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COMPUTATIONAL
REAL ALGEBRAIC GEOMETRY

Bhubaneswar Mishra

INTRODUCTION

Computational real algebraic geometry studies various algorithmic questions deal-
ing with the real solutions of a system of equalities, inequalities, and inequations
of polynomials over the real numbers. This emerging field is largely motivated by
the power and elegance with which it solves a broad and general class of problems
arising in robotics, vision, computer-aided design, geometric theorem proving, etc.
The algorithmic problems that arise in this context are formulated as decision
problems for the first-order theory of reals and the related problems of quantifier
elimination (Section 33.1). The associated geometric structures are then examined
via an exploration of the semialgebraic sets (Section 33.2). Algorithmic problems
for semialgebraic sets are considered next. In particular, Section 33.3 discusses real
algebraic numbers and their representation, relying on such classical theorems as
Sturm’s theorem and Thom’s Lemma (Section 33.3). This discussion is followed
by a description of semialgebraic sets using the concept of cylindrical algebraic de-
composition (CAD) in both one and higher dimensions (Sections 33.4 and 33.5).
This leads to brief descriptions of two algorithmic approaches for the decision and
quantifier elimination problems (Section 33.6): namely, Collins’s algorithm based
on CAD, and some more recent approaches based on critical points techniques
and on reducing the multivariate problem to easier univariate problems. These
new approaches rely on the work of several groups of researchers: Grigor’ev and
Vorobjov [Gri88, GV88], Canny [Can88a, Can90], Heintz et al. [HRS90], Rene-
gar [Ren91, Ren92a, Ren92b, Ren92c|, and Basu et al. [BPR96]. A few representa-
tive applications of computational algebra conclude this chapter (Section 33.7).

33.1

FIRST-ORDER THEORY OF REALS

The decision problem for the first-order theory of reals is to determine if a Tarski
sentence in the first-order theory of reals is true or false. The quantifier elimination
problem is to determine if there is a logically equivalent quantifier-free formula for
an arbitrary Tarski formula in the first-order theory of reals. As a result of Tarski’s
work, we have the following theorem.

THEOREM 33.1.1 [Tar51]

m  Let ¥ be a Tarski sentence. There is an effective decision procedure for .
m Let ¥ be a Tarski formula. There is a quantifier-free formula ¢ logically equiv-
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alent to ¥. If ¥ involves only polynomials with rational coefficients, then so
does the sentence ¢.

Tarski formulas are formulas in a first-order language (defined by Tarski in
1930 [Tar51]) constructed from equalities, inequalities, and inequations of poly-
nomials over the reals. Such formulas may be constructed by introducing logical
connectives and universal and existential quantifiers to the atomic formulas. Tarski
sentences are Tarski formulas in which all variables are bound by quantification.

GLOSSARY
Term: A constant, variable, or term combining two terms by an arithmetic op-
erator: {4+, —, -, /}. A constant is a real number. A variable assumes a real
number as its value. A term contains finitely many such algebraic variables:
L1yL2y---yLp-

Atomic formula: A formula comparing two terms by a binary relational oper-
ator: {=, #, >, <, >, <}.

Quantifier-free formula: An atomic formula, a negation of a quantifier-free
formula given by the unary Boolean connective {—}, or a formula combining two
quantifier-free formulas by a binary Boolean connective: {=, A, V}. Ezample:
The formula (z2 — 2 = 0) A (z > 0) defines the (real algebraic) number ++/2.

Tarski formula: If ¢(y1, -.., ¥,) is a quantifier-free formula, then it is also a
Tarski formula. All the variables y; are free in ¢. Let ®(y1, -- -, ¥) and ¥(zq,
..., Zs) be two Tarski formulas (with free variables y; and z;, respectively); then
a formula combining & and ¥ by a Boolean connective is a Tarski formula with
free variables {y;} U {z;}. Lastly, if Q stands for a quantifier (either universal V¥
or existential 3) and if ®(y1,...,yr,x) is a Tarski formula (with free variables x
and y), then

(Q SE) [‘I’(yl,---,yr,x)]
is a Tarski formula with only the y’s as free variables. The variable z is bound
in (Q z)[®].
Tarski sentence: A Tarski formula with no free variable.
Ezample: (3z) (Vy) [y?> —x < 0]. This Tarski sentence is false.
Prenex Tarski formula: A Tarski formula of the form

(le) <Qm2) (an) [¢(y1,y2,...,yr,ml,...,azn) ,

where ¢ is quantifier-free. The string of quantifiers (Q 1) (Q z2) --- (Q ) is
called the prefiz and ¢ is called the matriz.

Prenezx form of a Tarski formula, U: A prenex Tarski formula logically equiv-
alent to ¥. For every Tarski formula, one can find its prenex form using a simple
procedure that works in four steps: (1) eliminate redundant quantifiers; (2) re-
name variables so that the same variable does not occur as free and bound; (3)
move negations inward; and finally, (4) push quantifiers to the left.

Eztension of a Tarski formula, ®(y1,...,y,) with free variables {y1,...,yr}:
The set of all ((1,...,¢{.) € R" such that

®((1,.--,¢) = True.
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THE DECISION PROBLEM

The general decision problem for the first-order theory of reals is to determine
if a given Tarski sentence is true or false. A particularly interesting special case
of the problem is when all the quantifiers are existential. We refer to the decision
problem in this case as the existential problem for the first-order theory of reals.

