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Abstract
The analysis of large amounts of data has become the main activity of many biologists and
biochemists.
Large data sets are being produced as (numerical) traces of in vivo, in vitro and in silico
experiments.

In the last case such traces are the result of simulating mathematical models of biochemical
systems. Such models usually consist of relatively simple sets of differential algebraic equations
(DAE) alongside with their numerical solutions. E.g. the well known Generalized Mass Action
systems (GMA) and S-systems [1, 2, 3].

In this paper we reason about what are the necessary theoretical and pragmatic foundations
for a query and simulation system capable of analyzing large amounts of trace data. To this
end, we propose to combine in a novel way several well known tools from numerical analysis
(approximation theory), temporal logic and verification, and visualization. The result is a
preliminary prototypical combined system: simpathica/xssys. When dealing with simulation
data simpathica/xssys takes advantage of the particular form of the DAE used for modeling,
and is capable of reducing the search space where the queries are to be evaluated.

1 Introduction

Recent advances in genomics have made it possible for the first time for a biologist to access enor-
mous amounts of information for a number of organisms, including human, mouse, arabidopsis, fruit
fly, yeast and E. coli. These developments are at the heart of the many renewed ambitious attempts
by biologists to understand the functional roles of a group of genes using powerful computational
models and high throughput microbiological protocols. The emerging fields of system biology, and
its sister field of bioinformatics, focuses on creating a finely detailed and ”mechanistic” picture of
biology at the cellular level by combining the part-lists (genes, regulatory sequences, other objects
from an annotated genome, and known metabolic pathways), with observations of transcriptional
states of a cell (using micro-arrays) and translational states of the cell (using proteomics tools).



In the process, it has become evident that the mathematical foundation of these systems needs to
be explored accurately and that their computational models be implemented in software packages
faithfully while exploiting the potential trade-offs among usability, accuracy, and scalability dealing
with large amounts of data. The work described in this paper is part of a much larger project, still in
progress and thus only provides a partial and evolving picture of a new paradigm for computational
biology.

We assume the following scenario. Imagine a biologist looking to test some hypotheses against
a corpus of data produced by several in wvitro, in vivo, and in silico experiments regarding the
behavior of a given biological system (e.g. a regulated metabolic pathway in a given organism).
Let’s also make the assumption that the number or quantities recorded is large. The biologist can
access one or both the following items.

e Raw data stored somewhere about the temporal evolution of the biological system. This
data may have been previously collected by observing an in vivo or an in vitro system, or by
simulating the system in silico.

e Some mathematical model of the biological system®.

The biologist will want to formulate gueries about the evolution encoded in the data sets. E.g the
biologist may ask: will the system reach a “steady state”? Or: will a temporary increase in the
level of a certain protein represses the transcription of another?

We will discuss what are the building blocks needed to construct a comprehensive and well-
founded system capable to answer such queries.

1.1 Methods and Tools

Several biological and biochemical mechanisms can be modeled with relatively simple sets of dif-
ferential algebraic equations (DAE). The numerical solution to these differential equations provides
a potentially powerful and effective investigative tool for biologists and biochemists. In the fol-
lowing, we demonstrate the power of a novel computational tool with the ability to query massive
sets of numerical data obtained from in silico experiments on complex biological systems; the com-
putational tool derives its expressiveness, flexibility and power, by integrating in a novel manner
many commonly available tools from numerical analysis, symbolic computation, temporal logic,
model-checking, and visualization.

We start by considering the the S-systems models of biochemical processes developed mostly by
Savageau and Voit [1, 2, 3], and “extend” them in order to facilitate their analysis. We name such
extension XS-system. The main innovation provided by an XS-system consists in an automaton-
based semantics of the temporal evolution of complex biochemical reactions presented as a set of
DAE. Such automaton-based semantics has the advantage to reduce the search space over which
the truth or falsity of a given query must be established.

