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Abstract. This paper addresses questions regarding the decidability of
hybrid automata that may be constructed hierarchically and in a mod-
ular way, as is the case in many exemplar systems, be it natural or
engineered. Since an important step in such constructions is a product
operation, which constructs a new product hybrid automaton by com-
bining two simpler component hybrid automata, an essential property
that would be desired is that the reachability property of the product
hybrid automaton be decidable, provided that the component hybrid
automata belong to a suitably restricted family of automata. Somewhat
surprisingly, the product operation does not assure a closure of decid-
ability for the reachability problem. Nonetheless, this paper establishes
the decidability of the reachability condition over automata which are
obtained by composing two semi-algebraic o-minimal systems. The class
of semi-algebraic o-minimal automata is not even closed under composi-
tion, i.e., the product of two automata of this class is not necessarily a
semi-algebraic o-minimal automaton. However, we can prove our decid-
ability result combining the decidability of both semi-algebraic formulæ
over the reals and linear Diophantine equations. All the proofs of the
results presented in this paper can be found in [1].

1 Semi-algebraic O-Minimal Automata and Composition

Hybrid automata are systems in which discrete and continuous evolutions are
mixed. In particular, their discrete nature is usually modeled through labeled
directed graphs (called graphs in the rest of this paper), i.e., directed graphs
with labels on the edges. On this kind of graphs we define: a path ph as sequence
of edges; a cycle as a path in which the first and the last edges coincide; a simple
cycle as a cycle without other repetitions.

A hybrid automaton H = (Z, Z ′, V, E, Inv , F , Act , Res) of dimension k
consists of the following components:
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1. Z = 〈Z1, . . ., Zk〉 and Z ′ = 〈Z ′
1, . . ., Z ′

k〉 are two vectors of reals variables;
2. 〈V, E〉 is a labeled directed graph; the vertices, V, are called locations ;
3. Each vertex v ∈ V is labeled by the formulæ Inv(v)[Z] and Dyn(v)[Z, Z ′, T ]

def= Z ′ = fv(Z, T ), where fv is the solution of the continuous vector field F ;
4. Each edge e ∈ E is labeled by the two formulæ Act(e)[Z] and Res(e)[Z, Z ′].

A state q of H is a pair 〈v, r〉, where v ∈ V is a location and r = 〈r1, . . . , rk〉 ∈
R

k is an assignment of values for the variables of Z. A state 〈v, r〉 is said to
be admissible if Inv(v)[r] is true. The semantics of hybrid automata is given in
terms of continuous t−→C and discrete e−→D transitions over asmissible states in
the standard way [1]. We use the notation q → q′ to denote that either q

t−→C q′ or
q

e−→D q′. A trace tr = q0, q1, . . . , qnis a sequence of admissible states connected
through transitions. The automaton H reaches a point s ∈ R

k (in time t) from
a point r ∈ R

k if there exists a trace tr = q0, . . . , qn of H such that q0 = 〈v, r〉
and qn = 〈u, s〉, for some v, u ∈ V (and t is the sum of the continuous transitions
elapsed times). Given a trace tr of H we can identify at least one path of 〈V, E〉
underlying tr. We call such paths corresponding paths of tr.

A well-known class of hybrid automata is the class of o-minimal hybrid au-
tomata [2], defined by using formulæ taken over an ambient o-minimal theory [3]
and by imposing the constraints of constant resets at discrete transitions. In the
case of o-minimal automata defined by a decidable theory, reachability can be de-
cided through bisimulation [2]. A theory which is both o-minimal and decidable
is the first-order theory of (R, 0, 1, +, ∗, <) [4], also known as the theory of semi-
algebraic sets. In this paper we focus on semi-algebraic o-minimal hybrid au-
tomata, i.e., o-minimal hybrid automata built over the theory of (R, 0, 1, +, ∗, <).