The general decision problem was shown to be decidable by Tarski [Tar51].
However, the complexity of Tarski’s original algorithm could only be given by a
very rapidly-growing function of the input size (e.g., a function that could not be
expressed as a bounded tower of exponents of the input size). The first algorithm
with substantial improvement over Tarski’s algorithm was due to Collins [Col75];
it has a doubly-exponential time complexity in the number of variables appearing
in the sentence. Further improvements have been made by a number of researchers
(Grigor’ev-Vorobjov [Gri88, GV88], Canny [Can88b, Can93], Heintz et al. [HRS89,
HRS90], Renegar [Ren92a,b,c]) and most recently by Basu et al. [BPR9S].

In the following, we assume that our Tarski sentence is presented in its prenex
form:

(le[ll) (QQXP]) (wa[w]) W(X[l],___,X[w])],

where the Q;’s form a sequence of alternating quantifiers (i.e., V or 3, with every
pair of consecutive quantifiers distinct), with x a partition of the variables

w
U xU = {1, 29,...,2,} 2%, and [xlI] =n,,
=0

and where 1) is a quantifier-free formula with atomic predicates consisting of poly-
nomial equalities and inequalities of the form

gi (XD],...,XM) 20, i=1,...,m.

Here, g; is a multivariate polynomial (over R or Q, as the case may be) of total
degree bounded by d. There are a total of m such polynomials. The special case
w = 1 reduces the problem to that of the existential problem for the first-order
theory of reals.

If the polynomials of the basic equalities, inequalities, inequations, etc., are
over the rationals, then we assume that their coefficients can be stored with at
most L bits. Thus the arithmetic complexity can be described in terms of n, n;, w,
m, and d, and the bit complexity will involve L as well.

Table 33.1.1 highlights a representative set of known bit-complexity results for
the decision problem.

QUANTIFIER ELIMINATION PROBLEM
Formally, given a Tarski formula of the form,
T(x0) = (Q;x1) (Qox) -.. (QuxINy [p(x[¥, x1 ... xl“h)],

where 1 is a quantifier-free formula, the quantifier elimination problem is to
construct another quantifier-free formula, ¢(x[%), such that ¢(x[) holds if and
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TABLE 33.1.1 Selected time complexity results.

GENERAL OR
EXISTENTIAL TIME COMPLEXITY SOURCE
General L3(md)2° ") [Col75]
Existential LOM) (md)0 (™) [GV92]
dw—2
General LOM) (md) CIOPEN) [Grig88]
Existential L1+o() (m)(n+1) (g)0(n?) [Can88b, Can93)]
General (Llog Lloglog L) (md)(zo(m) Mn; [Ren92a,b,c]
Existential (L 1og Lloglog LYm (m/n)" (d)°(™) [BPRY6]
General (L log L1loglog L) (m)™(mi+1)(q)TO(n:) [BPRY6]

only if ®(x[%]) holds. Such a quantifier-free formula takes the form

o) = \/ A\ (16 Z0),

i=1j=1

where f; ; € R[x%!] is a multivariate polynomial with real coefficients.
Significantly improved bounds were given by Basu et. al. [BPR96] and are
summarized as follows:

1 < (mlle+ngllowm)
Ji < (m)Hi>0(ni+1)(d)Hi>0O(ni).

The total degrees of the polynomials f; ; (x[) are bounded by
(@ Li>0 0,

Nonetheless, comparing the above bounds to the bounds obtained in semilinear
geometry, it appears that the “combinatorial part” of the complexity of both the

formula and the computation could be improved to (m)Hi>0(""+1). As a conse-
quence of some recent results of Basu [Bas99], the best bound for the size of the
equivalent quantifier-free formula is now

L J; < (m)Hi>o("i+1)(d)”6 H,->0 O(ni)’

where ny = min(no, 7 [];54(ni+1)) and 7 is a bound on the number of free-variables
occurring in any polynomial in the original Tarski formula. The total degrees of
the polynomials f; ;(x[°!) are still bounded by

(@) 1000,

Furthermore, the algorithmic complexity of Basu’s new procedure involves only
(m)Hi>0(m+1) (@)™ 12000 arithmetic operations.

Lower bound results for the quantifier elimination problem can be found in
Davenport and Heintz [DH88]. They showed that for every n, there exists a Tarski
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formula ¥,, with n quantifiers, of length O(n), and of constant degree, such that
any quantifier-free formula ,, logically equivalent to ¥,, must involve polynomials
of

degree = 22" and length = 22"
Note that in the simplest possible case (i.e., d = 2 and n; = 2), upper and lower
bounds are doubly-exponential and match well. This result, however, does not
imply a similar lower bound for the decision problems.

33.2 SEMIALGEBRAIC SETS

Every quantifier-free formula composed of polynomial inequalities and Boolean con-
nectives defines a semialgebraic set. Thus, these semialgebraic sets play an impor-
tant role in real algebraic geometry.

GLOSSARY

Semialgebraic set: A subset S C R™ defined by a set-theoretic expression in-
volving a system of polynomial inequalities

I J;

s=U ﬂ{(&,...,ﬁn) eR™ | sgn(fi;(&r,---,6n)) = Sw})

i=1j=1
where the f; ;’s are multivariate polynomials over R and the s;;’s are corre-
sponding sets of signs in {—1, 0, +1}.
Real algebraic set: A subset Z C R™ defined by a system of algebraic equations.

Z = {(51776”) eR" | fl(fl;---:gn) == fm(glaagn) 20}7

where the f;’s are multivariate polynomials over R.

Semialgebraic map: A map §:S — T, from a semialgebraic set S C R™ to a
semialgebraic set T C R", such that its graph {(s,0(s)) € R™*" : s € S} is a
semialgebraic set in R™*". Note that projection, being linear, is a semialgebraic
map.

