
INFINITY 2005 Preliminary Version

Algorithmic Algebraic Model Checking III:
Approximate Methods

Venkatesh Mysore 1,2

Computer Science Department, Courant Institute
New York University, New York, USA

Bud Mishra 3

Departments of Computer Science and Mathematics, Courant Institute
Department of Cell Biology, School of Medicine

New York University, New York, USA

Abstract

We present computationally efficient techniques for approximate model-checking
using bisimulation-partitioning, polyhedra, grids and time discretization for semi-
algebraic hybrid systems, and demonstrate how they relate to and extend other
existing techniques.

Key words: Semi-algebraic hybrid systems | Model checking.

1 Introduction

A semi-algebraic hybrid automaton [9,8] is a hybrid automaton, whose expres-
sions corresponding to the initial values, state invariants, continuous flows,
and the guards and resets of the discrete transitions are all semi-algebraic,
i.e., Boolean combinations of polynomial equations and inequalities. They are
often used to approximate more general systems, whose flow equations are not
polynomial, since truncated Taylor series, polynomial splines and other sym-
bolic integration schemes provide good semi-algebraic local approximations
for flows, etc. A location of a semi-algebraic hybrid automaton H is a pair
〈v, X〉, where v ∈ V is a state and X ∈ Rk is an assignment of values to the k

system variables. The transition relation 〈u, X〉 h−→
T
〈v, X ′〉 of H connects all

1 The work reported in this paper was supported by grants from NSF’s ITR program and
DARPA’s BioCOMP program.
2 Email: mysore@cs.nyu.edu
3 Email: mishra@nyu.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Mysore and Mishra

possible values of the system variables before and after one step; namely, it is

either a discrete step 〈u, X〉 0−→
D
〈v, X ′〉 for a time h = 0 or a continuous evolu-

tion 〈u, X〉 h−→
C
〈v(= u), X ′〉 for a time period h > 0. (For detailed definitions

and summary of results, please refer to the Appendix .)

Earlier, in the first paper in this series [9], we introduced this class and
demonstrated the use of real algebraic methods for solving the bounded reach-
ability problem. In the second paper [8], we examined the single-step until
operator p.q of the dense-time logic Timed Computation Tree Logic (TCTL),
which is defined as p ∨ q holding all along “one step” of the hybrid system
and q being true at the end of the transition. Since quantifier elimination
over semi-algebraic sets is decidable [10], p . q was shown [8] to be decidable
for semi-algebraic hybrid systems if p and q were also semi-algebraic. It was
further proved [8] that the “existential” segment of TCTL (including reach-
ability) and the negation of the “universal” segment are semi-decidable over
semi-algebraic hybrid automata. Further, all subscripted TCTL operators
become decidable in the absence of zeno-paths.

Effectively, the symbolic algebraic model checking problem was reduced to
a series of quantifier elimination problems which could be solved by a software
tool such as Qepcad [5]. The only source of error (if any) arose in approximat-
ing non-polynomial systems. However, the computational complexity (double
exponential) of the cylindrical algebraic decomposition severely limited the
applicability of the method. In this paper, we discuss the applicability of the
different approximation approaches involving space- and time- discretization
to semi-algebraic hybrid automata. Approximate methods have been very
successful in timed automata and linear hybrid systems, yielding efficient de-
cidable algorithms in many cases [3,4,2,1]. However, these methods rely on
computational techniques that exploit the low dimensionality and other re-
strictions, of the dynamics of these subclasses of hybrid systems. In other
words, the techniques are seldom applicable to more complex systems. Our
first goal in this paper is to show that many existing ideas can be made ap-
plicable to semi-algebraic hybrid systems, by using quantifier elimination in
place of the original efficient-but-restrictive computational method. The sec-
ond goal is to develop these ideas to obtain new optimizations and techniques.
Further, we seek to identify well-behaved sublcasses that are more general
than timed or linear automata.

By suitably relaxing accuracy requirements, we aim to model-check the
vast semi-algebraic class, without being severely computationally hindered.
Quantifier elimination will still remain our engine of computation, though
it will be used differently; namely, it will be invoked to solve many simple
problems instead of a few complex problems. In this paper, we will present
the modified versions of existing techniques and understand their behavior over
the semi-algebraic class. Clearly, different techniques will prove to be effective
in different scenarios. In this paper, we do not delve into this aspect, but

2

Mysore and Mishra

instead focus on generalizing and optimizing existing techniques. In this sense,
it is the first effort to catalogue the algorithms for approximate verification
(reachability) for the vast semi-algebraic class.

2 Approximate Methods

In this section, we develop new approximation methods applicable to the semi-
algebraic class, based on the existing literature for much simpler subclasses of
hybrid automata. For brevity, all proofs are provided in the Appendix.

2.1 Bisimulation Partitioning

The bisimulation idea is to convert the given hybrid automaton into a simpler
one, which only preserves the properties of interest to us (in the query). The
conventional bisimulation partitioning algorithm [4] involves splitting the dis-
crete states based on the out-going discrete transitions. The source state of
a transition is split so that, each new state (its partitions) has the minimal
number of out-going transitions (ideally, each new partition will have only one
possible successor discrete state). The rationale is that one expects only some
of the guards (of the different out-going transitions) to be satisfiable, from dif-
ferent parts of the continuous space representing the discrete state (its state
invariant).

