XS-systems: eXtended S-Systems and Algebraic
Differential Automata for Modeling Cellular
Behavior *

Marco Antoniotti!, Alberto Policriti?, Nadia Ugel', and Bud Mishra!?

! Courant Institute of Mathematical Sciences, NYU, New York, NY, U.S.A.
% Universita di Udine, Udine, (UD) ITALY
3 Watson School of Biological Sciences, Cold Spring Harbor, NY, U.S.A.

Abstract. Several biological and biochemical mechanisms can be mod-
eled with relatively simple sets of differential algebraic equations (DAE).
The numerical solution to these differential equations provide the main
investigative tool for biologists and biochemists. However, the set of nu-
merical traces of very complex systems become unwieldy to wade through
when several variables are involved. Therefore, we propose a novel way
to query large sets of numerical traces by combining in a new way well
known tools from numerical analysis, temporal logic and verification, and
visualization.

In this paper we describe XS-systems: computational models whose aim
is to provide the users of S-systems with the extra tool of an automaton
modeling the temporal evolution of complex biochemical reactions. The
automaton construction is described starting from both numerical and
analytic solutions of the differential equations involved, and parameter
determination and tuning are also considered. A temporal logic language
for expressing and verifying properties of XS-systems is introduced and
a prototype implementation is presented.

1 Introduction

In this paper we reason about issues related to the construction of tools aiming
at helping biologists and biochemists who perform simulation of complex bio-
chemical pathways in conjunction with their experimental activities. The content
of this paper is a work in progress, whose aim is to create a framework where to
bring together several disciplines in a focused way.

Several biological and biochemical mechanisms can be modeled with sets of
relatively simple differential algebraic equations (DAE). The numerical solution
to these differential equations provide the main investigative tool for biologists
and biochemists. The simple (canonical) forms of the differential equations may

* The work reported in this paper was supported by grants from NSF’s Qubic program,
DARPA, HHMI biomedical support research grant, the US department of Energy,
the US air force, National Institutes of Health and New York State Office of Science,
Technology & Academic Research.

II

contrast with the actual “complexity” of the system being modeled, as measured
by the number of variables involved. The set of numerical traces of very complex
systems rapidly becomes unwieldy to wade through when several variables are
involved. To cope with this problem, we propose a novel way to query large sets
of numerical traces by combining in a new way well known tools from numerical
analysis, temporal logic and verification, and visualization.

Our starting reference points are the S-systems, described in [15,16], and
the idea that a natural completion for that approach would be an automaton
summarizing the phases along which the simulated biochemical system passes
during its evolution in time. The automata we are proposing will allow the user
to view and manipulate a, detectably specified, representation of the set of states
through which the system evolves. The approach will mainly serve the following
two purposes:

— Explicitly render the significant changes in the values of substances involved
in the biochemical reactions during the in silico experiment, thereby provid-
ing a better control on the physical plausibility of the latter.

— Provide a precise language for controlling sets of possible experiments, based
on different values of the parameters involved.

The automaton construction is based on the computation of the approximate
numerical solution of the S-system and is performed in two steps: first, starting
from any given time step and from the corresponding approximate numerical
solution for the DAEs, a synchronous automaton whose states are collection
of values for the dependent values is determined. Then, a qualitative analysis
(based on the first derivatives X;’s of the functions expressing concentrations) is
carried out to the effect of collapsing states modeling non-significant variations
in the evolution of the system.

The second operation simply corresponds to finding a set of “linear approxi-
mations” of the function flow as represented in the computed or sampled trace.
We note here some correspondences with some of the work done in the analysis
of Hybrid Systems (cf. [2]), which we will explore in a future work.

The automaton obtained after the second of the above two steps is “asyn-
chronous” (untimed, cf. [2]), as the values of the temporal intervals connecting
collapsed states are ignored, but suitable for a verification analysis of temporal
properties. To this end a (temporal) language suited for such a kind of analysis
is proposed and studied. Moreover, the equivalence relation collapsing states at
different stages of the temporal evolution can be either global (unique) or local,
that is itself a function of time, providing the ability of refining the qualitative
analysis in sensitive regions of the metabolic pathway.