TARSKI-SEIDENBERG THEOREM

Equivalently, semialgebraic sets can be defined as

S={<£1,...7§n)€Rn | ¢(§1,-..,§n)=True},

where ¥ (z1, ..., ) is a quantifier-free formula involving n algebraic variables.
As a direct corollary of Tarski’s theorem on quantifier elimination, we see that
extensions of Tarski formulas are also semialgebraic sets.
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While real algebraic sets are quite interesting and would be natural objects of
study in this context, they are not closed under projection onto a subspace. Hence
they tend to be unwieldy. However, semialgebraic sets are closed under projection.
This follows from a more general result: the famous Tarski-Seidenberg theo-
remn which is an immediate consequence of quantifier elimination, since images are
described by formulas involving only existential quantifiers.

THEOREM 33.2.1 Tarski-Seidenberg Theorem [Sei74]

Let S be a semialgebraic set in R™, and let 8 : R™ — R™ be a semialgebraic map.
Then 0(S) is semialgebraic in R™.

In fact, semialgebraic sets can be defined simply as the smallest class of subsets
of R" containing real algebraic sets and closed under projection.

GLOSSARY

Connected component of a semialgebraic set: A maximal connected subset
of a semialgebraic set. Semialgebraic sets have a finite number of connected
components and these are also semialgebraic.

Semialgebraic decomposition of a semialgebraic set S: A finite collection
K of disjoint connected semialgebraic subsets of S whose union is S. The col-
lection of connected components of a semialgebraic set forms a semialgebraic
decomposition. Thus, every semialgebraic set admits a semialgebraic decompo-
sition.

Set of sample points for S: A finite number of points meeting every nonempty
connected component of S.

Sign assignment: A vector of sign values of a set of polynomials at a point p.
More formally, let F be a set of real multivariate polynomials in n variables.
Any point p = (&4, ..., &) € R™ has a sign assignment with respect to F as
follows:

senz(p) = (sen(f(&1, -, 6)) | £ € F).

A sign assignment induces an equivalence relation: Given two points p, ¢ € R?,
we say
p ~r ¢, ifandonlyif sgnz(p) =sgnz(q).

Sign class of F: An equivalence class in the partition of R™ defined by the
equivalence relation ~ .

Semialgebraic decomposition for F: A finite collection of disjoint connected
semialgebraic subsets {C;} such that each C; is contained in some semialgebraic
sign class of F. That is, the sign of each f € F is tnwvariant in each Cj.
The collection of connected components of the sign-invariant sets for F forms a
semialgebraic decomposition for F.

Cell decomposition for F: A semialgebraic decomposition for F into finitely
many disjoint semialgebraic subsets {C;} called cells, such that each cell C; is
homeomorphic to R*®, 0 < §(i) < n. (i) is called the dimension of the cell
C;, and C; is called a 6(2)-cell.

Cellular decomposition for F: A cell decomposition for F such that the closure
C; of each cell C} is a union of cells C;: C; = U;C;.
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CONNECTED COMPONENTS OF SEMIALGEBRAIC SETS

A consequence of the Milnor-Thom result [Mil64, Tho65] gives a bound for the
number (the zeroth Betti number, By(S)) of connected components of a basic
semialgebraic set S: the bound is polynomial in the number m and degree d of the
polynomials defining S and singly-exponential in the number of variables, n. The
current best bound for By(S) is due to Pollack and Roy [PR93]: By(S) = O(md)™.
Most recent work of Basu ([Bas01], Theorem 4) provides even more precise in-
formation about the topological complexity of basic semialgebraic sets through the
higher-order Betti numbers. While By(S) measures the number of connected
components of the semialgebraic set S, intuitively, B;(S) (¢ > 0) measures the
number of i-dimensional holes in S. The following bound on B; is due to Basu:

THEOREM 33.2.2
Let S CR™ be the set defined by the conjunction of m inequalities,

f,'(.’ll'l,...,.’L'n)ZO, fiER[xl,...,wn],
degree(f;) <d, 1<i<m,

contained in a variety V(Q) of real dimension n', and
degree(Q) < d.

Then, o
B;(S) <m™ *O(d)".

A key problem in computational real algebraic geometry is to compute at least
one point in each connected component of each nonempty sign assignment. An
elegant solution to this problem is obtained by Collins’s cylindrical algebraic
decomposition (CAD), which is, in fact, a cell decomposition; see Section 33.5
below. A related question is to provide a finitary representation for these sample
points, e.g., each coordinate of the sample point may be a real algebraic number.

Currently, the best algorithm computing a finite set of points of bounded size
that intersects every connected component of each nonempty sign condition is due
to Basu et al. [BPR98] and has an arithmetic time-complexity of m(m/n)*d°™.

33.3

REAL ALGEBRAIC NUMBERS

Real algebraic numbers are real roots of rational univariate polynomials and pro-
vide finitary representation for some of the basic objects (e.g., sample points).
Furthermore, we note that (1) real algebraic numbers have effective finitary repre-
sentation, (2) field operations and polynomial evaluation on real algebraic numbers
are efficiently (polynomially) computable, and (3) conversions among various repre-
sentations of real algebraic numbers are efficiently (polynomially) computable. The
key machinery used in describing and manipulating real algebraic numbers relies
upon techniques based on the Sturm-Sylvester theorem, Thom’s lemma, resultant
construction, and various bounds for real root separation.
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GLOSSARY

Real algebraic number: A real root o of a univariate polynomial p(t) € Z[t]
with integer coefficients.

Polynomsial for a: A univariate polynomial p such that « is a real root of p.

Minimal polynomial of ac: A univariate polynomial p of minimal degree defin-
ing a as above.