We first prove that these partitions are computable for semi-algebraic hy-
brid systems by expressing the task as a quantifier elimination problem.

Theorem 2.1 The standard bisimulation partitions are computable for semi-
algebraic hybrid automata. 2

Having proved that the existing idea becomes applicable via quantifier
elimination, we now suggest an improvement of the technique. This approach
is founded on the observation that only a portion of the destination state may
ever be accessed, after a specific discrete transition. Thus, by splitting the
destination state as well, based on what fraction of it is accessible from the
source state, we can refine the partitions. This simple extension was not nec-
essary in linear systems, as the destination state space was typically entirely
reachable from the resetted region (after a discrete transition). Since semi-
algebraic sets have innate complexity, it is very unlikely that continuous evolu-
tion from different resetted regions will all envelope the entire state invariant.
Clearly, since we chop off the region of the state invariant that is not reachable,
the state invariants represent smaller sets. Hence, the extended-bisimulation-
partitioning is likely to be a sharper one than the standard approach. The
second advantage to this extended algorithm is that well-behaved subclasses
can be characterized (see Convergent Deterministic Automata below). We
now enumerate the complete series of computations:

Algorithm 1 [Extended Partitioning For Semi-Algebraic Automata]

3

Mysore and Mishra

(i) Pick a state s (source) with a discrete transition to state d (destination);

(ii) Split s into two states sd and sd̄ thus: Inv sd
(X) ≡ ∃h,X ′ 〈s, X〉 h−→

C

〈s, X ′〉 ∧Guard s,d(X
′) and Inv sd̄

(X) ≡ Inv s(X) ∧ ¬Inv sd
(X);

(iii) Split d is into ds and ds̄ thus: Invds(X) ≡ ∃X ′′, X ′ Inv s(X
′′)∧〈s, X ′′〉 0−→

D

〈d,X ′〉 ∧ {∃h 〈d,X ′〉 h−→
C
〈d,X〉} and Invds̄(X) ≡ Invd(X)∧¬Invds(X);

(iv) The states sd, sd̄, ds, ds̄ replace s and d. The transition from s to d is
replaced by the one from sd to ds. All other transitions to (or from) s (d)
are each replaced by two transitions to (or from) sd and sd̄ (ds and ds̄);

(v) Repeat steps (i)− (iv) until no transition from any state s to any state d
can be found which splits s or d. 2

It is to be recalled that convergence of the partitioning does not imply de-
cidability of reachability for general hybrid automata. As in the standard
bisimulation case, the over-approximated set of points reachable from 〈s0, X0〉
in the original hybrid system is given by the union of the invariants of all
the states along all the trajectories starting at the state d0 of the partitioned
system corresponding to the partition of s0 containing X0. Even in the non-
convergent case, this procedure yields an estimate of the reachable set if we
roll-out H for a reasonable number of steps. Similarly, we can check if a spe-
cific Xf is reachable from a specific X0. We iteratively partition until the
partition containing Xf is not in any trajectory starting from the partition
containing X0. We can then conclude guaranteed unreachability, or approxi-
mate reachability otherwise (counterexample-guided abstraction refinement).

Having generalized and extended an existing technique, we now charac-
terize the broadest subclasses of hybrid systems where this new technique is
well-behaved.

Convergent Deterministic Automata

In deterministic hybrid automata, a discrete transition is taken the moment
its guard is satisfied (with no two guards ever holding simultaneously). Hence
there is a unique future trajectory for every initial system state. If the ex-
tended partitioning procedure converges for a deterministic hybrid automaton,
the original automaton will now correspond to a set of disconnected trajecto-
ries. Each of these will be a cycle of discrete states, with each state possibly
preceded by a linear path of unique discrete states (all other topologies get
excluded because there is no “future-branching” in deterministic automata).
The extended partitioning unlike the standard bisimulation partitioning, pro-
duces exactly onto maps between successive states when convergent. We now
show how many of their mathematical properties can be fruitfully exploited
to address the reachability problem, for broad subclasses of convergent deter-
ministic semi-algebraic hybrid automata.

In linear convergent deterministic semi-algebraic automata, all flows and

4

Mysore and Mishra

reset maps are linear. Thus, infinite cycles are ruled out, since there are only a
finite number of exactly onto maps possible (except when the sets have infinite
axes of symmetry as does a circle). Thus:

Theorem 2.2 There are only a finite number of 1-to-1 linear maps f(X) =
ΣAX + B, Ai, Bi ∈ Rd possible, between two d-dimensional sets with finite
axes of symmetry. 2

Corollary 2.3 Given a cycle S1, · · · , Sn, S1 of n d-dimensional sets with sl

axes of linear symmetry and sr axes of rotational symmetry each, where each
set maps exactly onto its successor (Si+1 = f(Si)), the number of unique
successors of any point is at most nsr2

sl. 2

Theorem 2.4 Reachability over a deterministic semi-algebraic hybrid system
with linear resets Resetu,v(X, X ′) ≡ (X ′ = ΣAX + B), Ai, Bi ∈ Rd and
linear flows Flowu(X, X ′) ≡ (X ′ = ΣAX + B), Ai, Bi ∈ Rd is decidable, if
the extended partitioning algorithm converges into states with finite axes of
symmetry. 2

