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1 Introduction & Background

Complex Systems are often characterized by agents capable of interacting with
each other dynamically, often in non-linear and non-intuitive ways. Trying to
characterize their dynamics often results in partial differential equations that
are difficult, if not impossible, to solve. A large city or a city-state is an exam-
ple of such an evolving and self-organizing complex environment that efficiently
adapts to different and numerous incremental changes to its social, cultural and
technological infrastructure [2]. One powerful technique for analyzing such com-
plex systems is Agent-Based Modeling (ABM) [10], which has seen an increasing
number of applications in social science, economics and also biology. The agent-
based paradigm facilitates easier transfer of domain specific knowledge into a
model. ABM provides a natural way to describe systems in which the over-
all dynamics can be described as the result of the behavior of populations of
autonomous components: agents, with a fixed set of rules based on local infor-
mation and possible central control. As part of the NYU Center for Catastrophe
Preparedness and Response (CCPR2), we have been exploring how ABM can
serve as a powerful simulation technique for analyzing large-scale urban disas-
ters. The central problem in Disaster Management is that it is not immediately
apparent whether the current urban emergency plans are robust against such
sudden, rare and punctuated catastrophic events. An agent-based emergency
response model can utilize the large amount of information about the possible
rules of behavior for people, hospitals, on-site responders and ambulances, with-
out depending on the scarce knowledge about the efficacy of those rules or the
global dynamics.

We have been striving towards a methodical and algorithmic approach for
both preparedness and response, by combining powerful ideas from model-
checking, simulation and multi-objective optimization, in order that a large
urban structure can recover from the effects of a disastrous event quickly and
efficiently. More recently, game theoretic paradigms have also influenced the
analysis of complex systems. In our models, persons play “games” with each
other for the medical resources; persons and hospitals interact to minimize sev-
eral factors like number of fatalities, average waiting time, average ill-health,
cost, etc. Likewise, the heuristics people employ to choose the hospital they
should head to, based on prior knowledge about their size and location and
real-time knowledge about current occupancies, can be seen as an extension of
the Santa Fe bar problem [4]. Game theory also discusses different kinds of
strategies that can effectively describe different personality, cultural and social
traits governing panic behavior: some people just imitate their neighbors, some
are contrarian, some are rational, some are irrational, some employ a random
strategy, etc.

Disaster planning is often based on assumptions derived from a conventional
wisdom that is at variance with empirical field disaster research studies [3]. Our

2http://www.nyu.edu/ccpr



ABM for Catastrophe Preparedness 3

efforts to avert this error have resulted in a new system3 with well-identified,
validated, simple rules with minimal number of parameters to avoid modeler
bias and unnecessary complexity. The persons, hospitals, on-site responders,
ambulances and disease prognosis follow deterministic rules with probabilistic
parameters that can be modified by the user. A more detailed description of
our system can be found in [8], where the Sarin gas exposure scenario is inves-
tigated in the constraints defined by Manhattan, New York, and in [7], where
the Brazilian food poisoning scenario is recreated. The system is implemented
in Repast 3.1 4 [9], a popular and versatile Java-Based software toolkit that has
been used to model such diverse concepts like intracellular processes and busi-
ness strategies. We have also integrated ProActive 5 with RePast, in order to
use the computational power of a cluster of computers to explore the parameter
space of the system. Rather than focusing on the intricacies of the modeling
problem, in this paper, we delve into the nature and sources of complexity in
the dynamics of different kinds of catastrophes.

2 Experimental results

In disaster management, it has been established that “Planning should take
into consideration how people and organizations are likely to act, rather than
expecting them to change their behavior to conform to the plan” [3]. ABM
serves as a means of describing the behavior of medical facilities (controllable)
and evaluating their performance in different disease scenarios for people with
different personality and health profiles. Unless stated otherwise, experimental
results are carried out using the same values for the parameters as described in
table 1 and each plot is averaged on 10 independent runs.

Single event scenario As a first scenario, we consider a possible terrorist
attack with a warfare agent at Port Authority Bus Terminal in the island of
Manhattan. In order to understand the complexity of the system dynamics, in
Fig. 1, we monitor different statistics for the affected population. The left plot
in Fig. 1 shows the evolution curves for the average waiting time of the affected
population at the hospitals. The presence of three jumps is visible in the first
400 ticks of the curves, corresponding to the crowding effect of the flux of people
at the three nearest hospitals to the site of the attack. Each climb phase is a
consequence of the hospital state changing rapidly from ”available” to ”critical,”
with a resulting increase in the number of waiting non-critical persons. The flat
phase that ensues is due to the state change from “critical” to “full”, where all
waiting persons are instructed to head to another hospital. It is interesting to
note how the population size of 500 persons seems to produce a more complex
scenario as compared to a large size of 1000, as evident in the higher waiting time

3The details of the system have been summarized in the Appendix.
4http://repast.sourceforge.net
5http://www-sop.inria.fr/oasis/proactive/
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Figure 1: Left plot: evolution curves for the percentage of waiting persons at the
hospitals and the average waiting time of the population with population size 500,
1000 and 2000. Right plot: evolution curves for the percentage of active and admitted
persons with population size 500, 1000 and 2000.

at the hospitals. This unforeseen outcome can be explained by observing that
after the nearest hospital becomes full, the remaining waiting population that
heads to another hospital is unable to fill up the new one. The new hospital
remains in a critical state for more time causing an increased waiting time.
This effect is visible in the inset plot on the left of Fig. 1, where the curve for
the population size of 500 produces the highest percentage of waiting persons
around 400 ticks. A similar behavior is produced by an affected population of
2000 individuals, but in this case the scenario unfolded after the three nearest
hospitals became full.