Tools based on temporal specification and verification are widely recognized
as crucial in the realm of embedded reactive systems, and the approach we
present here has many similarities with ideas very much exploited in that area.
Modeling the evolution of a biochemical system as we are proposing consists, in
fact, in seeing the system’s state-sequence as the analogue of a computation, and
different computations as (simulations of) experiments differing for some given

111

parameters’ values. However, a special feature of the biochemical-systems’ mod-
eling arena is its stronger focus on one (or a restricted family of) experiment(s).
This must be contrasted with the case of formal verification of temporal prop-
erties of embedded systems, in which the focus must stand much more on the
careful consideration of all possible computations (in order to be able exclude
the bad one!). In fact, our automata construction can produce different values
as the parameters involved (i.e. time-step, rate constants, exponents, etc.) are
varied at the start. E.g., as a limit to the choice of a smaller time-step in the
construction, we could consider the analytic description of the solution to the
DAE governing the system. The, more abstract, study of the issues related with
families of possible numerical solutions (and hence automaton constructions), is
going to be our next goal.

One of the main features of our approach is the intermixing of both quan-
titative and qualitative modeling, In particular, the qualitative modeling of the
system is supposed to be specified after a quantitative description has been deter-
mined and (numerically) solved. The automaton is in fact obtained by “gluing”
together different representations of possible evolution of the system. This sort of
bottom-up automata construction is one of the characterizing aspects of our pro-
posal, the other being the idea that the notion of state of the system should be
less restrictive than the one usually employed in formal verification and strictly
based on variables’ values. Notice, finally, that the proposal we are putting for-
ward could be discussed in the context of regulatory pathways modeling as well.
We will discuss the details of this application in a future work.

Preliminaries

In the following we will build on ideas introduced in [15,16] (from which we will
borrow also most of the notation) and, e.g., [5].

S-systems. The basic ingredients of an S-system are n dependent variables to be
denoted X1, ..., X,, mindependent variables X,,41,...,X;n andlet D1, ..., Dy
be the domains where the n 4+ m variables take value. We augment the form de-
scribed in [15,16] with a set of algebraic constraints which serve to characterize
the conditions under which a given set of equations is derived from a set of maps.
The justification for this construction is beyond the scope of this paper and it
appears elsewhere.

The basic differential equations constituting the system take the general form:

Xz(t) = Vi+(X1(t)7 e JXm(t)) - Vi_(Xl(t)J e JXm(t))’ (1)

for each dependent variable X; (see [16] for a complete discussion and justifica-
tion of the assumptions underlying the format of the above equation). The set
of algebraic constraints take the form

{Ci(X1(2),..., Xm(t)) = 0} (2)

v

The above equations take, in general, the following power law form:

n+m n+m

%= o [] X% -5 T X")
j=1 j=1

n+m
Cj(Xl(t)a"'aXm(t)):Z (7]' H lejk) =0 (4)

k=1

where the a;’s and 3;’s are called rate constants and govern the positive or nega-
tive contributions to a given substance (represented by X; as a function of time)
with other variables entering in the differential equation with exponents to be
denoted as g;;’s and h;;’s. The ; are called rate constraints acting concurrently
with the exponents f;; to delimit the evolution of the system over a specified
manifold embedded in the n + m-dimensional surface. Note that we have a; > 0
and B; > 0 for all i’s.

A gystem of differential equations (power-laws) such as the one above can
be integrated by either symbolically — in particularly favorable cases — or by
numerical approximation. The particular S-system “canonical” form allows for
very efficient computations of both the function flows X; and the derivative
field X; [11]. In the following we will concentrate on the “numerical” case and
we will also exploit the special nature of the S-system traces for our Temporal
Logic“query language”. We will address the “symbolic” case in a much more
general way in a future work. When a numerical approximation is involved, the
notion of time-step “step” becomes central to our considerations.

Example 1. Consider the following example consisting of the pathway of a so-
called repressilator system [7]. The metabolic map corresponding to the above
system is shown in Figure 1 (a). The repressilator system metabolic map involves
six variables X7, ..., Xs, the first three of which (namely X; ,X» and ,X3) are
independent while the remaining are dependent.