Degree of a nonzero real algebraic number: The degree of its minimal poly-
nomial. By convention, the degree of the 0 polynomial is —oo.

OPERATIONS ON REAL ALGEBRAIC NUMBERS

Note that if @ and 8 are real algebraic numbers, then so are —a, a~! (assuming
a #0), a+ 3, and a-B. These facts can be constructively proved using the algebraic
properties of a resultant construction.

1

THEOREM 33.3.1
The real algebraic numbers form a field.

A real algebraic number a can be represented by a polynomial for o and a
component that identifies the root. There are essentially three types of information
that may be used for this identification: order (where we assume the real roots are
indexed from left to right), sign (by a vector of signs), or interval (an interval that
contains exactly one root).

A classical technique due to Sturm and Sylvester shows how to compute the
number of real roots of a univariate polynomial p(t) in an interval [a, b]. One
important use of this classical theorem is to compute a sequence of relatively small
(nonoverlapping) intervals that isolate the real roots of p.

GLOSSARY
Sturm sequence of a pair of polynomials p(t) and ¢(t) € R[t]:

STURM(p, 0) = (7o(t), 71(0), .-, 7a(8)),

where

Fi—1(t) - Gs(t) 7i(t) — Py (1), deg(7iy1) < deg(7;)

Number of variations in sign of a finite sequence ¢ of real numbers: Number
of times the entries change sign when scanned sequentially from left to right;
denoted Var(c).
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For a vector of polynomials P = (p;(t), ..., pm(t)) and a real number a:
Var,(P) = Var(P(a)) = Var({pi(a),...,pm(a))).

Formal derivative: p'(t) = D(p(t)), where D:R[t] — R[t] is the (formal) deriva-
tive map, taking t" to nt"~! and a € R (a constant) to 0.

STURM-SYLVESTER THEOREM

THEOREM 33.3.2 Sturm-Sylvester Theorem [Stu35, Syl53]

Let p(t) and q(t) € R[t] be two real univariate polynomials. Then, for any interval
[a,b] C RU {+o0} (where a < b):

b

Var [F] Z '

:cp[q>0] —cp[q<0] ,

a a

where

P £ STURM(p,p'q),

Var [ﬁ]b 2 Vary,(P) — Vary(P),

a

and cp[P]Z counts the number of distinct real roots (without counting multiplicity)
of p in the interval (a,b) at which the predicate P holds.

Note that if we take S, = STURM(p,p') (i.e., ¢ = 1) then

Var[Sp]b = cp[True]Z—cp[False]b

a a

= 4 of distinct real roots of p in (a, b).

COROLLARY 33.3.3

Let p(t) and q(t) be two polynomials with coefficients in a real closed field K. For
any interval [a,b] as before, we have

11 1 K [‘1 :O]Z - - Var[m(p,p’)]i |
01 -1 CP[PO]Z B Var[m(p,plq)}z
011 | ol <°]Z I Var[m(p’plqz)]z -

These identities as well as some related algorithmic results (the so-called BKR-
algorithm) are based on results of Ben-Or et al. [BKR86] and their extensions by
others. Using this identity, it is a fairly simple matter to decide the sign conditions
of a single univariate polynomial g at the roots of a univariate polynomial p. It
is possible to generalize this idea to decide the sign conditions of a sequence of
univariate polynomials go(t), ¢1(t), ..., ¢n(t) at the roots of a single polynomial
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p(t) and hence give an efficient (both sequential and parallel) algorithm for the
decision problem for Tarski sentences involving univariate polynomials. Further
applications in the context of general decision problems are described below.

GLOSSARY

Fourier sequence of a real univariate polynomial p(t) of degree n:
FOURIER(p) = (O () = p(t), (1) =P'(®), ... 6™ (®) ),

where p(9) is the ith derivative of p with respect to t.

Sign-invariant region of R determined by a sign sequence 5 with respect to
FOURIER(p): The region R(5) with the property that £ € R(3) if and only if
sgn(p® (€)) = s.

THOM’S LEMMA

LEMMA 33.3.4 Thom’s Lemma [Tho65]

Every nonempty sign-invariant region R(3) (determined by a sign sequence 3 with
respect to FOURIER(p)) must be connected, i.e., consists of a single interval.

Let sgn,(FOURIER(p)) be the sign sequence obtained by evaluating the polyno-
mials of FOURIER(p) at £&. Then as an immediate corollary of Thom’s lemma, we
have:

COROLLARY 33.3.5

Let € and ¢ be two real Toots of a real univariate polynomial p(t) of positive degree
n > 0. Then £ =, if

sgng (FOURIER(p')) = sgn, (FOURIER(p')).

REPRESENTATION OF REAL ALGEBRAIC NUMBERS

Let p(t) be a univariate polynomial of degree d with integer coefficients. Assume
that the distinct real roots of p(t) have been enumerated as follows:

ap <ax<---<oj1 < o =a <jp1 <--- <o,

where | < d = deg(p). Then we can represent any of its roots uniquely and in a
finitary manner.

GLOSSARY

Order representation of an algebraic number: A pair consisting of its poly-
nomial p and its index j in the monotone sequence enumerating the real roots

of p: (@), = (p, ). Example: (/2 +V/3), = (z* — 1022 + 1,4).
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Sign representation of an algebraic number: A pair consisting of its polyno-
mial p and a sign sequence 3 representing the signs of its Fourier sequence eval-
uated at the root: (@), = (p,5 = sgn, (FOURIER(p'))). Ezample: (/2 +/3), =
(z* — 1022 + 1, (+1,+1,+1)). The validity of this representation follows easily
from Thom’s Lemma.