The right plot of Fig. 1 shows the percentage of active and admitted persons.
The term active denotes a person who has decided to head to a hospital. As
expected, immediately after the attack, both the number of active and admitted
persons quickly increases, but then different courses are produced by the different
population sizes. Another unexpected behavior emerges in the right inset plot of
Fig. 1: an affected population of 1000 individuals produces a higher percentage
of admitted persons than that of 2000. A possible explanation can be found by
observing that the resources of each hospital are the same for both population
sizes, but the number of persons with lethal and severe injuries increases with
the population size. These are persons who need more treatment producing a
longer hospitalization time and higher demand of resources. At the same time,
there are also many persons, some lightly and others severely injured, who are
awaiting admission.

Multiple event scenario As a second scenario, we consider a possible terror-
ist attack involving multiple explosions – in particular, caused by three bombs
located respectively in Union Square, Times Square and Central Park. The ex-
plosions are simulated to occur after 10, 120 and 300 minutes respectively. A
population of 5000 persons is involved and initialized to random positions on
the map at the beginning of the simulation. The left plot of Fig. 2 shows the
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Figure 2: Left plot: evolution curves for active and waiting persons. Right plot:
evolution curve for the percentage of admitted persons in the hospitals.

expected increase in the number of active persons after each of the three explo-
sions. It is interesting to note the presence of an unpredictable fourth but less
rapid increase after 1000 ticks. The waiting curve instead follows a completely
different path because of the different spatial positions of the hospitals with re-
spect to the sites of the explosions and their different resource levels. The right
plot of Fig. 2 shows the curve for the percentage of admitted persons in the hos-
pitals. As expected, after each explosion we have an increase in the number of
admissions, but most of them are probably persons who do not need long-term
hospitalization and hence, are discharged soon. However, the percentage of ad-
mitted persons never becomes zero; random fluctuations after the 700th tick are
visible due to the probabilistic personality factors (irrationality and obedience)
of each person.

2.1 ABM model-checking

Unlike statistical analysis of metrics averaged over multiple agents and simula-
tions, the model-checking approach focuses on individual agents’ traces. Com-
plex temporal properties may be described in Linear Temporal Logic (LTL) and
then model-checked in a model-checker such as XSSYS[1]. The trace analysis can
help discover finer aspects about the underlying system dynamics. The XSSYS
system was originally developed for simulating and analyzing biochemical path-
ways. The agents’ traces produced in output by the system can be read using
XSSYS. To demonstrate the technique, we consider an intensive toxic agent ex-
posure in downtown Manhattan and monitor a person and a hospital in Fig. 3.

3 Conclusions and future investigations

The complex interactions between the affected population and the available re-
sources of a response plan have remained poorly understood, are still beyond the
analytical capability of traditional modeling tools, and have resisted any system-
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Figure 3: Temporal Logic Analysis in XSSYS. Left plot: Time-Trace of a Person.
Right plot: Time-Trace of a Hospital.

atic investigation. In this research work we have shown that a deep analysis of
the source of complexity generated by the simulation of different kind of urban
emergency scenarios is effectively possible. This finer analysis has been accom-
plished using large-scale simulation with a novel Agent-Based Model simulation
tool6 addressing disasters in urban settings. Simple rules of behavior are seen
to produce uncanny emergent dynamics with unpredictable interdependences,
which, with the help of the statistical analysis features of the system, can be
inspected in order to refine existing plans and policies.

Currently, we are extending the model in order to simulate not just imme-
diate one-time events, e.g., attack with a chemical agent, bomb explosion, etc.,
but also long-lasting slowly-unfolding scenarios such as those resulting from an
infectious disease, e.g., Smallpox. We are also working on integrating the Repast
toolkit with the rule engine JESS7. This will facilitate characterization of agent
behavior with declarative rules and run-time modification. Moreover, response
plans involve different, often conflicting, criteria that must be satisfied and opti-
mized in parallel – number of fatalities, average population health, time taken to
succumb, waiting time at the hospital, etc. In our framework, a response plan is
expressed in terms of the system rules and parameters, producing a gargantuan
strategy space that should be explored in order to find “optimal” plans. We are
currently exploring the use of multi-objective evolutionary algorithms to address
this computational challenge.

Through our efforts, we want to demonstrate that the ABM paradigm, in
conjunction with statistical analysis, multi-objective optimization, game theory
and model-checking of agent-traces, offers a novel way to understand, plan and
control the unwieldy dynamics of a large-scale urban emergency response.