The following is the S-system corresponding to the above metabolic map:

> h
Xl = Ole?‘?wXZM - ﬂle .
Xy = ainq21X5_q25 _ /32X2hzz;

(o = 932 g h
X3 = ag X X% — By Xhoo,

with X4, X5, and Xg as controls (independent variables).
Figure 1(b) shows the oscillatory trace of the system (cf. [7] for a discussion of
the numerical and analytical analysis of the system).

Related works. Many interesting researches are dealing with more or less the
general themes treated in this work.

For example, in [6] the problem of modeling and simulating qualitatively
complex genetic regulatory networks of large dimension is studied. That work,
as well as other along the same line, aims at dealing with situations in which

The Repressilator:
a cyelic, three-repressor, transcriptional network

v
:
- e
(a) Pathway (b) Rendition (c) Simulation

Fig. 1. The repressilator system metabolic map (a) (reprinted from [7]), its rendition
in “cascade” form (b) and its oscillatory trace (c).

the lack of quantitative information forces simulation in a qualitative way, an
assumption that marks the difference with the situation we study here and with
kind of qualitative modeling we propose.

The problem of constructing an automaton from a given mathematical model
of a complex system has also been previously considered in the literature. In
particular, in the control literature, it has been deeply studied by Brockett in
[4]. Our approach here is certainly at a lower level of generality as it deals with
specific mathematical models (S-systems) and, moreover, tries to integrate the
numerical determination of a solution for the system of differential equations
involved with the automata construction.

The kind of formalization and tools we are proposing in this paper could, in
general, be used to study on a more systematic way hypothesis on properties
of complex systems of biochemical reactions. The research by Bhalla et al. in
[3], for example, aims at proving that a sort of “learned behaviour” of biological
systems is in fact stored within the mechanisms regulating intracellular biochem-
ical reactions constituting signaling pathways. For this kind of studies, following
[9], both qualitative and quantitative features of the system under study should
be taken into account and we hope the system we propose can turn out useful
on the ground of its ability to capture and compare temporal evolution of the
system under study.

In [13] Cellerator is presented, a Mathematica package for biological modeling
that bears many similarities with our project here.

Using a Temporal Logic query language to analyze continuous systems is
investigated also in [14], as an extension of the Qualitative Reasoning approach
(cf. [12)).

Finally, in [1] is reported a use of Hybrid Systems in modeling properties of
systems of biochemical reactions. It is very interesting the idea of using the dis-
crete component of the (hybrid) automaton to switch from one mode to another
when (for example) the number of molecules grows over a certain threshold. In
our framework the same effect should be captured in a sort of bottom-up fashion,
by “gluing” different simulations determined with different sets of parameters.

VI

2 XS-systems: S-systems extended with Automata

In this section we describe the general idea underlying the automata construc-
tion. Our starting point are the following property of biochemical metabolic
systems and corresponding S-systems:

— The value of the dependent and independent variables uniquely characterize
the state of the system when normalized with respect to time (and possibly
other values);

— The transitions from one state to the other are not necessarily encoded in
the metabolic map of the system and are parametric with respect to the
value of constants in the S-system.

The idea behind the automata definition and construction we are going to
define is to start with snapshots of the system variables’ values that will con-
stitute the possible states of the automaton. Transitions will be inferred from
traces of the system variables’ values evolution.

On the ground of the above observations we define:

Definition 1. Given an S-system S, the S-system automaton As associated to
S is 4-tuple As = (S, A,S0, F), where S C Dy X -+ X Dypipy is a (finite or
infinite) set of states, A C S x S is the transition relation, and So, F C S are
the initial and final states, respectively.

Final states will be those states in which the simulation reaches a recognizable
end and are supposed to represent “equilibrium” points for the pathway being
modeled.

Definition 2. A trace of an S-system automaton Ags is a (finite or infinite)
SEqUENCE 80, 81, - -y 8n,-- -, such that sg € Sy, A(si, si1) fori > 0. A trace can
also be defined as:

trace(As) = (X1 (t)... Xn(t)) | t € {to + kstep : k € N}),
1s called the trace of As

Clearly, from now on, if the analysis of the system is to be carried out in a
finite interval of time [0,], a k such as the one in the above definition of trace
will vary in {1,... [St’;p 1}

Notice that, for fixed values of the independent variables, a unique trace is
obtained when a simulation is performed. Moreover, while studying a trace of a
system, it can be useful to concentrate (i.e. project) on one or more variables,

which justifies the following definition:

Definition 3. Given any set of variables U C {X1,...,Xn+m}, the sequence:
trace(A5|U) = <<X,(t) | X; € U) 1 te {to + kstep : k€ N}),

is called the trace of U. If U consists of a single variable X; the trace is called
the trace of X;.