Interval representation of an algebraic number: A triple consisting of its

polynomial p and the two endpoints of an isolating interval, (I,7) (I,r € Q, Il <),
containing only a: {(a); = (p,1,7). Ezample: (v/2++/3); = (z*—1022+1,3,7/2).

33.4

UNIVARIATE DECOMPOSITION

In the one-dimensional case, a semialgebraic set is the union of finitely many in-
tervals whose endpoints are real algebraic numbers. For instance, given a set of
univariate defining polynomials:

F={f@ eQal | i=1,...,m},

we may enumerate all the real roots of the f;’s (i.e., the real roots of the single
polynomial F =[] f;) as

—0 < & <& < <o <& < 1 < s < & < oo,

and consider the following finite set K of elementary intervals defined by these roots:

[—00761), [§17€1]7 (61752)7 sy
(Ez'—l; Ez); [&; Ez]: (gi:é.i-i-l)a L) [gs; gs]: (687 +OO].
Note that K is, in fact, a cellular decomposition for F. Any semialgebraic set S

defined by F is simply the union of a subset of elementary intervals in K. Further-
more, for each interval C' € K, we can compute a sample point a¢ as follows:

§1 - 17 if C'= [—00761),
ac = §i7 ifC = [gzaé.l]a

(& +&y1)/2, ifC = (&, &p);

&+ 1, if C = (&, +o0].

Now, given a first-order formula involving a single variable, its validity can be
checked by evaluating the associated univariate polynomials at the sample points.
Using the algorithms for representing and manipulating real algebraic numbers, we
see that the bit complexity of the decision algorithm is bounded by (Lmd)°(). The
resulting cellular decomposition has no more than 2md + 1 cells.

Using variants of the theorem due to Ben-Or et al. [BKR86], Thom’s lemma,
and some results on parallel computations in linear algebra, one can show that
this univariate decision problem is “well-parallelizable,” i.e., the problem is solv-
able by uniform circuits of bounded depth and polynomially many “gates” (simple
Processors).
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33.5 MULTIVARIATE DECOMPOSITION

A straightforward generalization of the standard univariate decomposition to higher
dimensions is provided by Collins’s cylindrical algebraic decomposition [Col75]. In
order to represent a semialgebraic set S C R*, we may assume recursively that we
can construct a cell decomposition of its projection 7(S) C R*~! (also a semialge-
braic set), and then decompose S as a union of the sectors and sections in the
cylinders above each cell of the projection, w(S). This also leads to a cell decom-
position of S. One can further assign an algebraic sample point in each cell of S
recursively in a straightforward manner.

If F is a set of polynomials defining the semialgebraic set S C R™, then at
no additional cost, we may in fact compute a cell decomposition for F using the
procedure described above. Such a decomposition leads to a cylindrical algebraic
decomposition for F.

GLOSSARY

Cylindrical algebraic decomposition (CAD): A recursively defined cell de-
composition of R” for F. The decomposition is a cellular decomposition if the
set of defining polynomials F satisfies certain nondegeneracy conditions.

In the recursive definition, the cells of n-dimensional CAD are constructed from
an (n—1)-dimensional CAD: Every (n—1)-dimensional CAD cell C' has the prop-
erty that the distinct real roots of F over C' vary continuously as a function of
the points of C".

Moreover, the following quantities remain invariant over a (n—1)-dimensional
cell: (1) the total number of complex roots of each polynomial of F; (2) the
number of distinct complex roots of each polynomial of F; and (3) the total
number of common complex roots of every distinct pair of polynomials of F.

These conditions can be expressed by a set ®(F) of at most O(md)? polynomials
in n — 1 variables, obtained by considering principal subresultant coefficients
(PSC’s). Thus, they correspond roughly to resultants and discriminants, and
ensure that the polynomials of F do not intersect or “fold” in a cylinder over
an (n—1)-dimensional cell. The polynomials in ®(F) are each of degree no more
than d2.

More formally, an F-sign-invariant cylindrical algebraic decomposition of R™ is:

m BASE CASE: n = 1. A univariate cellular decomposition of R! as in the
previous section.

s INDUCTIVE CASE: n > 1. Let K’ be a ®(F)-sign-invariant CAD of R*~!.
For each cell C' € K', define an auziliary polynomial gc: (x1,. .., Tn_1,Ty)
as the product of those polynomials of F that do not vanish over the (n—1)-
dimensional cell, C’. The real roots of the auxiliary polynomial g;, over
C' give rise to a finite number (perhaps zero) of semialgebraic continuous
functions, which partition the cylinder C' x (R U {£o0}) into finitely many
F-sign-invariant “slices.” The auxiliary polynomials are of degree no larger
than md.
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FIGURE 33.5.1
Sections and sectors “slicing” the cylinder over a lower dimensional
cell.

Assume that the polynomial ger(p', z,) has I distinct real roots for each
p € C': ri(p),r2(p'),...,m(p"), each r; being a continuous function of p'.
The following sectors and sections are cylindrical over C' (see Figure 33.5.1):

C; = {0za) | ¥ €C" A zp€l-00,n())},
. = {(p' zp) | PP EC ANape[ri(p),ri(p )]}
¢ = {Wma) | P E€C A ma e ), m)},
o = {,20) | ¥ €C" A 20 € (), +o0]}.

The n-dimensional CAD is thus the union of all the sections and sectors com-
puted over the cells of the (n—1)-dimensional CAD.

A straightforward recursive algorithm to compute a CAD follows from the
above description.

