
INTRODUCTION

Recent advances in genomics have made it
possible for the first time for a biologist to
access enormous amounts of information for a
number of organisms, including human,

mouse, arabidopsis, fruit fly, yeast, and
Escherichia coli. These developments are at the
heart of the many renewed ambitious attempts
by biologists to understand the functional roles
of a group of genes using powerful computa-
tional models and high-throughput microbio-
logic protocols. The emerging fields of system
biology, and its sister field of bioinformatics,
focus on creating a finely detailed and “mecha-
nistic” picture of biology at the cellular level by
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combining the part-lists (genes, regulatory
sequences, other objects from an annotated
genome, and known metabolic pathways),
with observations of transcriptional states of a
cell (using microarrays) and translational states
of the cell (using proteomics tools). In the
process, it has become evident that the mathe-
matical foundation of these systems needs to
be explored accurately and that their computa-
tional models be implemented in software
packages faithfully while exploiting the poten-
tial trade-offs among usability, accuracy, and
scalability dealing with large amounts of data.

Several biological and biochemical mecha-
nisms can be modeled with relatively simple sets

of differential algebraic equations (DAE). The
numerical solution to these differential equations
provides a potentially powerful and effective
investigative tool for biologists and biochemists.
In this article, we demonstrate the power of a
novel computational tool with the ability to
query massive sets of numerical data obtained
from in silico experiments on complex biological
systems. The computational tool derives its
expressiveness, flexibility, and power by inte-
grating many commonly available tools from
numerical analysis, symbolic computation, tem-
poral logic, model checking, and visualization.

In this article, we describe XS-systems—a
new computational model extending the basic
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Fig. 1. The Simpathica Main Window. The system being analyzed is the “repressilator” circuit (1).
The upper left frame contains a list of the reactants. The upper right frame is used to insert differ-
ent kinds of reactions. The lower left frame contains a list of known reactions. Finally, the lower
right frame contains a depiction of the reactions’ network.



foundations provided by the “S-systems mod-
els of biochemical processes.” The main innov-
ative extension provided by the XS-system
involves an automaton-based semantics of the
temporal evolution of complex biochemical reac-
tions starting from the representation as a set of
differential equations. The implementation of
our mathematical and computational models
in the Simpathica and XSSYS systems will be
described briefly (see Figs. 1 and 2 for screen-
shots of the two systems). However, a detailed
discussion of the underlying mathematical
foundations will be omitted to keep the article
accessible to a wider readership. The main
emphasis of the article will be biological appli-
cations illustrating how we envision Simpathica
and XSSYS in practice. The work described in
this article is part of a much larger project, still

in progress and thus only provides a partial
and evolving picture of a new paradigm for
computational biology.

The remainder of the article is organized as
follows: The second section describes our mod-
els of biological experiments and how these
models can be interpreted in terms of an
automaton whose structure is determined by
both numerical and analytic solutions of a set
of “parameterized” differential equations. This
section also contains the description of a tem-
poral logic language for expressing and verify-
ing properties of XS-systems together with a
prototype implementation. The third section
contains the description of a simple system (the
repressilator [1]) with a “walk through” of
Simpathica. The fourth section contains a more
complex biological example and demonstrates
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Fig. 2. The main XSSYS view. The core XSSYS interface is on the left. The left frame contains a list
of the “loaded” traces (obtained from simulators such as the Simpathica/Octave engine or PLAS
[2]). The right frame is used to type in various temporal logic queries and to check the results. The
right window is simply a plotting application (PtPlot from UC Berkeley), which we use for visual-
ization purposes.



how the computational tools of this paper are
applied, and the fifth section concludes the
paper.