The automaton underlying an XS-system can be constructed. in several ways. One of the aims
of this paper is to summarize the mathematical tools and frameworks we think most promising
for such construction, always keeping in sight the use scenario we described. Essentially we will
propose a construction based on an approzimation of a numerical trace (c¢f. [4] and the references
contained therein).

'We note that simulating a system in silico actually requires a mathematical model. However, we want to consider
the case when such mathematical model is unavailable to both the biologist and the software system.
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Figure 1: (a) The simpathica Main Window. The system being analyzed is the ”repressilator”
system [5]. The upper left frame contains a list of the reactants. The upper right frame is used to
insert different kinds of reactions. The lower left frame contains a list of known reactions. Finally
the lower left frame contains a depiction of the reactions’ network. (b) The main xssys view. The
xssys interface proper is on the left. The left frame contains a list of the ”loaded” traces (obtained
from simulators like the simpathica/Octave engine or PLAS [3]). The right frame is used to type
in various temporal logic queries and to check the results. The right window is simply a plotting
application (PtPlot from UC Berkeley) which we use for visualization purposes.

In the following, we will briefly describe the prototype implementation underlying the xssys
system and we will discuss the biological applications illustrating how we envision simpathica and
xssys to be used in practice (¢f. Figure 1 to see screen-shots of the two systems).

[Missing: The rest of the paper is organized as follows....]

2 Mathematical and Computational Models

We stated that several biological systems may be modeled with systems of DAE. The simple (canon-
ical) forms of the differential equations may contrast with the actual “complexity” of the system
being modeled, as measured by the number of variables involved. The set of numerical traces of very
complex systems rapidly becomes unwieldy to wade through when several variables are involved.

Starting from an S-system formulation (as described in [1, 2, 3]), we want to construct an
automaton summarizing the phases along which the simulated biochemical system passes during
its evolution in time. The automata we are proposing will allow the user to view and manipulate
a, detectably specified, representation of the set of states through which the system evolves. The
approach will mainly serve the following two purposes:

o Explicitly render the significant changes in the values of substances involved in the biochemical
reactions during the in silico experiment, thereby providing a better control on the physical
plausibility of the latter.



e Provide a precise language for controlling sets of possible experiments, based on different
values of the parameters involved.

Our basic assumption is that a (graphical) metabolic map of the biochemical system under
study, together with a specific associated S-system, is available. The automaton construction is then
based on the computation of the approximate numerical solution of the S-system and is performed
in two steps: first, starting from any given time step (which will be one of the crucial parameters
in our construction) and from the corresponding approximate numerical solution for the power-
law differential equations, a synchronous automaton whose states are collection of values for the
dependent values is determined. Then, a qualitative analysis (based on the first derivatives X;’s of
the functions expressing concentrations) is carried out to the effect of collapsing states modeling
non-significant variations in the evolution of the system.

The second operation simply corresponds to finding a set of “linear approximations” of the
function flow as represented in the computed or sampled trace. We note that this fact may find a
correspondence in some of the work done in the analysis of Hybrid Systems (¢f. [6]), which we will
explore in a future work.

The automaton obtained after the second of the above two steps is “asynchronous” (untimed,
cf. [6]), as the values of the temporal intervals connecting collapsed states are ignored, but suitable
for a verification analysis of temporal properties [7]. To this end a (temporal) language suited for
such a kind of analysis is proposed and studied. Moreover, the equivalence relation collapsing states
at different stages of the temporal evolution can be either global (unique) or local, that is itself a
function of time, providing the ability of refining the qualitative analysis in sensitive regions of the
metabolic pathway?.