Let H1 = (Z1, Z1′, V1, E1, Inv1, F1, Act1, Res1) and H2 = (Z2, Z2′, V2, E2,
Inv2, F2, Act2, Res2) be hybrid automata over distinct variables and let ε be a
label not occurring in E1 ∪ E2. The product (see, e.g., [5,6]) of H1 and H2 is the
hybrid automaton H1 ⊗ H2 = (Z, Z ′, V, E, Inv , F , Act , Res), where:

1. Z (Z ′) is the concatenation of Z1 and Z2 (Z1′ and Z2′, respectively);
2. V = V1×V2 and E = Ex ∪E1∪E2, where: Ex = {ee1,e2 |e1 ∈ E1 and e2 ∈ E2},

E1 = {ee,v | eE1 and v ∈ V2}, and E2 = {ev,e | v ∈ V1 and e ∈ E2}.
3. Inv(〈v1, v2〉)[Z] def= Inv(v1)[Z1] ∧ Inv(v2)[Z2];
4. Dyn(〈v1, v2〉)[Z, Z ′, T ] def= Dyn(v1)[Z1, Z1′, T ] ∧ Dyn(v2)[Z2, Z2′, T ];

5. Act(ea,b)[Z] def=

⎧
⎨

⎩

Act(a)[Z1] ∧ Act(b)[Z2] if ea,b ∈ Ex

Act(a)[Z1] if ea,b ∈ E1

Act(b)[Z2] if ea,b ∈ E2

6. Res(ea,b)[Z, Z ′] def=

⎧
⎨

⎩

Res(a)[Z1] ∧ Res(b)[Z2] if ea,b ∈ Ex

Res(a)[Z1] ∧ Z2′ = Z2 if ea,b ∈ E1

Z1′ = Z1 ∧ Res(b)[Z2] if ea,b ∈ E2

We study the reachability problem over H1 ⊗H2, where H1 and H2 are semi-
algebraic o-minimal hybrid automata, considering sets of points of the form
I = I1×I2 and F = F1×F2. As noticed in [6] the decidability of reachability is not
always preserved under product operations, i.e., it is possible that reachability
is decidable over two classes of automata, but not over the product class.
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2 Our Results

A common approach in deciding reachability of hybrid automata is that of dis-
cretizing the automata using equivalence relations (see, e.g., [2]). A powerfull
equivalence reduction preserving reachability is time-abstract simulation. Let H
and H be two automata, a relation R between H and H states is a time-abstract
simulation if and only if, for each pair of states q and q̃ of H and for each state q′

of H , if (q, q′) ∈ R then: for each edge e of H such that q
e−→D q̃ in H there exist

an edge e′ and a state q̃′ such that Label (e) = Label (e′), q′ e′
−→D q̃′ in H , and

(q̃, q̃′) ∈ R; if q →C q̃ in H , then there exists a state q̃′ such that q′ →C q̃′ in H
and (q̃, q̃′) ∈ R. We cannot use time-abstract simulation to decide reachability.

Theorem 1. There exist products of two semi-algebraic o-minimal automata,
which possess an infinite simulation quotient.

In order to study the reachability problem over the product of two semi-algebraic
o-minimal automata we exploit a characterization of the reachability problem
over hybrid automata based on first-order formulæ over the reals (see [1]): there
exists a formula Reach(H)(ph)[Z, Z ′, T ] such that r ∈ R

k reaches s ∈ R
k in

time t through a trace tr having ph as a corresponding path if and only if
Reach(H)(ph)[r, s, t] holds. We can also characterize through a first-order for-
mula the set of time instants T ime(ph) in which a path ph can be covered starting
and ending with discrete transitions. This means that T ime(ph) is a finite union
of intervals and points. Moreover, we exploit the existence of a canonical path
decomposition: given a semi-algebraic o-minimal automaton, from any path we
can extract both an acyclic part and a set of simple cycles. In this case we say
that the set of simple cycles is augmentable to the acyclic part. The global time
necessary to cover the path is then equal to the sum of the time necessary to
cover the acyclic part plus multiples of the times we can spend over the simple
cycles. What is important is that in the case of o-minimal automata the time
we can spend over a cycle does not depend on the starting and ending points.