6http://www.bioinformatics.nyu.edu/Projects/planc/index.shtml
7http://herzberg.ca.sandia.gov/jess/
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Appendix

One of the main issues in ABM is to build models at the appropriate level of
description, using the requisite level of details in order to produce a system that
serves its analytical purpose. The details of our model have been summarized
below from [8]. The table 1 shows the main parameters that the user can modify.

Table 1: Main model parameters.
Name Range value
Maximum number of iterations [0,∞] 2000
Number of agents (Person, Hospitals, On-site Responders, Ambulances) [0,∞] (1000, 28, 5, 10)
Alert time (in minutes, for On-site responders and Ambulances) [0,∞] 30
Critical health Level [0, 1] 0.3
Non-critical health level [0, 1] 0.6
Unsafe health level [0, 1] 0.4
On-site Responder dischargeable health level [0, 1] 0.5
Hospital dischargeable health level [0, 1] 0.8
Probability to have a communication device (phone, radio, etc) [0, 1] 1.0
Phone update probability [0, 1] 0.2
Hospital low resource level (percentage of) [0, 100] 30
Hospital very low resource level (percentage of) [0, 100] 10
Hospital low beds level (percentage of) [0, 100] 30
Probability of lethal, severe, light, injuries [0, 100] 0.1, 0.35, 0.4, 0.15

Person: The affected population is modeled as reactive selfish agents with
bounded rationality and stochastic behavior. The person’s initial goal is to
reach the original destination (home or place of work) from the initial location.
After the catastrophic event, his/her health begins to deteriorate and at a cer-
tain health-level, decided by environmental and personality factors, the person
decides to head to a hospital. The person agent maintains information about:
(1) the destination (home/work or hospital); (2) current health level hl ∈ [0, 1];
(3) current level of medication tl ∈ [0, 1]; (4) location and current capacity
of known hospital; (5) degree of worry wl ∈ [0, 1] that represents the innate
level of irrationality in the agent; (6) level of obedience ol ∈ [0, 1] that cap-
tures the instruction-abiding trait of a person; and (7) perceived level of distress
d = wl× (1−hl). Higher the level of distress suffered by a person, higher would
be the probability of selecting the nearest hospital even when it is full; similarly,
higher the level of obedience in a person, higher would be the probability of
following the rules (heading to a hospital at the correct health level specified by
the user).

Hospital: It is modeled as a stationary agent that is an abstraction of any
medical facility that can play a role at the time of a catastrophe. Twenty eight
major hospitals have been included, and the number of hospital beds was used
as an indicator of the capacity of the hospital. The hospital operates in three
modes: available, critical and full according to the residual number of beds and
resources. The hospital mode directly influences several decisions: whom to turn
away, whom to treat and how much resources to allocate to a person requiring
treatment. The medical term for this process is triage [5]. In the “available”
mode, the hospital admits all persons that request treatment; in the “critical”
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mode, only critically ill persons are admitted; in the “full” mode, nobody new
is admitted.

On-Site responders: On-site treatment is provided by Major Emergency
Response Vehicles (MERVs), Hazardous Materials team (HazMat) and Emer-
gency Medical Services (EMS) ambulances. These small mobile hospitals are
initially inactive and stationary at their hospital of affiliation. After receiv-
ing notification of the disaster, they move towards the catastrophe site. Their
knowledge includes: (1) starting location; (2) time of dispatch; (2) locations and
current capacities of known hospitals. The behavior is exactly the same as a
hospital in critical mode.

Ambulance: It is modeled as a small mobile hospital that transports sick
persons to the nearest hospital. The ambulance is initially at a random point
in the map and does not help anybody. After being activated, their destination
node is assigned to the location of the catastrophe site. After reaching the site
and collecting one person, the ambulance assists in moving them to a hospital,
also providing treatment during the travel.

Catastrophe: The catastrophe itself is modeled as an agent in the system.
This particular implementation gives us the ability to model very different sce-
narios. In particular the catastrophe-agent can be specialized in order to model a
source of poisoning, a bomb, a warfare agent, etc. More importantly it is possible
to initialize multiple catastrophe-agent and setting their time of activation.

Disease: The time-course of the person’s health after the disaster is modeled
as a three step probabilistic function such that the healthier the person, the
more likely that his / her health will improve rather than deteriorate:

if (U(0,1) < health level)
health = health + U(0, treatment + maximum untreated recovery);

else
worsening = (health > dangerous health level)? maximum worsening:

((health > critical health level)? maximum dangerous worsening:
maximum critical worsening))

health = health - U(0,(1 - treatment)*worsening);

where U(0, 1) is a real random number generated uniformly in the range (0, 1).

Topology and Transportation: Publicly available Geographic Informa-
tion Systems (GIS) data about the roads of the city was converted into a graph,
where nodes are intersections and edges are streets. We have performed this
conversion for Manhattan island in New York city. Agents are constrained to
move only along the edges of the graph, with the effective speed at each time-
step depending on the health level and probabilistic terms to simulate congestion
effects. A simple variant of the LRTA∗[6] algorithm for route computation is
used to model a person’s panic behavior.