From a general point of view, the main features of the approach we described for designing tools
to model biochemical systems are the following:

1. The possibility of both quantitative and qualitative modeling, within one integrated environ-
ment;

2. A central réle of time;
3. The possibility of interacting with the tool for designing new experiments.

In particular, with respect to the first of the above points, the qualitative modeling of the system
is supposed to be specified after a quantitative description has been determined and (numerically)
solved. The automaton is in fact obtained by “gluing” together different representations of possible
evolution of the system. This sort of bottom-up automata construction is one of the characterizing

2Tools based on temporal specification and verification are widely recognized as crucial in the realm of embedded
reactive systems, and the approach we present here is easily seen to bear some similarity with ideas very much
exploited in that area. Modeling the evolution of a biochemical system as we are proposing consists, in fact, in
seeing the system’s state-sequence as the analogue of a computation, and different computations as (simulations
of) experiments differing for some given parameters’ values. However, a special feature of the biochemical-systems’
modeling arena is its stronger focus on one (or a restricted family of) experiment(s). This must be contrasted with
the case of formal verification of temporal properties of embedded systems, in which the focus must stand much more
on the careful consideration of all possible computations (in order to be able exclude the bad one!).

In fact, our automata construction can produce different values as the parameters involved (i.e. time-step, rate
constants, exponents, etc.) are varied at the start. For example, as a limit to the choice of a smaller time-step in
the construction, we could consider the analytic description of the solution to the differential equation governing
the system. The, more abstract, study of the issues related with families of possible numerical solutions (and hence
automaton constructions), is going to be our next goal.



aspects of our proposal, the other being the idea that the notion of state of the system should be
less restrictive than the one usually employed in formal verification and strictly based on variables’
values (see Section 3.2).

Notice, finally, that the proposal we are putting forward could be discussed in the context of
regulatory pathways modeling as well. We will discuss the details of this application in a future
work.

2.1 Canonical Forms of Biological Systems Models

In the following we will build on ideas introduced in [1, 2, 3] (from which we will borrow also most of
the notation) and, e.g., [8]. Central to our discussions will be the notion of S-system (or of a GMA
system) that we briefly introduce below together with some definition that will be used throughout
the paper.

The basic ingredients of an S-system are n dependent variables to be denoted Xi,...,X,,
m independent variables X, 41,...,X,, and let Dy,..., Dyt be the domains where the n 4+ m
variables take value. We augment the S-system form with a set of algebraic constraints which serve
to characterize the conditions under which a given set of equations is derived from a set of maps.
The justification for this construction is beyond the scope of this paper and it appears elsewhere.

The basic differential equations constituting the system take the general form:

Xi(t) = VM (X (), X (1) = Vi (X1 (@), -, X (1)), (1)

for each dependent variable X; (see [3] for a complete discussion and justification of the assumptions
underlying the format of the above equation). The set of algebraic constraints take the form

{C5(X1(2), .., Xm(t)) = 0} (2)

The above equations take, in general, the following power law form:

n+m n+m
Xi=ai [[ X -8]] X;“j 3)
j=1 j=1
n+m .
Ci(Xa (1), -, Xm(®) = ) (w I1 X,{”) =0 (@)
k=1

where the a;’s and (3;’s are called rate constants and govern the positive or negative contributions
to a given substance (represented by X; as a function of time) with other variables entering in
the differential equation with exponents to be denoted as g;;’s and h;;’s. The +; are called rate
constraints acting concurrently with the exponents f;r to delimit the evolution of the system over
a specified manifold embedded in the n + m-dimensional surface. Note that we have a; > 0 and
Bi; > 0 for all é’s.

A system of differential equations (power-laws) such as the one above can be integrated by either
symbolically — in particularly favorable cases — or by numerical approximation. The particular S-
system “canonical” form allows for very efficient computations of both the function flows X; and
the derivative field X; [9].



(a) (b)

Figure 2: The repressilator system metabolic map in “cascade” form and its oscillatory trace [5].

In the following we will concentrate on the “numerical” case and we will also exploit the special
nature of the S-system traces for our Temporal Logic“query language”. We will address the “sym-
bolic” case in a much more general way in a future work (see [10] for a preliminary treatment of
the topic). When a numerical approximation is involved, the notion of time-step “step” becomes
central to our considerations3.