The more general notion of monotonicity has recently been identified as
a useful restriction in characterizing hybrid systems [6]. A function is said
to be monotonic (with respect to its arguments), if it is always increasing
or always decreasing or constant in the specified interval. For monotonic
convergent deterministic semi-algebraic automata, monotonic flow and reset
maps guarantee that the system has to eventually converge to a fixed point
or a limit cycle (chaotic behavior can be ruled out). We now show that,
unlike linearity which ensures decidability of reachability, monotonicity only
guarantees that approximate reachability can be decided upto any specified
accuracy. Thus:

Theorem 2.5 If there exist 1-to-1 monotonic maps between two sets, all
points converge to one of a finite number of fixed points or limit cycles. 2

Theorem 2.6 Reachability over a deterministic semi-algebraic hybrid system
with resets and flows monotonic (with respect to all system variables), that
converges upon extended partitioning, is decidable up to an arbitrary degree of
accuracy. 2

2.2 Approximating as a Polytope

The bisimulation approach produced a new hybrid system more amenable to
approximate temporal analysis. A completely different approach, very popu-
lar for the reachability problem, is to approximate from the first step. This
involves assuming a mathematically convenient geometrical shape for the ini-
tial set—the simplest being a polytope (bounded polyhedron), which can be
written as a boolean combination of linear inequalities [3]. At each iteration,
we compute the successor polyhedron by expanding it using the (one-step)
transition relation of the hybrid system. Also, we need to ensure that the

5

Mysore and Mishra

successor is also a polyhedron. At each iteration, the mathematics involves
keeping track of the movement of the vertices and computing their new convex
hull, or keeping track of the faces and moving them based on their maximum
outward growth along the normal.

Clearly, a polyhedron can serve as a complexity restricting approxima-
tion of a semi-algebraic set as well. However, the conventional computational
techniques are not applicable for two reasons. First, the convex hull of the suc-
cessors of vertices of a polyhedron cannot be guaranteed to over-approximate
the successor of the polyhedron. This is because, unlike linear systems, the
flows cannot be assumed to be convexity preserving in semi-algebraic systems.
Secondly, the face-lifting approach is not applicable in its basic from. This
difficulty arises because, there is no straightforward way of calculating the
maximum outward component of the flow along the normal to each face, of a
polyhedron evolving with arbitrary polynomial dynamics.

In this section, we develop two new approaches that circumvent this prob-
lem. Instead of directly computing the approximated successor, we calculate
the accurate complex successor (of the polyderon), and then approximate it
with a new polyhedron. Though the accurate successor computation slows us
down, it is still better than the entirely exact computation. This is because
the quantified semi-algebraic expression for the successor is relatively sim-
ple (polyhedron). We first describe a very coarse over-approximation which
merely keeps track of the extremities along each dimension. This simple over-
approximation can be obtained by calculating the maximum and minimum
value along each dimension and bounding by one hyper rectangle. (We de-
note the value of the i-th dimension of X by Xi.)

Algorithm 2 [Over-Approximating as One Hyper-Rectangle]

(i) Initialize the current over-approximation of the reachable set R with the
starting hyper-rectangle

∧
i(imin ≤ Xi ≤ imax);

(ii) Calculate the exact successor of R thus:

RE(〈s, X〉) ≡ ∃s′, X ′, h R(〈s, X ′〉) ∧ 〈s′, X ′〉 h−→
T
〈s, X〉;

(iii) Calculate the maximum value of each dimension Xi in RE thus:
{∃s, X (Xi = i′max) ∧RE(〈s, X〉)}

∧
{∀s, X RE(〈s, X〉) ⇒ Xi ≤ i′max};

(iv) Calculate the minimum value of each dimension Xi in RE thus:
{∃s, X (Xi = i′min) ∧RE(〈s, X〉)}

∧
{∀s, X RE(〈s, X〉) ⇒ Xi ≥ i′min};

(v) For each dimension, i′min ≡ min(imin, i
′
min), i′max ≡ max(imax, i

′
max);

(vi) If j′max 6= jmax or j′min 6= jmin for some dimension Xj, repeat the steps
(ii) − (v) with R ≡

∧
i(i

′
min ≤ Xi ≤ i′max); else, the procedure has

converged. 2

While the utility of such a gross over-approximation is questionable, it is
nevertheless a technique one can resort to when the complexity of the problem
is very high. If we want to approximate with a general polyhedron (more

6

Mysore and Mishra

than just a hyper-rectangle), we have to resort to the convex-hull or face-
lifting approaches. As arbitrary face-lifting is not known to be amenable to
computational analysis, we suggest a convex-hull-based approach. Since the
new positions of the vertices cannot capture the new convex-hull, we move
them by the maximum possible increments and decrements in one step of the
hybrid system. In other words, we compute the maximum (and minimum)
displacement (along each dimension) of any point in the polyhedron; and then
assume that all the vertices could have moved by these amounts. The convex
hull of the vertices, moved by these maximal amounts, is clearly guaranteed
to be an over-approximation of the original polyhedron.