EXPERIMENTS AND SIMULATION

Imagine a computational biologist about to
perform simulations of complex biochemical
pathways in conjunction with related experi-
mental data collection. The researcher will often
model the underlying biological and biochemi-
cal mechanisms with sets of relatively simple
DAE, each one representing a reversible chemi-
cal reaction, a degradation process, a synthesis
process, or a reaction modulated by an enzyme
or a co-enzyme.  The numerical solutions to
these differential equations and the time-series
“tracing” the evolutions of an RNA transcript,
protein, or a lipid, etc., provide the basic ingre-
dients for data interpretation, data validation,
and hypothesis formation and falsification.

As the model complexity of the biological
systems increases, the sets of numerical traces
become increasingly difficult to interpret and
the traditional biological reasoning process
fails to scale beyond a handful of genes and rel-
atively small and coarsely modeled pathways.
To cope with this problem, we propose a novel
approach that first summarizes the numerical
traces into an automaton with distinguishable
biologic states and a deterministic set of rules
of transition from state-to-state and finally,
checks the automaton model for its ability to
satisfy various temporal logic statements.

Our starting reference point is the classical S-
systems (2,3) and the idea that a natural comple-
tion for that approach would be an automaton
summarizing the states along which the simu-
lated biochemical system evolves in time. The
automaton, so generated, allows the user to
view, manipulate, and reason, using a well-
integrated set of tools.

As an example (to be explored further), con-
sider the case study of purine metabolism (2).
This case study, as many others, illustrates the
fact that the “right” cellular behavior is often
difficult to capture with an initial abstraction

model. Often it is necessary to improve the
model in many successive iterations, each step
involving a more accurate estimation of some
model parameters; identification and elimina-
tion of some “structural” problems in the set of
equations; or incorporation of some new unex-
pected insight obtained by closer examination
of an intermediate model. Our thesis is that
rapid successive refinement of a model is facil-
itated through the model checking algorithms
and the underlying formalisms provided by
temporal logic formulae are capable of identi-
fying the missing features in a partial/incom-
plete model.

MATHEMATICAL MODELS,
DIFFERENTIAL EQUATIONS, 
AND CANONICAL FORMS

Biochemical reactions can be modeled with
sets of differential equations. The classical
Michaelis-Menten’s formulation of reaction
speed is essentially differential equations for the
rate of change of the product of an enzymatic
reaction. The parameters of such equation are
the constants Km (Michaelis-Menten constant)
and Vmax (maximum velocity of a reaction). An
S-system is simply a set of ordinary differential
equations where each equation appears in a
particularly simple form and models the rate of
change in the concentration of a product (or
substrate) in terms of its synthesis from and
degradation into other reactants.

Canonical Forms 

A set of differential equations can be rewrit-
ten (recast) in special canonical forms by purely
algebraic transformations and further inclu-
sions of a set of algebraic constraint equations.
S-systems are sets of ODEs in canonical form.
Canonical forms have several advantages over
more general forms of equations, because they
can be more easily manipulated, integrated,
and interpreted in mathematical terms.

The extended S-system model we use—XS-
systems—has a simple canonical form. An XS-
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system is simply a list of expressions describ-
ing the rate of change of a given quantity in a
model (say the concentration of a compound),
plus a set of equations describing some con-
straints on the relationships among some of the
parameters characterizing the model. These
constraints may or may not be needed for the
complete model to be meaningful. Their pres-
ence depends on the system under examina-
tion. Each of the expressions describing a rate
has a very simple form as well: it is simply a
difference between two algebraic power-prod-
ucts (or monomials) one representing synthesis
and the other, dissociation (i.e., it is a S-sys-
tem).  More formally, we have the following.

DEFINITION 1 
An XS-system is defined by a set of pairs of equa-

tions (a rate equation and a constraint equation)

with index variables, i ranging from 1 to n, and j,
from 1 to k. This formalism describes an XS-system
with n equations and k constraints.

An XS-system can be interpreted as the rep-
resentation of a set of flows of reactants within
a network of reactions (2) and thus describes
how to translate a graphical rendition of such
reaction networks into the classical S-system.
Our XS-system formulation naturally captures
these steps in a computer-assisted translation,
which had been traditionally carried out by a
manual manipulation (2).