From now on we will denote by S (to be used also as index for parameters) a specific S-system
given as both a set of differential equations of the above kind as well as a metabolic map, which is
a pictorial counterpart of the system especially useful as a compact representation for qualitative

study.

Example 1 Consider the following example consisting of the pathway of a so-called repressilator
system [5]. The repressilator system metabolic map involves siz variables X1, ..., Xg, the first three
of which (namely X1 ,X> and ,X3) are independent while the remaining are dependent.

The following is the S-system corresponding to the above metabolic map:

’ — 913 v 914 hi1.
XY= aXgoxp - g

— 9 g .
Xy = XX - gxh,
7 — 932 Y 936 h33
X3 = a3X3®X{* — B3X5%,

with X4, X5, and Xg as controls (independent variables).
Figure 2(b) shows the oscillatory trace of the system (cf. [5] for a discussion of the numerical and
analytical analysis of the system).

2.2 Related works

Many interesting researches are dealing with more or less the general themes treated in this work.

For example, in [11] the problem of modeling and simulating qualitatively complex genetic
regulatory networks of large dimension is studied. That work, as well as other along the same line,
aims at dealing with situations in which the lack of quantitative information forces simulation in

3We are particularly interested in the fized time step case since it will allow us to treat data produced by sampling
of in-vitro and in-vivo experiments. Data produced numerically by wvariable step integrators obviously simplify the
automata construction since, they already factor in their computation the smoothness of the curve.



a qualitative way, an assumption that marks the difference with the situation we study here and
with kind of qualitative modeling we propose.

The problem of constructing an automaton from a given mathematical model of a complex
system has also been previously considered in the literature. In particular, in the control literature,
it has been deeply studied by Brockett in [13]. Our approach here is certainly at a lower level
of generality as it deals with specific mathematical models (S-systems) and, moreover, tries to
integrate the numerical determination of a solution for the system of differential equations involved
with the automata construction.

In the Numerical Analysis literature the problem can be recast as a function approrimation one.
The survey by DeVore [4] contains a wealth of information about Approximation Theory that we
intend to reuse for our tool.

The kind of formalization and tools we are proposing in this paper could, in general, be used
to study on a more systematic way hypothesis on properties of complex systems of biochemical
reactions. The research by Bhalla et al. in [14], for example, aims at proving that a sort of “learned
behaviour” of biological systems is in fact stored within the mechanisms regulating intracellular
biochemical reactions constituting signaling pathways. For this kind of studies, following [15], both
qualitative and quantitative features of the system under study should be taken into account and
we hope the system we propose can turn out useful on the ground of its ability to capture and
compare temporal evolution of the system under study.

In [16] Cellerator is presented, a Mathematica package for biological modeling that bears many
similarities with our project here.

While our aim is more focused, as we study a single collection (not an hierarchy) of biochemical
reactions, the temporal ingredient introduced by our integration with a temporal language should
enhance the reasoning abilities of our proposed tool.

Using a Temporal Logic query language to analyze continuous systems is investigated also in
[17], as an extension of the Qualitative Reasoning approach (cf. [18]). We differ from this interesting
approach inasmuch as we rely on a full numerical simulation trace or a (sampled) trace of a physical
experiment.

Finally, in [19] is reported a use of Hybrid Systems in modeling properties of systems of bio-
chemical reactions. It is very interesting the idea of using the discrete component of the (hybrid)
automaton to switch from one mode to another when (for example) the number of molecules grows
over a certain threshold. In our framework the same effect should be captured in a sort of bottom-up
fashion, by “gluing” different simulations determined with different sets of parameters.