Algorithm 3 [Over-Approximating as One Hyper-Polygon]

(i) Initialize the current over-approximation of the reachable set R with the
starting hyper-polygon, composed of the initial set of n vertices v1, · · · , vn;

(ii) Calculate the exact successor of R thus:

RE(〈s, X〉) ≡ ∃s′, X ′, h R(〈s′, X ′〉) ∧ 〈s′, x′〉 h−→
T
〈s, X〉;

(iii) Calculate the maximum increment δinc in each dimension Xi thus:
{∃s, X, s′, X ′ R(〈s, X〉) ∧RE(〈s′, X ′〉) ∧ (X ′

i −Xi = δinc)}
∧

{∀s, X, s′, X ′ (R(〈s, X〉) ∧RE(〈s′, X ′〉)) ⇒ (X ′
i −Xi ≤ δinc)};

(iv) Calculate the maximum decrement δdec in each dimension Xi thus:
{∃s, X, s′, X ′ R(〈s, X〉) ∧RE(〈s′, X ′〉) ∧ (Xi −X ′

i = δdec)}
∧

{∀s, X, s′, X ′ (R(〈s, X〉) ∧RE(〈s′, X ′〉)) ⇒ (Xi −X ′
i ≤ δdec)};

(v) Each vertex contributes 2d new points, with each dimension being in-
creased or decreased by the maximum amounts. R is assigned the convex
hull of these n2d points;

(vi) Iterate (ii)− (vii) until δinc = δdec = 0. 2

2.3 Rectangular Grid Abstraction

Instead of using one large polytope, the grid abstraction approach relies on
keeping track of a number of small simple hyper-rectangles. Rectangular grids
admit canonical representations and the number of faces grows linearly with
the dimension, as opposed to convex polyhedra which become intractable in
higher dimensions [2]. Two common simplifying strategies are restricting the
vertices to be integers (“griddy”) and the edges to be axis-parallel (“isothetic”)
[1].

We first show that the extension to semi-algebraic hybrid automata of the
standard procedure is possible, because quantifier elimination can be used
to compute the transitions between hyper-rectangles. One can partition the
entire space into Nd hyper-rectangles, where N is the number of the A-sized
partitions 4 of each of the d dimensions. We use B(X) to denote the k-

4 A should be fixed in relation to the error in the h−→
C

.

7

Mysore and Mishra

dimensional grid unit
∧

i(Bi ≤ Xi < (Bi + A)) of size Ad. States will be
connected to some of their 3d−1 immediate neighbors, which differ by +A,−A
or 0 units in each dimension (with the identity-case alone excluded), and
to some farther ones resulting from discrete resets. We now list the series
of computations necessary to calculate the reachable region starting from a
specific grid unit:

Algorithm 4 [Reachability Over Numerical Grids]

(i) Given one hyper-rectangle F (X) corresponding to the source;

(ii) Initialize “frontier” set F with {F (X)}, and “reachable set” R with null;

(iii) For each new hyper-rectangle P (X) ∈ F
(a) Compile the set of neighbors:

N ≡ {Q(X)|(|Qi − Pi| = A ∨ 0) ∧
∨

i(|Qi − Pi| 6= 0)};
(b) For each neighbor Q(X) of P (X) not already in the reachable set,

test if it is reachable i.e. ∃X, P (X)∧
∨
∀v{∃Y

∨
∀u〈v, X〉 0−→

D
〈u, Y 〉∧

Q(Y)}
∨
{∃Y, h (0 < h ≤ A) ∧ 〈v, X〉 h−→

C
〈v, Y 〉 ∧Q(Y);

(c) All candidate non-adjoint cells Q(X) that can be reached by discrete
state transitions can be tested thus:
∃X, P (X) ∧

∨
∀v{∃Y

∨
∀u〈v, X〉 0−→

D
〈u, Y 〉 ∧Q(Y)}.

(d) Add all reachable cells to both the reachable set R and the frontier set
F and remove P (X) from F ;

(iv) Iterate until there are no more new-hyper-rectangles. 2

Having shown that the standard procedure is applicable, we now develop
a new approach for computing a sharper over-approximation (successor set of
small hyper-rectangles) of the given hyper-rectangle. The idea is to compute
the exact successor of a hyper-rectangle, and then over-approximate the region
outside the initial hyper-rectangle (the “spill”) by hyper-rectangles. In the
previous case, we considered each of the 3d − 1 non-overlapping neighboring
zones, and tested the transition to each. To simplify the expressions further,
we suggest considering fewer overlapping neighbors; in particular, the zones
with exactly one of the d dimensions increased or decreased i.e., 2d in all.
To summarize, the standard method (previous case) accumulates the hyper-
rectangles reachable from the given hyper-rectangle by testing transition to
each of the 3d−1 non-overlapping neighbors. The size of each neighbor is fixed
(“griddy”) forcing the approximation error to be at least that big. In the new
technique, the hyper-rectangles continue to be axis-parallel (“isothetic”), but
their vertices are not fixed. As a result, the approximation is guaranteed to
be much better than the “griddy” case. The additional trick of considering
fewer overlapping rectangles cannot be applied to the standard method, as
the approximation will become too coarse.

We now present the details of the method. We estimate the spill in each
neighboring zone by calculating the extremities in that zone, along the lines of

8

Mysore and Mishra

the scheme for over-approximating the entire set as a single-hyper-rectangle.
We use B(X) to denote the k-dimensional grid unit

∧
i(B

l
i ≤ Xi < Br

i) (side
of the hyper-rectangles are no longer fixed at A). Further, B¬j,k(X) denotes∧

i6=j∨k(B
l
i ≤ Xi < Br

i).