The XS-system formulation makes one more
distinction between dependent and independent
variables. Independent variables represent
environmental conditions that influence the
behavior of the system but do not influence
themselves in return. Dependent variables are
all the others. Of course, to complete the
description of the system it is necessary to
specify all the rate constants (α’s and β’s) and

the kinetic orders (g’s, h’s, and c’s) of each equa-
tion and constraint.

Characterizing the Behavior of the System
Across Different “States”

Although the dependent and independent
variables of an S-system give a quantitative
description of the reactants (substrates, prod-
ucts, enzymes, etc.) involved in the experiment,
a tool for the qualitative analysis of the system
is still missing. We have developed the theoret-
ical framework for such a tool and provided a
first implementation in the XSSYS system.

We note that the data we can count on in the
development of our tool are not only numerical
(i.e., the solution of the power-law differential
equations defining the S-system) but also logi-
cal, appearing in the form of constraints, known
to the biologist modeling an experiment, and
relating values of the substances involved.

A simple and natural example of a logical
property of many biological systems is the one
describing the existence of a steady-state.
Informally, a system is in a “steady state” when
nothing “changes” in the system as time
passes. More formally, for the purpose of our
discussion, the “steady state” is reached when
all the first derivatives of the functions describ-
ing dependent variables become equal to zero
and do not change in the future. The software
tool can check this event by solving an alge-
braic problem to detect the existence of a com-
mon root (this operation may be rather
involved, see [4]).

Very often the biologist not only knows that
in the absence of external stimuli, such a state
must be reached sooner or later, but also knows
what are (at least) the relative values of sub-
stances involved in such a state. Another nat-
ural property involves boundedness of the
reactant concentrations involved in a biological
process and may need to be ascertained as a
precondition to other interesting properties
such as existence of a limit-cycle or steady-state
behavior.

The key to manipulate “qualitatively” these
notions (e.g., the notion of steady-state) lies in
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grouping each instant in time and the corre-
sponding values of each variable into “states.”
In the simplest case we simply denote each
instant in time (our sampled time) as associated
to a “state.” More interesting states (with deteri-
orating computational efficiency implications)
are constructed by grouping several time
instants according to some simple rules, e.g., a
linearization rule that groups states, if their rates
of change are within a user defined parameter.

Such construction yields an “automaton,” a
common abstraction tool used in computer sci-
ence and other engineering disciplines. The
automaton we construct allows us to capture
qualitative features of a biological system, e.g.,
the notion of a steady state. Note that the con-
struction of the automaton will eventually be
hidden from the user. The automaton serves as
a tool to answer queries about the evolution of
the system, and its construction is provided by
the software tool.

DEFINITION 2 
Given an S-system S, the S-system automaton

AS describes a set of qualitative states, S, of the sys-
tem together with rules of state-transitions, ∆.
More formally, an AS associated with S is a 4-tuple
AS = (S, ∆, S0, F), where S ⊆ D1 × ⋅ ⋅ ⋅ × Dn+m is a
(finite or infinite) set of states, ∆ ⊆ S × S is the tran-
sition relation, and S0, F ⊆ S are the initial and final
states, respectively.

The key idea is that the values of the depen-
dent and independent variables uniquely char-
acterize the state of the system and that the
collection of such values, together with a rela-
tion governing the possible transitions, consti-
tutes the automaton qualitatively describing
the behavior of the system.

The subsequent steps consist in providing
the biologist with a language to impose con-
straints on qualitative features of the system
under study. To this end, we introduce a notion
that renders the temporal evolution of the sys-
tem in terms of a trace.

DEFINITION 3
A trace of an S-system automaton AS is a (finite

or infinite) sequence s0, s1, . . . sn, . . . such that s0 is

an initial state (s0 ∈ S0) and there is a transition
rule allowing the automaton to enter si+1 from si,
(∆(si, si+1) holds) for all i ≥ 0. 