3 XS-systems: S-systems extended with Automata

In this section we describe the general idea underlying the automata construction. Our starting
point are the following property of biochemical metabolic systems and corresponding S-systems:

e The value of the dependent and independent variables uniquely characterize the state of the
system when normalized with respect to time (and possibly other values);

e The transitions from one state to the other are not necessarily encoded in the metabolic map
of the system and are parametric with respect to the value of constants in the S-system.



e There exists an exogenous set of “functions” that represent special perturbations of the system
that the user may decide to include in the trace generation. E.g. ramps, impulses, and
oscillations (possibly with parametric amplitude and frequency).

The idea behind the automata definition and construction we are going to define is to start with
snapshots of the system variables’ values that will constitute the possible states of the automaton.
Transitions will be inferred from traces of the system variables’ values evolution.

On the ground of the above observations we define:

Definition 2 Given an S-system S, the S-system automaton As associated to S is 4-tuple As =
(S,A, 8o, F), where S C Dy X -+ X Dyy s a (finite or infinite) set of states, A C S x S is the
transition relation, and So, F C S are the initial and final states, respectively.

Final states will be those states in which the simulation reaches a recognizable end and are
supposed to represent “equilibrium” points for the pathway being modeled.

Definition 3 A trace of an S-system automaton Ag is a (finite or infinite) sequence o, 81,---,8n, - - -
such that so € So, A(s;,8:41) for i > 0. A trace can also be defined as:
trace(As) = {(X1(t)...X,(t)) |t € {to + kstep : k € N}),

1s called the trace of Ag

Clearly, from now on, if the analysis of the system is to be carried out in a finite interval of time
[0,¢], a k such as the one in the above definition of trace will vary in {1,...[ gz 1}

Notice that, for fixed values of the independent variables, a unique trace is obtained when a
simulation is performed. Moreover, while studying a trace of a system, it can be useful to concentrate
(i.e. project) on one or more variables, which justifies the following definition:

Definition 4 Given any set of variables U C {X1,...,Xntm}, the sequence:
trace(Asly) = ((Xi(t) | X;€U) : te€ {to+kstep : k€N}),
is called the trace of U. If U consists of a single variable X; the trace is called the trace of X;.

Multiple traces arise as we start varying the values in the primary parameter sets. Collection
of such traces, in general, allows one to study the different instances of the simulated metabolic
pathway evolution. Such a collection will give rise to the automaton with corresponding transitions
when a suitable equivalence relation on states is defined.

3.1 Construction of a Collapsed automaton

Given a trace trace(As) we want to construct an automata that can be used in conjunction with
a TL based query system. The construction we present in the following corresponds to finding a
partition of the real line (time) into a set I of non-overlapping intervals where the functions X;(t)
are approximated by a straight line. This is a very simple case of approximation as defined in much
greater detail in [4]. In particular, we show a very simple automata construction algorithm that
essentially is an adaptive approzimation one for the given X (t).

In a future work we will explore the use of a more sophisticated basis for our automata construc-
tion. In particular we will explore wavelet basis and Volterra series expansions to recover better
information about time-localized impulses and frequencies of periodical phenomena.



Automata collapsing by piecewise linear segments. We can easily construct an (in general
unreduced) automaton As by simply associating a different state to each tuple (X1 (t)... X, (t))
as time grows according to a given time step. In this case there is a unique trace for the obtained
automaton that is therefore called linear automaton.

Example 5 Consider the function X;(t) at times t;,t;11,...tiys as depicted in Figure 3. In this
case we have step = t;y1—1t; as a result of (fized) sampling or numerical integration. We associate
the automata As to the trace of X; simply by taking into account each time step. Note that this is
not much different than what it is done by “untiming” a Timed Automata.

Xit)
S system trace
for variable X;

»
T T T o

t
ﬂs automata

ti ti+1 ti+5

Figure 3: Simple one-to-one construction of the “trace” automata Ag for a S-system S.

The automata constructed as above are in some way “synchronous”, in the sense that the time
elapsed while passing from one state to the other is known and fixed (with respect to the numerical
trace obtained from a source sampled at “fixed” intervals or from an integration algorithm employing
a “fixed” step size).