Algorithm 5 [Approximating with Many Hyper-Rectangles]

(i) As before, maintain the set of reachable hyper-rectangles R and the set of
new hyper-rectangles F just added to the reachable set, representing the
expanding frontier;

(ii) For each P (X) ∈ F , compute the exact successor set of R thus:

RE ≡
∨
∀v{∃Y

∨
∀u〈v, X〉 0−→

D
〈u, Y 〉 ∧ P (Y)

∨
{∃Y, h (0 < h ≤ A) ∧

〈v, X〉 h−→
C
〈v, Y 〉 ∧ P (Y);

(iii) For each dimension Xi:
(a) For the neighbor Q(X) where Ql

i = N r
i , calculate Qr

i : {∃X (P¬i(X)∧
Xi = Qr

i) ∧ RE(X)}
∧
{∀X (P¬i(X) ∧ Xi > Qr

i) ⇒ ¬RE(X)}. If
Qr

i < P r
i , skip the next two steps;

(b) We now need to calculate the extremities li+j , ri+
j in each of the other

dimensions Xj where j 6= i: {∃X (P¬i,j(X) ∧Xi > P r
i ∧Xi < Qr

i ∧
Xj = li+j) ∧ RE(X)}

∧
{∀X (P¬i,j(X) ∧ Xi > P r

i ∧ Xi < Qr
i ∧ Xj <

li+j) ⇒ ¬RE(x)} and {∃X (P¬i,j(X) ∧ Xi > P r
i ∧ Xi < Qr

i ∧ Xj =

ri+
j) ∧RE(X)}

∧
∀X (P¬i,j(X) ∧Xi > P r

i ∧Xi < Qr
i ∧Xj > ri+

j) ⇒
¬RE(X).

(c) The hyper-rectangle defined by Ql
i < Xi < Qr

i

∧
j 6=i l

i+
j < Xj < ri+

j is
added to the list of new hypercubes and also to the reachable set R;

(d) Repeat the above three steps for the neighbor where Qr
i = P l

i and
Ql

i, l
i−
j (< Xj), (Xj <)ri−

j need to be calculated;

(iv) Repeat (ii)− (iii) until the procedure converges. 2

In the “griddy” case, we inspect every possible neighbor and test transition.
Alternately, we could have computed the exact successor of the entire set, and
then extracted the component hyper-rectangles. Such an approach would
require a procedure for converting a semi-algebraic set (the exact successor)
into an over- (or under-) approximating union of hyper-rectangles of fixed
dimension.

In the “isothetic” case, we over-approximated the “spill” outside the hyper-
rectangle with a hyper-rectangle in each neighboring zone (with substantial
overlap). Alternatively, we could compute the best non-overlapping but non-
griddy hyper-rectangles that cover the newly reachable points, without hav-
ing to compute the maximum and minimum values of each dimension in each
neighboring zone. This approach again requires a general procedure for con-
verting the exact successor into a union of hyper-rectangles of arbitrary di-
mension.

We solve this problem by actually testing if potential vertices (from a

9

Mysore and Mishra

griddy or isothetic grid) are included in the exact reachable set. We then
use the resulting set of present and absent points to pick candidate hyper-
rectangles. Quantifier elimination is still necessary, since we may wish to
guarantee that the hyper-rectangles we have picked are wholely inside (under-
approximation) or that the hyper-rectangles we have omitted are wholely out-
side (over-approximation). Hence the approach we have suggested addresses
the problem of minimizing the number of quantifier-elimination queries. We
now provide the details of this new technique, which can be used in conjunc-
tion with both the algorithms presented before.

Algorithm 6 [Over-Approximating using Hyper-Rectangles]

(i) Calculate imax and imin, the maximum and minimum values of Xi in the
given set R: {∃X (Xi = imax) ∧R(X)}

∧
{∀X R(X) ⇒ Xi ≤ imax} and

{∃X (Xi = imin) ∧R(X)}
∧
{∀X R(X) ⇒ Xi ≥ imin};

(ii) Split each dimension into equidistant points of the desired resolution;

(iii) Evaluate membership in R for each grid point g by substitution: R(g);

(iv) The small hyper-rectangles created by the grid points which contain at
least one vertex in R are immediately included in the over-approximation;

(v) Hyper-rectangles where none of the vertices are in R are included only if
∃x ∈ G R(x) returns true. 2

In the under-approximation case, hyper-rectangles with at least one vertex not
in R can be safely omitted. The hyper-rectangles with all vertices in R are the
contenders for quantifier elimination. In both cases, one could use a “proof-
by-example” approach, where one verifies the feasibility at some randomly
selected points (center being the first choice) to see if quantifier elimination
can be avoided. By randomizing or biasing the grid points, one can obtain
non-griddy vertices. If, in addition, high-dimensional convex hull algorithms
are used, one could build upon this method to derive general polyhedral rep-
resentations as well.