CYLINDRICAL ALGEBRAIC DECOMPOSITION

If we assume that the dimension n is a fixed constant, then the preceding cylindrical
algebraic decomposition algorithm is polynomial in m = |F| and d = deg(F).
However, the algorithm can be easily seen to be doubly-exponential in n as the
number of polynomials produced at the lowest dimension is (md)Qo("), each of
degree no larger than @2°™ . The number of cells produced by the algorithm is also
doubly-exponential. This bound can be seen to be tight by a result due to Davenport
and Heintz [DH88], and is related to their lower bound for the quantifier elimination
problem (Section 33.1).

CONSTRUCTING SAMPLE POINTS

Cylindrical algebraic decomposition provides a sample point in every sign-invariant
connected component for F. However, the total number of sample points gener-
ated is doubly-exponential, while the number of connected components of all sign
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conditions is only singly-exponential. In order to avoid this high complexity (both
algebraic and combinatorial) of a CAD, many recent techniques for constructing
sample points use a single projection to a line instead of a sequence of cascading pro-
jections. For instance, if one chooses a height function carefully then one can easily
enumerate its critical points and then associate at least two such critical points to
every connected component of the semialgebraic set. From these critical points,
it will be possible to create at least one sample point per connected component.
Using Bézout’s bound, it is seen that only a singly-exponential number of sample
points is created, thus improving the complexity of the underlying algorithms.

However, in order to arrive at the preceding conclusion using critical points,
one requires certain genericity conditions that can be achieved by symbolically
deforming the underlying semialgebraic sets. These infinitesimal deformations can
be handled by extending the underlying field to a field of Puiseuz series. Many of
the significant complexity improvements based on these techniques have been due
to a careful choice of the symbolic perturbation schemes which results in keeping
the number of perturbation variables small.

33.6 ALGORITHMIC APPROACHES

COLLINS’S APPROACH

The decision problem for the first-order theory of reals can be solved easily using
a cylindrical algebraic decomposition. First consider the existential problem for a
sentence with only existential quantifiers,

(3 %) [ (D).
This sentence is true if and only if there is a ¢ € C, a sample point in the cell C,
¢ = % =(,...,0,) € R,

such that v(al) is true. Thus we see that the decision problem for the purely ex-
istential sentence can be solved by simply evaluating the matrix ¢ over the finitely
many sample points in the associated CAD. This also implies that the existential
quantifiers could be replaced by finitely many disjunctions ranging over all the sam-
ple points. Note that the same arguments hold for any semialgebraic decomposition
with at least one sample point per sign-invariant connected component.

In the general case, one can describe the decision procedure by means of a
search process that proceeds only on the coordinates of the sample points in the
cylindrical algebraic decomposition. This follows because a sample point in a cell
acts as a representative for any point in the cell as far as the sign conditions are
concerned.

Consider a Tarski sentence

(Qix) (Qox®)) -+ (Quxt)) [y(x",...,xT,

with F the set of polynomials appearing in the matrix 1. Let K be a cylindrical
algebraic decomposition of R™ for F. Since the cylindrical algebraic decomposition
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produces a sequence of decompositions:
Kiof R, Ky of R%, ..., K, of R*,

such that the each cell C;_; ; of K; is cylindrical over some cell C;_; of K;_;, the
search progresses by first finding cells C; of Ky such that

(Q2x3) -+ (Qnan) [Y(ac,, T2, ..., o)) = True.

For each C}, the search continues over cells C12 of K2 cylindrical over C; such that

(QSmfi) Tt (ann) [¢(a017a0127m37 LR 7'7711)] = True7

etc. Finally, at the bottom level the truth properties of the matrix v are determined
by evaluating at all the coordinates of the sample points.

This produces a tree structure, where each node at the (¢—1)th level corresponds
to a cell C;_1 € K;_; and its children correspond to the cells C;_;,; € K; that
are cylindrical over C;_;. The leaves of the tree correspond to the cells of the
final decomposition K = I,,. Because we only have finitely many sample points,
the universal quantifiers can be replaced by finitely many conjunctions and the
existential quantifiers by disjunctions. Thus, we label every node at the (i—1)th
level “AND” (respectively, “OR”) if Q; is a universal quantifier V (respectively, 3)
to produce a so-called AND-OR tree. The truth of the Tarski sentence is thus
determined by simply evaluating this AND-OR tree.

A quantifier elimination algorithm can be devised by a similar reasoning and a
slight modification of the CAD algorithm described above.

NEW APPROACHES USING CRITICAL POINTS

In order to avoid the cascading projections inherent in Collins’s algorithm, the new
approaches employ a single projection to a one-dimensional set by using critical
points in a manner described above. As before, we start with a sentence with only
existential quantifiers,

(3 %) [ ()],

Let F ={f1, ..., fm} be the set of polynomials appearing in the matrix ).

Under certain genericity conditions, it is possible to produce a set of sample
points such that every sign-invariant connected component of the decomposition
induced by F contains at least one such point. Furthermore, these sample points
are described by a set of univariate polynomial sequences, where each sequence is
of the form

P(t),QO(t),Ch(t); s 5qn(t)a

a(@) - dn(e) ). Here a is a root of p. Now the decision
go(a) qo(a)

problem for the existential theory can be solved by deciding the sign conditions of
the sequence of univariate polynomials

and encodes a sample point {

fl(ql/q07"'aqn/q0)7 ey fm(ql/q05"'aqn/q0)a

at the roots of the univariate polynomial p(¢). Note that we have now reduced
a multivariate problem to a univariate problem and can solve this by the BKR
approach.
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In order to keep the complexity reasonably small, one needs to ensure that the
number of such sequences is small and that these polynomials are of low degree.
Assuming that the polynomials in F are in general position, one can achieve this
and compute the polynomials p and ¢; (for example, by the u-resultant method in
Renegar’s algorithm).