A trace can also be defined as:

trace(AS) = 〈〈X1(t) . . .Xn+m(t)〉 | t ∈
{t0 + k step : k ≥ 0}〉,

is called the trace of AE.

A trace of  an S-system automaton is there-
fore a sequence of arrays of values that allows
a complete description of the dynamics of the
reactants within a fixed time [t0, t]. The preci-
sion of the description is parametric in the
value of  the step variable: the smaller the step
the higher the precision.

The following definition is used to “focus”
the automaton on certain dependent values
determined by a fixed subset of variables—
these are the variables used explicitly or implic-
itly in the description of a qualitative property
or needed by the quantitative analysis.

DEFINITION 4 
Given any set of variables U ⊆ {X1, . . . ,Xn+m},

the sequence:

trace(AS|U) = 〈〈Xi(t) | Xi ∈ U〉 : t ∈
{t0 + k step : k ≥ 0}〉,

is called the trace of U. 
If U consists of a single variable Xi the trace is

called the trace of Xi.

Notice that a single trace of the automaton
results when only one “set-up” (e.g., initial
conditions, a set of values for the parameters, a
set of signaling events, etc.) for the system is
being considered. To allow more than one
trace, it is necessary to consider different “set-
ups,” e.g., many possible values for the para-
meters, such as rate constants and kinetic
orders. If multiple traces are available, they can
be combined within a single model containing
different possible evolutions of the system: a
very common situation easily handled by any
branching time temporal logic, which allows a
conceptual clock to split intermittently to
model simultaneous evolutions in many possi-
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ble worlds. Of course, the question of how
many of these traces are necessary to assess the
validity of the model is still open, we envision
our tools to be used in an iterative fashion, con-
verging to a “good” model of the system under
investigation.

Regardless of whether one single trace or
many of them are combined into a unique
model, the number of resulting qualitative
states as defined previously can be prohibi-
tively large and may ultimately be redundant
for a qualitative analysis. To optimize the com-
putational efficiency of the quantitative analy-
sis, we have implemented a collapse operation
combining those states that are indistinguish-
able as the numerical values characterizing
them are same or only differ by an impercepti-
bly small amount. 

A distinct feature of the collapsing operations
is that they can be interleaved with the phase
performing the numerical computation of the
approximate solutions of the power-law differ-
ential equations. This feature guarantees that
the collapse does not impose a heavy computa-
tional burden on the entire system, during the
process of producing a more genuine temporal
logic model (the automaton) for the S-system. 

As a consequence, once this automaton has
been constructed, it provides many different
avenues for performing a qualitative analysis
on the temporal evolution of the S-system, and
studying in parallel (within a single structure)
multiple evolutions and experiments differing
in rate constants and kinetic orders, e.g., wild-
types and many mutants.

Note that the automaton proposed here are
not necessarily unique and one may consider
more complex automata with different seman-
tics and amenable to different logical analysis.
For instance, a timed automaton (with quanti-
tative temporal information or with constraint
labeling the transitions) could be produced at
no additional cost during the same numerical
computation. Currently, other variant auto-
mata are under active investigation and we
anticipate several more novel model automata
to be incorporated into our final tool. In partic-
ular we are investigating how to consider sev-

eral traces at a time and how to build incre-
mentally a Hybrid Automata without loss of
information: this will address the issues of
exhaustivity that must be considered with care
to assess the overall validity of a model.

TEMPORAL LOGIC

Temporal logic (TL) (5,6) has been studied in
depth in the context of systems whose behav-
ior change in time, for instance, computer
hardware, network protocols, and engineering
systems. We omit a detailed introduction to
any or all of many specific TLs that have been
introduced. Instead we concentrate on the
main ideas at the core of these TLs to provide
the intuition about how it can be used in the
analysis of biochemical systems.