2.4 Time Discretization

For the sake of completeness, we also note that time discretization can be
employed (in conjunction with most techniques) to approximate the hybrid
system dynamics. Conventionally, the most restricted transition relation en-
forces continuous evolution for a fixed time-step ∆ followed by one optional
discrete transition. The typical “improvement” over the previous case could
be allowing the discrete jump anywhere during the continuous evolution, as
opposed to only at the end of it. This model could be made even more realistic
by allowing N jumps anywhere during the continuous evolution. Clearly, the
only paths that get excluded here are those that involve more than N jumps
in ∆ time. All the restrictions described above are “fixed step” i.e. the system
progresses in timesteps of ∆. Each of them could be relaxed by allowing the
time-step to be in the range [0, ∆] to capture many other behaviors. Such re-

10

Mysore and Mishra

strictive transition relations greatly simplify fixpoint evaluations of temporal
logic operators.

A completely different time-discretization-based under-approximating ap-
proach would be to ignore the behavior of the system during the continuous
evolution. We simply use the end-points to verify the temporal query. For
example, the TCTL one-step until operator for semi-algebraic hybrid sys-
tems [8] can be simplified as: p . q = q

∨
∀v{∃s

∨
∀u〈v, r〉 →0

D 〈u, s〉 ∧
q(s)}

∨
{∃s, h (0 < h ≤ ∆)∧ 〈v, r〉 →h

C 〈v, s〉 ∧ q(s) ∧ p(r)}. Another simpli-
fying over-approximation would be to assume that the state invariant needs
to be true only at the beginning of (and not all along) the ∆ time units of con-
tinuous evolution. This heuristic could prove particularly useful if we combine
time discretization with the partitioning algorithm discussed earlier (which
will accumulate complex state-invariants).

3 Discussion

In this paper, we have extended the theory of approximate verification of hy-
brid systems from the linear to the more expansive semi-algebraic domain.
The algebraic model checking method presented in [8] was made more compu-
tationally practicable by extended bisimulation partitioning, approximation
with general polyhedra and unions of simple polyhedra, and time discretiza-
tion. For the extended bisimulation procedure suggested, we identified well-
behaved subclasses based on some novel critical observations about the be-
havior of exactly onto linear and monotonic maps between arbitrary sets. For
polyhedral approximations, we used the maximum and minimum values of
the system variables and their possible growth in one step to expand the con-
vex hull. We demonstrated how these same metrices (maximal growth along
each dimension in one step) could be used to obtain a hyper-rectangular ap-
proximation of semi-algebraic sets. We also introduced a practical strategy to
identify candidate hyper-rectangles, for which the quantifier elimination needs
to be invoked. Time discretization was seen to simplify the problem by allow-
ing fewer discrete jumps, excluding zeno paths, and by verifying the temporal
property at certain sampling times rather than everywhere.

All these methods need to be refined to better handle discrete resets and
symbolic approximations. More crucial is their actual implementation and
performance analysis. On the purely algebraic side, approximate quantifier
elimination and direct maximum-minimum estimation of a semi-algebraic set
are those mathematical techniques, that need to be developed to further ac-
celerate these methods. There are several approximating methods that are
yet to be extended to semi-algebraic systems. These include: (1) piece-wise
approximations of continuous dynamics; (2) problem domain transformation:
optimal control using Pontryagin Maximum Principle, level sets of solutions to
Hamilton-Jacobi-Bellman equations, sum of squares decomposition (semidefi-
nite programming) and geometric programming; (3) predicate abstraction and

11

Mysore and Mishra

qualitative simulation; (4) other geometric approximations: oriented rectan-
gular hulls, zonotopes and ellipsoids. Next, we wish to determine practical
applicability of these methods, trade-offs among them and suitable combina-
tions of these approximations that work best with the available tools.

References

[1] E. Asarin, T. Dang, O. Maler, and O. Bournez. Approximate Reachability
Analysis of Piecewise-Linear Dynamical Systems. In B. Krogh and N. Lynch,
editors, Hybrid Systems: Computation and Control (HSCC’00), volume 1790 of
LNCS, pages 20–31. Springer-Verlag, 2000.

[2] O. Bournez, O. Maler, and A. Pnueli. Orthogonal Polyhedra: Representation
and Computation. In F. Vaadrager and J. van Schuppen, editors, Hybrid
Systems: Computation and Control (HSCC 1999), volume 1596 of LNCS, pages
19–30. Springer-Verlag, 1999.

[3] A. Chutinan and B. Krogh. Verification of Polyhedral-Invariant Hybrid
Automata Using Polygonal Flow Pipe Approximations. In F. W. Vaandrager
and J. H. van Schuppen, editors, Hybrid Systems: Computation and Control
(HSCC’99), volume 1569 of LNCS, pages 76–90. Springer-Verlag, 1999.

[4] Ronojoy Ghosh and Claire Tomlin. Symbolic reachable set computation of
piecewise affine hybrid automata and its application to biological modelling:
Delta-notch protein signalling. Systems Biology, 1(1):170–183, June 2004.

[5] H. Hong. Quantifier elimination in elementary algebra and geometry
by partial cylindrical algebraic decomposition, version 13. WWW site
www.eecis.udel.edu/∼saclib, 1995.

[6] R. Lanotte and A. Maggiolo-Schettini. Monotonic hybrid systems. Journal of
Computer and System Sciences, 2004.

[7] B. Mishra. Computational Real Algebraic Geometry. CRC Press, Boca Raton,
FL, 2004.