If the genericity conditions are violated, one needs to symbolically deform
the polynomials and carry out the computations on these polynomials with ad-
ditional perturbation parameters. The Basu-Pollack-Roy (BPR) algorithm differs
from Renegar’s algorithm primarily in the manner in which these perturbations are
made so that their effect on the algorithmic complexity is controlled.

Next consider an existential Tarski formula of the form

3 x) [y, x ),

where y represents the free variables. If we carry out the same computation as be-
fore over the ambient field R(y), we get a set of parameterized univariate polynomial
sequences, each of the form

p(y7t)7q0(y7t)7(I1(y7t)7 s )qn(y7t)

For a fixed value of y, say ¢, the polynomials

p(gat)aqO(gat)Jql(gat)a . 7qn(gat)

can then be used as before to decide the truth or falsity of the sentence

3x) [ (g, x)].

Also, one may observe that the parameter space y can be partitioned into semial-
gebraic sets so that all the necessary information can be obtained by computing at
sample values g.

This process can be extended to w blocks of quantifiers, by replacing each block
of variables by a finite number of cases, each involving only one new variable; the
last step uses a CAD method for these w-many variables.

33.7

APPLICATIONS

Computational real algebraic geometry finds applications in robotics, vision, com-
puter-aided design, geometric theorem proving, and other fields. Important prob-
lems in robotics include the kinematic modeling, the inverse kinematic solution, the
computation of the workspace and workspace singularities, and the planning of an
obstacle-avoiding motion of a robot in a cluttered environment—all arising from
the algebro-geometric nature of robot kinematics. In solid modeling, graphics, and
vision, almost all applications involve the description of surfaces, the generation of
various auxiliary surfaces such as blending and smoothing surfaces, the classifica-
tion of various algebraic surfaces, the algebraic or geometric invariants associated
with a surface, the effect of various affine or projective transformations of a surface,
the description of surface boundaries, and so on.

To give examples of the nature of the solutions demanded by various appli-
cations, we discuss a few representative problems from robotics, engineering, and
computer science.
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ROBOT MOTION PLANNING

Given the initial and desired configurations of a robot (composed of rigid subparts)
and a set of obstacles, find a collision-free continuous motion of the robot from the
initial configuration to the final configuration.

The algorithm proceeds in several steps. The first step translates the problem
to configuration space, a parameter space modeled as a low-dimensional alge-
braic manifold (assuming that the obstacles and the robot subparts are bounded
by piecewise algebraic surfaces). The second step computes the set of configura-
tions that avoid collisions and produces a semialgebraic description of this so-called
“free space” (subspaces of the configuration space). Since the initial and final con-
figurations correspond to two points in the configuration space, we simply have to
test whether they lie in the same connected component of the free space. If so,
they can be connected by a piecewise algebraic path. Such a path gives rise to an
obstacle-avoiding motion of the robot(s). This path planning process can be car-
ried out using Collins’s CAD [SS83], yielding an algorithm with doubly-exponential
time complexity (Theorem 40.1.1). A singly-exponential time complexity algorithm
(the roadmap algorithm) has been devised by Canny [Can88a] (Theorem 40.1.2).
The main idea of Canny’s algorithm is to determine a one-dimensional connected
subset (called the “roadmap”) of each connected component of the free space. Once
these roadmaps are available, they can be used to link up two points in the same
connected component. The main geometric idea is to construct roadmaps starting
from the critical sets of some projection function. The basic roadmap algorithm
has been improved and extended by several researchers over the last decade (Heintz
et al. [HRS90], Gournay and Risler [GR93], Grigor’ev and Vorobjov [Gri88, GV8&§],
and Canny [Can88a, Can90]).

OFFSET SURFACE CONSTRUCTION IN SOLID MODELING

Given a polynomial f(x,y,z), whose zeros define an algebraic surface in three-
dimensional space, compute the envelope of a family of spheres of radius r whose
centers lie on the surface f. Such a surface is called a (two-sided) offset surface
of f.

Let p = (z,y, z) be a point on the offset surface and ¢ = (u, v, w) be a footprint
of p on f; that is, ¢ is the point at which a normal from p to f meets f. Let
fh = (t1,1,t1,2,t1,3) and — (t2,1,%2,2,t2,3) be two linearly independent tangent
vectors to f at the point ¢. Then, we see that the system of polynomial equations

(—u)?+@y—v)l+z-w?-r = 0,
flu,v,w) = 0,
(z—wtii+y—vtiza+(z—wtiz = 0,
(x —u)ta1 +(y—v)tao+ (z —w)tas = 0O,

describes a surface in the (z,y, z,u,v,w) six-dimensional space, which, when pro-
jected into the three-dimensional space with coordinates (z,y, z), gives the offset
surface in an implicit form. The offset surface is computed by simply eliminating
the variables u, v, w from the preceding set of equations.

This approach (the envelope method) of computing the offset surface has
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several problematic features: the method does not deal with self-intersection in a
clean way and, sometimes, generates additional points not on the offset surface.
For a discussion of these and several other related problems in solid modeling,
see [Hof89] and Chapter 56 of this Handbook.

GEOMETRIC THEOREM PROVING

Given a geometric statement consisting of a finite set of hypotheses and a conclu-
sion,

Hypotheses : fi(z1,---,Zn) =0,..., fr(z1,---,2,) =0

Conclusion : g(z1,...,2,) =0

decide whether the conclusion g = 0 is a consequence of the hypotheses ((f1 = 0)
A=A (fr=0)).

Thus we need to determine whether the following universally quantified first-
order sentence holds:

(‘V’:L'l,...,xn) [((f1:0)/\---A(fT=0)) = g=0].