If the trace is the result of a variable step size integrator, then the automata constructed in this
way will already summarize the system behavior in a set of “smooth” regions.

In the following, given a collection of linear automata (traces), we will propose to “glue” them
together in a unique automaton capable of modeling various possible behaviors of the system.
However, before that, we propose a method to collapse states of a linear automaton into equivalence
classes capturing qualitatively the behavior of the system (along a single trace).

A solution to a given S-system is, in general, determined by a numerical approximation once
the values for the independent (constant) variables are given. Given a numerical approximation to
a solution of our S-system, for any given time step and any given (dependent) variable X;, a linear
automaton corresponding to the trace trace(X;) could be reduced by using the following equivalence
relation R; 5,, which depends on the parameter d;: Rs, holds between two states X;(¢t+ k step ) and
X;(t+ (k+ j)step) for j > 0, if and only if

| Xi(t + kstep) — Xi(t + (k— 1)step) | < 6.

Notice that the first derivatives of functions expressing the variations of dependent variables,
involved in establishing the validity of the above condition, are available during the numerical
computation carried out to solve the underlying S-system. Moreover, notice that if the above
collapsing is performed on an independent variable (assumed to be constant), the construction
trivializes and a unique state is obtained.

The above construction is extended to the full collection of variables as follows:



Definition 6 The relation Ry holds between two states sy, = X(t+kstep) and Skyj = X+ (k+
Jj)step)) with j > 0, if and only if, for each i € {1,...,n+m},

|Xi(t + kstep) — Xi(t + (k + j) step)] < &
The collection {8; | 1 < i <n +m} is denoted by é.

The above relation turns out to be an equivalence relation if computed during the determination
of the numerical approximation to the solution. The (simple) idea is to choose as representative in
each equivalence class, the element corresponding to the minimum time in the class. The following
pseudo-algorithm explains how we compute the set of states of the collapsed automata:

Algorithm 1 COLLAPSE_STATES_INCREMENTALLY(& step,t)
let S0 = (Xl (to) .. Xn(t(])) € S();
STATE := 0; —initialize the current state
REPR := (; —initialize the representative of the equivalence class
while STATE < [-step] do
STATE := STATE +1;

—simulation proceeds using e.g. Fuler’s method
if 39; € g(|X, (to + REPR step ) — X;(to + STATE step )| > (5i) then
REPR := STATE;
end if
end while

If the guard of the if-statement in the above algorithm is weakened (e.g.) restricting the set of
variables for which the condition is checked, the effect will be to “concentrate” on the restricted set
of variables and, in general, to producing less states.

Example 7 Consider again the function X;(t) of cf. Ezample 5. In Figure 4 the effects of applying
the collapsing algorithm are shown. With respect to X;(t) we obtain an automata As; which has
fewer states

states(As;) = (... (ti, X;(t:), X;(t:)), (tire, Xj(tire), Xj(tive)), (tirs,Xj(tirs), X;(tirs)),.--)

Now suppose to have a different function X (t). We associate to X (t) the collapsed automata Asy,,
such that

states(Asy) = (.- . (ts, Xp(t:), X (t:)), (tiga, Xn(tiva), Xi(tiva)),---)

i.e. the “landmark” times are t; and t;14 in this case. In order to construct a useful automata for
the analysis tool we construct the merged automata As; such that

states(Asy) = (.. (t:,X; ( i), J(tz))a
( z+2a ( 2),X ( H—z))
(t z+47Xk 4)7X (ti+a)),
( z+57 ( 1+5)7X ( z+5)) )

i.e. automata Asjy, is an ordered merge of the two automata As;, Asy,.

10
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Figure 4: The effects of the collapsing construction of the “trace” automata Ag for a S-system S.