[8] V. Mysore, C. Piazza, and B. Mishra. Algorithmic Algebraic Model Checking II:
Decidability of Semi-Algebraic Model Checking and its Applications to Systems
Biology. In Automated Technology for Verification and Analysis (ATVA)
(submitted), 2005.

[9] C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, and B. Mishra.
Algorithmic Algebraic Model Checking I: The Case of Biochemical Systems and
their Reachability Analysis. In Computer Aided Verification (CAV), 2005.

[10] A. Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, second edition, 1948.

12

Mysore and Mishra

4 Appendix

4.1 Semi-Algebraic Hybrid Automata: Definitions and Decidability

Definition 4.1 Semi-Algebraic Set[7] Every quantifier-free boolean for-
mula composed of polynomial equations and inequalities defines a semialge-
braic set (i.e., unquantified first-order formulæ over the reals —(R, +,×, =, <
)). 2

Definition 4.2 Semi-Algebraic Hybrid Automata [9] A k-dimensional
hybrid automaton is a 7-tuple, H = (Z, V , E, Init , Inv , Flow , Jump), con-
sisting of the following components:

• Z = {Z1, . . . , Zk} and Z ′ = {Z ′
1, . . . , Z ′

k} are two finite sets of variables
ranging over the reals R

• (V, E) is a directed graph of discrete states and transitions

• Each vertex v ∈ V is labeled by “Init”(initial), “Inv”(invariant) and “Flow”
labels of the form Initv[Z], Inv v[Z], and Flow v[Z,Z ′, t, h]

• Each edge e ∈ E is labeled by a “Jump” condition of the form Jumpe[Z,Z ′] ≡
Guard e(Z) ∧ Resete(Z,Z ′)

• Init , Inv , Flow , and Jump are semi-algebraic. 2

Definition 4.3 Semantics of Hybrid Automata[8] Let H = (Z, V ,
E, Init , Inv , Flow , Jump) be a hybrid automaton of dimension k.

• A location ` of H is a pair 〈v, R〉, where v ∈ V is a state and R ∈ Rk is an
assignment of values to the variables of Z. A location 〈v, R〉 is said to be
admissible, if Inv v(R) is satisfied.

• The continuous reachability transition relation
h−→
C

forces the state invariant

to hold at every point except the end-point along the evolution curve deter-
mined by the flow equations during the h(> 0) time units from the current
time t0:

〈v, R〉 h−→
C
〈v, S〉 iff(

Flow v(R,S, t0, h) ∧ ∀Z ′, h′ ∈ [0, h) Flow v(R,Z ′, t0, h
′) ⇒ Inv v(Z

′)

)
,

where Flow v(Z,Z ′, T, h) is the flow label of v.

• The discrete reachability transition relation
0−→
D

ensures that both parts of

the zero-time jump – the guard condition which needs to be satisfied just
before the transition is taken, and the reset condition which determines the
values after the transition, are satisfied.

〈v, R〉 0−→
D
〈u, S〉 iff 〈v, u〉 ∈ E ∧ Jumpv,u(R,S).

• The transition relation T of H connects the possible values of the system

13

Mysore and Mishra

variables before and after one step—a discrete step for a time h = 0 or a
continuous evolution for any time period h > 0:

T (`
h−→ `′) = {h = 0 ∧ `

0−→
D

`′} ∨ {h > 0 ∧ `
h−→
C

`′}.

• A trace of H is a sequence `0,`1, . . ., `n, . . . of admissible locations such that

∀i ≥ 0, ∃hi ≥ 0, T (`i
hi−→ `i+1). 2

Remark 4.4 When a semi-algebraic relation Flow v(R,S, t, h) is used between
the continuous states R at time t and S at time t + h in a discrete state v,
it may have been “derived” in two ways: (1) Solution Is A Polynomial : The
equation describing the continuous evolution of the variables in a discrete state
is a polynomial, say Y (t), and Flow v(Z,Z ′, t, h) ≡ { Z = Y (t) ∧ Z ′ = Y (t +
h) }. Or, (2) Differential Equation Is A Polynomial : Differential equations
describing the continuous evolution are approximated in Flow v using one of
the symbolic integration schemes (e.g., the Taylor series in [9] or based on a
direct integration scheme such as the linear Euler or the higher degree Runge-
Kutta). The error is controlled by an upper bound (say ∆) on the time spent
in one continuous step as we aim for over- or under-approximating the flow
equations. The Lagrange Remainder Theorem can be used to estimate errors.

Definition 4.5 . for Semi-Algebraic Hybrid Systems. The expression
p . q is True at the current continuous state R if q is true now, OR

• For one of the possible current discrete states v, there exists at least one
state u to which a transition can be taken such that q holds at the end, OR

• For one of the possible current discrete states v, there exists a continuous
transition (of at most ∆ time units when we need to upper-bound the flow-
approximation error) all along which p ∨ q holds, with q being true at the
end.

p . q = q(R)
∨
∀v(

{∃S
∨
∀u〈v, R〉 0−→

D
〈u, S〉 ∧ q(S)}

∨
{∃S, h (0 < h ≤ ∆) ∧ 〈v, R〉 h−→

C
〈v, S〉 ∧ q(S) ∧

∀S ′, h′ ((0 ≤ h′ < h)∧〈v, R〉 h′
−→
C
〈u, S ′〉) ⇒ (p(S ′)∨q(S ′))}

)
2

Remark 4.6 The last term in the formula, p(S ′) ∨ q(S ′), can be replaced
with just p(S ′) for evaluating ∃U over semi-algebraic hybrid systems. Also,
the upperbound ∆ on h should be omitted if there is no error in the Flow v

expression.