Fundamental to a temporal logic is the
notion that time-dependent terms from natural
language, such as “eventually” and “always,”
can be given a precise meaning (semantics) in
terms of the abstract behavior of a system
under discourse. As an example, consider the
following sentence:

The concentration of guanosine triphosphate
(GTP) is equal to x.

Such a sentence is true only in certain cir-
cumstances. Given a biologic system in equi-
librium the above sentence may or may not be
true at any or all instants of time.  In particular,
we can easily construct sentences (in a suitable
natural language) that express the fact that,
given a certain set of initial conditions, the
above sentence will eventually hold true.
Temporal logic precisely formalizes the mean-
ing of the adverb eventually (and other such
“modes”: always, infinitely often, and almost
always) and the resulting semantics lead to a
precise model-checking algorithm for deter-
mining the validity of TL sentences in the con-
text of an automaton.

This particular attribute of TL is very impor-
tant because it concisely captures the notion of
a logical property like “steady-state” and for-
malizes this notion in a simple consistent way
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that is directly handled by the model-checking
algorithm.

Consider a system M and a (simulation)
trace trace(M). If we consider a state s in
trace(M), we can simply check if all the first
derivatives in s are 0. Suppose we have a pro-
cedure that answers yes (or no) when this is the
case. Let us call this predicate, zero_derivative.
Suppose that there actually is a state s’ in
trace(M) where zero_derivative yields yes.
Now, by the rules of TL, the following state-
ment would be true:

Eventually(zero_derivative)

for each instant from the start, at least up until
the instant characterized as state s’.

Now we can expand the language of TL and
introduce a new predicate “steady state” to be
a synonym of the following concept: there
exists an instant (a state s’ in trace(M)) after
which zero_derivative will always be true. More
formally,

steady_state(M)

is defined to be logically equivalent to the fol-
lowing:

Eventually(Always(zero_derivative))

meaning that, when we consider the simulation
(or in vivo) trace of the system there will be a
time where all the rates of change of the sys-
tem’s variables reach 0 and remain at that value.

Alternatively, we could be more selective
and ask whether some specific variable reaches
the steady state. We can determine the answer
as a result of the Definition 4.

steady_state(M, GTP).

Another set of properties that we may want
to express (and subsequently check) is the one
involving “persistence.” In other words, prop-
erties of the form: something is always true (or
false). For instance, we could ask whether in a
given system

Always (GTP > k).

Thus, we query whether the GTP level
always remains greater than k, independent of

other changes occurring during the evolution
of the system.

How to Translate a Statement in 
English into TL

The previous discussion illustrates the main
ideas needed to translate an English sentence
involving temporal claims into a query in TL.
The translation from English to TL is rather
straightforward. Simple conjunctions (“and”s),
disjunctions (“or”s), and negations (“not”s)
can be expressed directly. The corresponding
propositional logic is then augmented with
temporal modes: Always and Eventually.

Now, suppose we wish to determine if (1)
our system reaches a steady state, and (2) the
level of GTP is less than k after a certain
instant. This statement is simply expressed in
TL as

steady_state and 
Eventually(Always[GTP < k]). (a)

Note that the validity of the previous state-
ment is completely determined by the two con-
stituent sub-expressions. Furthermore, the
truth property of the statement requires exam-
ining the entire system trace, because
steady_state is a “global” property, and the sec-
ond conjunct has the same form. To appreciate
the subtleties of TL, consider the following
expression: eventually the system will be in
steady state and the level of GTP will be less
than k.

Eventually(steady_state and 
Always[GTP < k])    (b)

Given the properties of TL, the above
expression (if true) will actually guarantee that
when the system attains the steady state, it also
has a GTP level less than k. This is a different
statement than (a), and it shows how flexible
and yet precise a TL statement can be, without
sacrificing a high degree of expressive power.
In (7), we discuss some of the mathematical
and computational problems associated with
this approach, e.g., the dependency of the
analysis on the density of time points.
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A Simple Example: the Repressilator

As a simple yet very interesting example,
consider the repressilator system constructed
by Elowitz and Leibler (1). First, the authors
constructed a mathematical model of a net-
work of three interacting transcriptional regu-
lators and produced a trace of the interaction
using a traditional mathematical package
(MATLAB®). Subsequently they constructed a
plasmid with the three regulators and collected
data from in vivo experiments to match them
with the predicted values.