One way to solve the problem is by first translating it into the form: decide if
the following existentially quantified first-order sentence is unsatisfiable:

(Hml,...,xn,z) [(fl=0)/\---/\(fr=0)/\(gz—1):0].

When the underlying domain is assumed to be the field of real numbers, then we
may simply check whether the following multivariate polynomial (in z1,...,Zn,2)
has no real root:

LAt f 4 (g2 1)

If, on the other hand, the underlying domain is assumed to be the field of complex
numbers (an algebraically closed field), then other tools from computational algebra
are used (e.g., techniques based on Hilbert’s Nullstellensatz). In the general setting,
some techniques based on Ritt-Wu characteristic sets have proven very powerful.
See [Cho88].

For another approach to geometric theorem proving, see Section 59.4.

CONNECTION TO SEMIDEFINITE PROGRAMMING

Checking global nonnegativity of a function of several variables occupies a central
role in many areas of applied mathematics, e.g., optimization problems with poly-
nomial objectives and constraints, as in quadratic, linear and boolean programming
formulations. These problems have been shown to be NP-hard in the most general
setting, but do admit good approximations involving polynomial-time computable
relaxations. (See Parilo [Par00]).

Provide checkable conditions or procedure for verifying the validity of the propo-
sition

F(zy,...,2,) >0, Vzi,...,2n,
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where F is o multivariate polynomial in the ring of multivariate polynomials over
the reals, Rx1,...,2,].

An obvious necessary condition for F' to be globally nonnegative is that it has
even degree. On the other hand, a rather simple sufficient condition for a real-valued
polynomial F(z) to be globally nonnegative is the existence of a sum-of-squares
decomposition:

F(z1,...,2,) = fo(:cl,...,a:n), filwe,...,mp) € Ry, ... 2]

Thus one way to solve the global nonnegativity problem is by finding a sum-
of-squares decomposition. Note that since there exist globally nonnegative poly-
nomials not admitting a sum-of-squares decomposition (e.g., the Motzkin form
zhy? + 22y* + 28 — 322y22?), the procedure suggested below does not give a solution
to the problem in all situations.

The procedure can be described as follows: express the given polynomial F'(z1,
..., T,) of degree 2d as a quadratic form in all the monomials of degree less than
or equal to d:

F(21,...,2,) = 27Qz, z=[l,21,...,%,,2122,...2%],

where () is a constant matrix to be determined. If the above quadratic form can
be solved for a positive semidefinite @, then F(z1,...,z,) is globally nonnegative.
Since the variables in z are not algebraically independent, the matrix @) is not
unique, but lives in an affine subspace. Thus, we need to determine if the intersec-
tion of this affine subspace and the positive semidefinite matrix cone is nonempty.
This problem can be solved by a semidefinite programming feasibility problem

trace(zz7Q) = F(xy,...,z,),
Q = 0.
The dimensions of the matrix inequality are (";d) X ("ji'd) and is polynomial

for fixed number of variables (n) or fixed degree (d). Thus our question reduces to
efficiently solvable semidefinite programming (SDP) problems.

33.8 SOURCES AND RELATED MATERIAL

SURVEYS

[Mis93]: A textbook for algorithmic algebra covering Grobner bases, characteristic
sets, resultants, and real algebra. Chapter 8 gives many details of the classical
results in computational real algebra.

[CJ98]: An anthology of key papers in computational real algebra and real algebraic
geometry. Contains reprints of the following papers cited in this chapter: [BPROS,
Col75, Ren91, Tar51].

[AB88]: A special issue of the J. Symbolic Comput. on computational real algebraic
geometry. Contains several papers ([DH88, Gri88, GV88] cited here) addressing
many key research problems in this area.
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[BRI0]: A very accessible and self-contained textbook on real algebra and real
algebraic geometry.

[BCRI8]: A self-contained text book on real algebra and real algebraic geometry.

[HRRI1]: A survey of many classical and recent results in computational real alge-
bra.

[Cha94]: A survey of the connections among computational geometry, computa-
tional algebra, and computational real algebraic geometry.

[Tar51]: Primary reference for Tarski’s classical result on the decidability of ele-
mentary algebra.

[Col75]: Collins’s work improving the complexity of Tarski’s solution for the decision
problem [Tar51]. Also, introduces the concept of cylindrical algebraic decomposi-
tion (CAD).

[Ren91]: A survey of some recent results, improving the complexity of the deci-
sion problem and quantifier elimination problem for the first-order theory of reals.
This is mostly a summary of the results first given in a sequence of papers by
Renegar [Ren92a,b,c].

[Lat91]: A comprehensive textbook covering various aspects of robot motion plan-
ning problems and different solution techniques. Chapter 5 includes a description
of the connection between the motion planning problem and computational real
algebraic geometry.

[SS83]: A classic paper in robotics showing the connection between the robot motion
planning problem and the connectivity of semialgebraic sets using CAD. Contains
several improved algorithmic results in computational real algebra.

[Can88a]: Gives a singly-exponential time algorithm for the robot motion planning
problem and provides complexity improvement for many key problems in compu-
tational real algebra.

[Hof89]: A comprehensive textbook covering various computational algebraic tech-
niques with applications to solid modeling. Contains a very readable description of
Grobner bases algorithms.

[Cho88]: A monograph on geometric theorem proving using Ritt-Wu characteristic
sets. Includes computer-generated proofs of many classical geometric theorems.

RELATED CHAPTERS

Chapter 47: Algorithmic motion planning

Chapter 48: Robotics

Chapter 56: Solid modeling

Chapter 59: Geometric applications of the Grassmann-Cayley algebra
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