3.2 Normalizing and projecting

According to the previous remark, in order to capture state-equivalence modulo normalization we
begin with the following definition:

Definition 8 Given a subset V of the set {X1,..., Xntm} of variables, we define the set of states
normalized with respect to V as the following set of tuples:

- Xi(to + kstep) .
S = {<U,~(V,to+kstep) P keNg,

with the v;’s are normalizing functions.

More complex forms of normalization can be obtained when other variable contribute into play.
Moreover, notice that when we normalize with a collection of normalizing functions defined as
follows:

. Xz' if Xi ¢ U;
vi(U,t) = { 1 otherwise,

then the normalization corresponds to projecting with respect to the set of variables U.

Gluing linear automata Given different simulation runs coming from either a unique or many
S-system, we can group the corresponding linear automata into a single automaton. The formal
definition (not given here) is rather straightforward and would collapse states (belonging to different
automata) using parameters in order to ignore small differences in values. Maintaining a coarser
grain for some variable in the collapsing process forces a change of state only when “significant”
dependent variables satisfy the condition. This corresponds to producing automata concentrating
on specific behaviors.

4 Pathways Simulation Query language

In this section we briefly outline a language that can be used to inspect and formulate queries on
the simulation results of XS-systems.

11



Our aim is to provide the biologists with a tool to formulate various queries against a repository
of simulation traces and a set of known pathways specifications. We propose a Temporal Logic
language (¢f. [7]) with a specialized set of predicate variables whose aim is to make it easy to
formulate queries on numerical quantities.

The full rendition and semantics of our query language is beyond the scope of this paper. Suffice
to say that the standard CTL operators are available in English-ized form®.

Example 9 The main operators of our language (cf. CTL) are used to denote possibility and
necessity over time. E.g. to express the query asking whether a certain protein p level will eventually
grow above a certain value K we write eventually(p > K).

Extensions: Domain Dependent Queries We augment the standard CTL language with a
set of domain dependent queries. Such queries may be implemented in a more efficient way and
express typical questions asked by biologists in their daily data analysis tasks.

e growing(<variable>y, ..., <variable>}) and shrinking(<variable>y, ..., <variable>})
the growing special operator is a state formula saying that all the variables mentioned are
growing (shrinking) in a given state.

e represses(<variable>1, <variable>;) and activates(<variable>,, <variable>s)
this special predicate is to be interpreted as a path formula stating that <variable>; (infor-
mally interpreted as a “gene product”) represses (activates) the production of <variable>s.

e steady state()
this special predicate is true is the system eventually reaches a steady state; note that its
implementation could be provided either as an analytical solution of the XS-system or as a
combination (macro) of TL predicates.

4.1 An Example: Purine Metabolism

Let us now revisit in detail the example of purine metabolism described in [3] Chapter 10 and
fully analyzed in [20, 21]. The pathway for purine metabolism is presented in Figure 5. A brief
description of the key reactions follows, and the reader is invited to examine the more detailed
summaries contained in the literature referenced in [3, 20, 21].

The main metabolite in purine biosynthesis is 5-phosphoribosyl-a-1-pyrophosphate (PRPP). A
linear cascade of reactions converts PRPP into inosine monophosphate (IMP). IMP is the central
branch point of the purine metabolism pathway. IMP is transformed into AMP and GMP. Guano-
sine, adenosine and their derivatives are recycled (unless used elsewhere) into hypozanthine (HX)
and zanthine (XA). XA is finally oxidized into wric acid (UA). In addition to these processes,
there appear to be two ”salvage” pathways that serve to maintain IMP level and thus of adenosine
and guanosine levels as well. In these pathways, adenine phosphoribosyltransferase (APRT) and
hypozanthine-guanine phosphoribosyltransferase (HGPRT) combine with PRPP to form ribonu-
cleotides.

4We are providing an English form to the standard operators, in order to make the content of resulting language
easier to manipulate for the intended audience, who has not been exposed to the notation used in Temporal Logic.
We also note that, technically, we are missing EG, since we are only providing always as a rendition of AG.