The observed trace of the six combined vari-
ables is shown in Fig. 3. The system exhibits an
oscillatory steady state.

Simpathica was used to enter the description
of the repressillator system and to analyze its
behavior. Although this is a simple toy exam-
ple for our application, it still presents a clear
idea regarding how a biologist may use the
Simpathica system.

Figure 4 shows how to use SIMPATHICA to
enter a reactant (in this case pLambdaCI — the
protein LambdaCI). In Fig. 5, a reaction is
inserted in the system and the graphical depic-
tion is immediately visible in the bottom left
frame; in this case, the reaction just entered is a
modulated reaction: the production of TetR is
inhibited by the amount of LambdaCI present.

Figure 6 shows how to enter a second reaction
in the system.

Once all the reactions have been entered,
along with a set of initial conditions, the menu
“Simulation->Run Simulation” will perform
the following steps.

Generate the appropriate set of differential
equations in canonical form. (Simpathica strives
to generate an S-system from a given network—
if it cannot, it generates a GMA-system.)

Start the integrated Octave program (www.
octave.org) to simulate the system.

Finally, we can use our system to verify that
the repressilator system’s variables actually
“oscillate.” We may formulate and test a query
such as the one shown below (for variable
pLambdaCI):

Eventually[not [Always
(pLambdaCI < 0.25)

or Always(pLambdaCI > 0.5)]].

The above query states that the value of the
pLambdaCI variable oscillates1 between the
two extremes of 0.25 and 0.5.

The repressilator example is interesting
because it indicates how well our system scales
when many variables are present in the model.
In a more recent work by Guet et al. (8), the
authors show how to construct plasmids con-
taining many more kinds of promoters (e.g.,
five) modulating these genes, thus potentially
many more gene network topologies. Asking
precise and circumscribed queries about the
behavior of such combinations is much more
preferable to visually examining complex
graphical renditions of the complex interacting
patterns of reactant concentrations.

Cell Biochemistry and Biophysics Volume 38, 2003

Fig. 3. The simulation trace of the repressila-
tor system.
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1A more precise, yet more complex, query would be

Eventually[(pLambdaCI < 0.25)
and Always[(plambdaCI < 0.25)
implies Eventually[plambdaCI > 0.5]]

and Always[(plambdaCI > 0.5)
implies Eventually[plambdaCI < 0.25]]].

This query seems to be common enough to warrant a
"macro"-like steady_state.



Fig. 4. Entering a reactant. The name for the quantity we want to use in the simulation (in this
case pLamdaCI) is entered in the text field along with the initial concentration (upper left frame).

Fig. 5. Entering a reaction. A modulated reaction (production of TetR, inhibited by LambdaCI) is
entered in the system. The rate of the reaction is a = 1. The inhibition effect is expressed by the expo-
nent f = –1, assigning a label to the modulation arrow (the light one originating from the pLacI
field). Note the graphic rendition in the lower right frame. The grayed oval represents the “input”
of the reaction, while the dotted arrow represents the modulation effect of pLacI.



A More Complex Example: 
Purine Metabolism

Let us now revisit in detail the example of
purine metabolism described in (4) and fully
analyzed in (9,10). The pathway for purine
metabolism is presented in Fig. 7. A brief
description of the key reactions follows, and
the reader is invited to examine the more
detailed summaries contained in (2,9,10) as
well as the related literature referenced there.