Theorem 4.7 [8] The one-step-until operator p . q is decidable for semi-
algebraic hybrid systems if p and q are also semi-algebraic.

Corollary 4.8 For semi-algebraic hybrid systems:

14

Mysore and Mishra

(i) ∃U , ∃F , ∃G and their subscripted versions ∃U≤z, ∃F≤z and ∃G≤z are
semi-decidable.

(ii) The negations of ∀U , ∀F , ∀G and their subscripted versions ∀U≤z, ∀F≤z

and ∀G≤z are semi-decidable.

(iii) All subscripted operators become decidable in the absence of zeno paths.

4.2 Details of Proofs

Proof Of Theorem 2.1 Each state s (source) needs to be split into two
states sd and sd̄ depending on whether or not the guard of the transition
to each d (destination) can ever be satisfied. Since real quantifier elimina-
tion is decidable [10,5], these partitions can be computed thus: Inv sd

(X) ≡
∃h,X ′ 〈s, X〉 h−→

C
〈s, X ′〉∧Guard s,d(X

′) and Inv sd̄
(X) ≡ Inv s(X)∧¬Inv sd

(X).2

Proof Of Theorem 2.2 Consider two sets S1 and S2 between which onto
linear maps exist. Maps of the form x′ = Σaixi + a0 correspond to a rotation,
stretch and shift of the coordinate axes. In other words, S2 has to be a
stretched, rotated and shifted image of S1 for such an onto map to exist.
There are 2sl maps possible because of the sl axes of linear symmetry, on each
of the sr axes of rotational symmetry. Hence the total number of coupled
linear onto maps is sr2

sl . 2

Proof of Corollary 2.3 Let m(= sr2
sl) be the number of possible onto

maps between S1 and S2. Let x1 ∈ S1 map to one of y1, · · · , ym ∈ S2. Let
y1 map to one of x1, · · · , xm ∈ S1 (x1 has to appear because the inverse of a
linear map is linear). Suppose x2 maps to ym+1. Since linear maps are closed
under composition and retain their ontoness property, by following the linear
maps from x1 → y1≤i≤m → x1≤i≤m → ym+1, we get a new linear map that
takes x1 to ym+1. However, we know from symmetry arguments that only m
linear maps can exist. This contradiction proves that no matter how many
times we compose the two given onto linear maps, we remain within the set
of 2n points (for example, rectangles have 8 possible linear onto maps while
cubes have 24). Extending this argument to a cycle of n states, each point
can have only one of m different successors in each of the n states. Hence, the
length of the biggest cycle is nm. 2

Proof of Theorem 2.4 The continuous evolution can be treated as a
linear map from the initial value to the final value that first satisfies the guard.
Further, time does not appear in the equation as in deterministic systems, an
initial value corresponds to a unique final value. No restriction on the guard is
necessary as we assume there is only 1 successor to each discrete state. Thus
a cycle of n states corresponds to a cycle of 2n linear 1-to-1 maps with only
the values before and after a reset sufficing to capture the dynamics. If m
is the maximum number of possible onto maps between any two consecutive
sets, the number of unique successors is ≤ 2nm. Since x0 has a finite number

15

Mysore and Mishra

of successors, if the target xf is not reached before the system begins to cycle,
we conclude exact unreachability. If xf is eventually reached, then it is indeed
exactly reachable. 2

Proof of Theorem 2.5 Let the sequence be X0, X1 = f(X0), X ′
0 =

g(X1) = g(f(X0)), · · · . Since f and g are monotonic, X will continue to move
in the same direction. The process can continue ad infinitum if X approaches
a fixed point (g(f(X)) = X). The other mathematical alternative is that
it approaches a limit cycle (f(g(f(g(..(X)..)))) = X). Monotonicty ensures
progress while ontoness ensures finiteness of the number of iterations required
to reach the neighborhood of a fixed point or a limit cycle. 2

Proof of Theorem 2.6 Just as in the linear case, the continuous flow can
also be thought of as a monotonic function from the initial value (from a reset
that brought the system to this state) to the final value (when a guard is first
satisfied). Thus any cycle of n discrete states corresponds to a cycle of 2n
monotonic maps (n flow-maps and n reset maps). Further, from the previous
theorem, we know that iterative evolution along such a cycle of exactly onto
maps has to approach a fixed point or a limit cycle. We can stop iterating
when

∧
(|Xi − X ′

i| < εi, where X is the d-dimensional value of the system
variables, εi is the desired accuracy in the i-th dimension and X ′ is the value
after one cycle (reached the neighborhood of a fixed point) or after 2, 3, · · · , d
cycles (reached the neighborhood of a limit cycle) . The monotonic resets
guarantee that this will happen in a finite number of steps and that once this
happens, the system cannot escape out of it. 2

16

	Introduction
	Approximate Methods
	Bisimulation Partitioning
	Approximating as a Polytope
	Rectangular Grid Abstraction
	Time Discretization

	Discussion
	References
	Appendix
	Semi-Algebraic Hybrid Automata: Definitions and Decidability
	Details of Proofs