Theorem 2. Let H1 and H2 be o-minimal automata of dimensions k1 and k2,
respectively, and I1, F1 ⊆ R

k1 and I2, F2 ⊆ R
k2 be characterized by the first-order

formulæ I1[Z1], F1[Z1], I2[Z2], and F2[Z2]. The automaton H1 ⊗ H2 reaches
F1 ×F2 from I1 × I2 if and only if there exist two acyclic paths ph1 and ph2 and
two sets of paths PH1 = {ph1

1, . . . , ph1
n1

} and PH2 = {ph2
1, . . . , ph2

n2
} augmentable

to ph1 and ph2, respectively, such that for each h ∈ {1, 2} it holds that there exists
th satisfying ∃Zh, Zh′(Reach(Hh)(phh)[Zh, Zh′, T ] ∧ Ih[Zh] ∧ Fh[Zh′]) and for
each phh

i there are two finite non empty sets {t0(i,h), . . . , t
m(i,h)

(i,h) } ⊆ T ime(phh
i )

and {k0
(i,h), . . . , k

m(i,h)

(i,h) } ⊆ N>0 such that

n1∑

i=1

m(i,1)∑

j=0

kj
(i,1) ∗ tj(i,1) + t1 =

n2∑

i=1

m(i,2)∑

j=0

kj
(i,2) ∗ tj(i,2) + t2

We say that H1 ⊗ H2 reaches F1 × F2 from I1 × I2 through ph1, PH1, ph2, PH2
if the hypothesis of Theorem 2 are satisfied. Given a set PH of paths we say
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that PH is time-empty if either PH = ∅ or for each ph ∈ PH it holds that
T ime(ph) = {0}.

We prove the decidability of H1 ⊗ H2 reaches F1 × F2 from I1 × I2 through
ph1, PH1, ph2, PH2 by the following case analysis: (0) both PH1 and PH2 are
time-empty; (1) only PH1 or PH2 is not time-empty and there exists a simple
cycle phh

i such that T ime(phh
i ) contains an interval; (2) both PH1 and PH2 are

not time-empty and there exists a simple cycle phh
i such that T ime(phh

i ) contains
an interval; (3) either PH1 or PH2 is not time-empty and for each simple cycle
phh

i the set T ime(phh
i ) consists of a finite number of points. In case (0) the

decidability follows from Tarski’s result [4]. In case (1) we map our problem into
that of deciding a first-order formula with a bounded integer parameter, since, if
T ime(ph1

1), with ph1
1 ∈ PH1, contains an interval (ta, tb) and PH2 is time-empty,

then either ta = 0 or ta > 0. In the former case H1 can spend any wanted time
t by cycling on ph1

1. In the latter, the number of cycles elapsing a time t ∈ R is
upper bounded. In case (2) the decidability is a consequence of the density of
the time interval. In particular, if there exist two simple cycles ph1 ∈ PH1 and
ph2 ∈ PH2 such that T ime(ph1) contains an interval (ta, tb) and t2 ∈ T ime(ph2),
with t2 > 0, then there exist a number n1 of iterations over ph1 and a number
n2 of iterations over ph2 such that H1 and H2 can elapse the same amount of
time over ph1 and ph2, respectively. Case (3) requires the use of algorithms to
solve membership problems over algebraic fields [7] and algorithms for solving
systems of Diophantine equations.

Since graphs have a finite number of acyclic paths and simple cycles, it holds:

Corollary 1. Let H1 and H2 be semi-algebraic o-minimal automata of dimen-
sions k1 and k2, respectively. Let I1, F1 ⊆ R

k1 and I2, F2 ⊆ R
k2 be characterized

by first-order semi-algebraic formulæ. Verifying that H1 ⊗ H2 reaches F1 × F2
from I1 × I2 is decidable.
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