The main metabolite in purine biosynthesis
is 5-phosphoribosyl-α-1-pyrophosphate (PRPP).
A linear cascade of reactions converts PRPP
into inosine monophosphate (IMP). IMP is the
central branch point of the purine metabolism
pathway. IMP is transformed into AMP and
GMP. Guanosine, adenosine, and their deriva-

tives are recycled (unless used elsewhere) into
hypoxanthine (HX) and xanthine (XA). XA is
finally oxidized into uric acid (UA). In addition
to these processes, there appear to be two “sal-
vage” pathways that serve to maintain IMP
level and thus of adenosine and guanosine
levels as well. In these pathways, adenine
phosphoribosyltransferase (APRT) and hypox-
anthine-guanine phosphoribosyltransferase
(HGPRT) combine with PRPP to form ribonu-
cleotides.

The consequences of a malfunctioning
purine metabolism pathway are severe and can
lead to death. The entire pathway is quite com-
plex and contains several feedback loops,
cross-activations and reversible reactions, and
thus an ideal candidate for reasoning with the
computational tools we have developed.
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Fig. 6. Entering a second reaction. In this case, we enter a new modulated reaction. Note how the
new reaction is rendered in the bottom right frame and how it appears in the reactions list in the
bottom left frame.



In ref. 2, a sequence of models for purine
metabolism is presented alongside an analysis
of how to identify discrepancies with physi-
cally observed data, and how to amend the
current model to explain these discrepancies.

We also show how to formulate queries over
the simulation traces to express various desir-
able properties (or absence of undesirable
ones) that the model should possess. Should
any of these queries “fail,” the model will be
marked for further examination, experimenta-
tion, and correction.

Model 2

Given the purine metabolism model labeled
as “model 2” in (2), and following the example
closely, we start by querying the simulation
trace for the reachability of a steady state. This

property is easily formulated in our framework
with the following query:

steady_state()

A precise definition of the predicate
steady_state in terms of other atomic predi-
cates has been given earlier in this article. In a
similar manner we proceed to other interesting
queries, as illustrated below.

Variation of the initial concentration of PRPP
does not change the steady state.

(PRPP = 10 * PRPP1) implies 
steady_state()

This query will be true when evaluated
against the modified simulation run (i.e., the
one where the initial concentration of PRPP is
10 times the initial concentration in the first run
- PRPP1). Figure 8 illustrates how XSSYS treats
such a query.

Persistent increase in the initial concentra-
tion of PRPP does cause unwanted changes in
the steady state values of some metabolites.

In this case, if the increase in the level of
PRPP is in the order of 70% (see ref. 2), then the
system does reach a steady state, and we
expect to see increases in the levels of IMP and
of the hypoxanthine pool in a “comparable”
order of magnitude. This means that

Always (PRPP = 1.7*PRPP1)
implies steady_state()

will be true over the modified experiment
trace. Note the use of “always” in this TL query
to indicate the persistent increase of the PRPP
value. For a contrast, consider the following
statement:

Eventually(Always 
(PRPP = 1.7 * PRPP1)
implies
steady_state()
and Eventually(Always(IMP 
< 2 * IMP1)) 

and Eventually(Always
(hx_pool < 10*hx_pool1)))

where IMP1 and hx_pool1 are the values
observed in the unmodified trace. The above
statement turns out to be false over the modi-
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Fig. 7. The metabolic scheme of purine
metabolism in human. (Reprinted from ref. 10,
where a full description and further references
may be found.)



fied experiment trace. In fact, the increase in
IMP is approx 6.5-fold whereas the hypoxan-
thine pool increase is approx 60-fold. Figure 9
illustrates how XSSYS treats such a query.

Because the above queries turn out to be
false over the modified trace, we conclude that
the model “over-predicts” the increases in
some of its products and that it should there-
fore be amended.

Modes 3, 4, and “Final”

The following sequence of models (leading
to the “final” one, which is adapted from
[9,10]) improves their response as compared
with known clinical data. Again, we consider
a simple example from (2) where we express
the properties being tested with our TL
language.