12



Figure 5: The metabolic scheme of purine metabolism in human. (Reprinted from [21], where a full
description and further references may be found.)

The consequences of a malfunctioning purine metabolism pathway are severe and can lead to
death. The entire pathway is quite complex and contains several feedback loops, cross-activations
and reversible reactions, and thus an ideal candidate for reasoning with the computational tools we
have developed.

In [3], a sequence of models for purine metabolism is presented alongside an analysis of how to
identify discrepancies with physically observed data, and how to amend the current model in order
to explain these discrepancies.

We show how to formulate queries over the simulation traces to express various desirable prop-
erties (or absence of undesirable ones) that the model should possess. Should any of these queries
?fail”, the model will be marked for further examination, experimentation and correction.

As an example consider the “Final” model for purine metabolism presented in [3]. The in silico
experiment shows that when an initial level of PRPP is increased by 50-fold, the steady state
concentration is quickly absorbed by the system. The level of PRPP returns rather quickly to the
expected steady state values. IMP concentration level also rises and HX level falls before returning
to predicted steady state values.

Suppose that we wanted to ask the system how it will respond to a temporary (instantaneous)
increase in the level of PRPP. Such request can be formulated as follows:

always(PRPP > 50 x PRPP1
implies
(steady_state()
and eventually(IMP > IMP1)
and eventually(HX < HX1)
and eventually(always(IMP == IMP1))
and eventually(always(HX == HX1))

an (instantaneous) increase in the level of PRPP will not make the system stray from the predicted
steady state, even if temporary variations of IMP and HX are allowed. Figure 6 shows how xssys
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Figure 6: The in silico trace of the ”"final model” from [3]. We arbitrarily increased the level of
PRPP (variable X1) to more than 250 at time step 100. The XSSYS system correctly answers
both queries. Because of numerical effects in the floating point equality tests we had to ask a less
stringent question about the steady state value of IMP (variable X2) and HX (variable X13).

responds to the query.

5 Concluding Remarks

We have presented a novel framework under which we bring together well known tools from nu-
merical analysis (approximation theory), temporal logic and verification, and visualization. This
is a work in progress whose final aim is to construct an effective tool to aid biologists analyze
experimental results and design new ones.

There are several open questions in our work that we need to address. We are now considering
how to extend our automata construction by using notions from approximation theory that will
allow us to take into cosideration time and frequency domain aspects of a trace. Of course more
theoretical treatments of the subject are possible as well (¢f. [13]). Finally, we list some of the
challenges that Computational Biology needs to address in order to provide researchers with effective
tools.

Reactions Models: We have primarily focused on a simple ODE model (Differential Algebraic
Equations, DAE) and narrowed this even further to a model based on S- and XS-systems. Does
this imply that we are accommodating a significant deviation from reality? How can a stochastic
model representing small number of molecules interacting pair-wise and randomly be incorporated?

Hybrid Systems: Certain interactions are purely discrete and after each such interaction, the
system dynamics may change. Such a hybrid model implies that the underlying automaton must
be modified for each such mode. How do these enhancements modify the basic symbolic model?

Spatial Models: The cellular interactions are highly specific to their spatial locations within the
cell. How can these be modeled with richer abstractions of automata, e.g., cellular-automata? How
can we account for dynamics due to changes to the cell volume? The time constants associated
with the diffusion may vary from location to location; how can that be modeled?
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State Space: A number of interacting cells can be modeled by product automata. In addition
to the classical ”state-explosion problem” we also need to pay attention to the variable structure
due to i) Cell division, ii) Apoptosis and iii) Differentiation.

Communication: How do we model the communication among the cells mediated by the inter-
actions between the extra-cellular factor and external receptor pairs?

Hierarchical Models: Finally, as we delve into more and more complex cellular processes, a clear
understanding can only be obtained through modularized hierarchical models. What are the ideal
hierarchical models? How do we model a population of cells with related statistics?
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