 2005.