TEMPORARY PERTURBATIONS

We reused the model published in (2) and
the data generated with PLAS software with a
variation. The PLAS model reaches the steady
state, and the in silico experiment shows that
when an initial level of PRPP is increased by
50-fold, the steady state concentration is
quickly absorbed by the system. The level of
PRPP returns rather quickly to the expected
steady state values. IMP concentration level
also rises and HX level falls before returning to
predicted steady state values.

These results are tested with the same TL
expressions we described earlier. However, we
need to make a change to our model to make
PRPP increase only after a certain time after the
simulation has started. This change allows us
to reformulate our query as follows:
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Fig. 8. The first example discussed in the context of “Model 2.” The variable X1 is PRPP and the
fact that the initial condition is changed is expressed as stated. 



Always(PRPP > 50 * PRPP1
implies
(steady_state()
and Eventually(IMP > IMP1)
and Eventually(HX < HX1)
and Eventually(Always(IMP 
= IMP1))

and Eventually(Always(HX 
= HX1))

The above query may be interpreted as fol-
lows: an (instantaneous) increase in the level of
PRPP will not make the system stray from the
predicted steady state, even if temporary vari-
ations of IMP and HX are allowed. Figure 10
shows how XSSYS responds to the new query.

CONCLUDING REMARKS

We released a preliminary version of our
software to the DARPA’s Biospice community
(www.biospice.org). Several interesting ques-
tions remain to be further explored; e.g., we are
working toward integrating some time/
frequency analysis  techniques into our tools to
better discriminate different traces, and to
incrementally construct a better model without
losing information (both numerically and sym-
bolically). To get the interested reader to appre-
ciate the challenges posed by this new branch
of computational biology, we list the following
questions.
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Fig. 9. In Model 2 of ref. 2, the level of PRPP is persistently raised to 1.7 of its undisturbed steady
state level. The XSSYS correctly answers the query whether the levels of IMP (variable X2) and the
HX pool (variable X8) are still within acceptable bounds. Notice that the trajectories do not indicate
a flaw in Model 2.
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Reactions Models 

We primarily focused on a simple ODE
model (Differential Algebraic Equations,
DAE) and narrowed this even further to a
model based on S- and XS-systems. Does this
imply that we are accommodating a signifi-
cant deviation from reality? How can a sto-
chastic model representing small number of
molecules interacting pair-wise and randomly
be incorporated?

Numerical Issues 

Many of the operations we propose need to
be carefully analyzed from the numerical ana-

lyst point of view to take into account error
propagation issues.

Hybrid Systems 

Certain interactions are purely discrete and
after each such interaction, the system dynamics
may change. Such a hybrid model implies that
the underlying automaton must be modified for
each such mode. How do these enhancements
modify the basic symbolic model?

Spatial Models

The cellular interactions are highly specific
to their spatial locations within the cell. How

Fig. 10. The in silico trace of the “final model” from ref. 2. We arbitrarily increased the level of
PRPP (variable X1) to more than 250 at time step 100. The XSSYS system correctly answers both
queries. Because of numerical fluctuations we had to ask a less stringent question about the steady
state value of IMP (variable X2) and HX (variable X13).



can these be modeled with richer abstractions
of automata, e.g., cellular-automata? How can
we account for dynamics because of changes to
the cell volume? The time constants associated
with the diffusion may vary from location to
location; how can that be modeled?

State Space 

A number of interacting cells can be mod-
eled by product automata. In addition to the
classical “state-explosion problem” we also
need to pay attention to the variable structure
from the result of (1) cell division, (2) apopto-
sis, and (3) differentiation.

Communication

How do we model the communication
among the cells mediated by the interactions
between the extracellular factor and external
receptor pairs?

Hierarchical Models 

Finally, as we delve into more and more
complex cellular processes, a clear understand-
ing can only be obtained through modularized
hierarchical models. What are the ideal hierar-
chical models? How do we model a population
of cells with related statistics?
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