VII

Multiple traces arise as we start varying the values in the primary parameter
sets. Collection of such traces, in general, allows one to study the different in-
stances of the simulated metabolic pathway evolution. Such a collection will give
rise to the automaton with corresponding transitions when a suitable equivalence
relation on states is defined.

Construction of a Collapsed automaton. We can easily construct an (in
general unreduced) automaton Ag by simply associating a different state to each
tuple (X1 (t) ... X,(t)) as time grows according to a given time step. In this case
there is a unique trace for the obtained automaton that is therefore called linear
automaton.

Consider the function X;(¢) at times ¢;,t;11,- - -ti+5 as depicted in Figure 2
(a). In this case we have step = t;11 — t; as a result of (fixed) sampling or
numerical integration. We associate the automata 4s to the trace of X; simply
by taking into account each time step. Note that this is not much different
than what it is done by “untiming” a Timed Automata. These automata are
in some way “synchronous”, in the sense that the time elapsed while passing
from one state to the other is known and fixed (with respect to the numerical
trace obtained from a source sampled at “fixed” intervals or from an integration
algorithm employing a “fixed” step size).

In the following, given a collection of linear automata (traces), we will pro-
pose to “glue” them together in a unique automaton capable of modeling various
possible behaviors of the system. However, before that, we propose a method to
collapse states of a linear automaton into equivalence classes capturing qualita-
tively the behavior of the system (along a single trace).

A solution to a given S-system is, in general, determined by a numerical ap-
proximation once the values for the independent (constant) variables are given.
Given a numerical approximation to a solution of our S-system, for any given
time step and any given (dependent) variable X;, a linear automaton correspond-
ing to the trace trace(X;) could be reduced by using the following equivalence
relation R; 5,, which depends on the parameter §;: R;, holds between two states
Xi(t + kstep) and X;(t + (k + j)step) for j > 0, if and only if

| X;(t + kstep) — X;(t + (k—1)step) | < §;.

Notice that the first derivatives of functions expressing the variations of de-
pendent variables, involved in establishing the validity of the above condition,
are available during the numerical computation carried out to solve the under-
lying S-system. Moreover, notice that if the above collapsing is performed on an
independent variable (assumed to be constant), the construction trivializes and
a unique state is obtained. This construction is extended to the full collection of
variables as follows:

Definition 4. The relation Rs holds between two states s, = X (t+k step) and
Skt = X (t+(k+j) step)) with j > 0, if and only if, for eachi € {1,...,n+m},

|X;(t + kstep) — X;(t + (k + j) step)| < 8.

VIII

The collection {0; | 1 <i < n+m} is denoted by 4.

The (simple) idea is to choose as representative in each equivalence class, the
element corresponding to the minimum time in the class. The following pseudo-
algorithm explains how we compute the set of states of the collapsed automata:

Algorithm 1 COLLAPSE_STATES_INCREMENTALLY(J, step,t)
let so = (X1(to) ... Xn(to)) € So;

STATE := (; —initialize the current state
REPR := 0; —initialize the representative of the equivalence
class

while STATE < [Step
STATE := STATE +1;

1 do

... —stmulation proceeds using e.g. Euler’s method
if 36, € 8 (|X¢(to + REPRstep) — X (to + STATE step)| > Ji) then
REPR := STATE;
end if
end while

If the guard of the if-statement in the above algorithm is weakened (e.g.)
restricting the set of variables for which the condition is checked, the effect will
be to “concentrate” on the restricted set of variables and, in general, to producing
less states.

Consider again the function X;(t) described in Figure 2 (a). In Figure 2 (b)
the effects of applying the collapsing algorithm are shown. With respect to X;(t)
we obtain an automata As; which has fewer states

states(As;) = (... (ti;Xj(ti)an(ti))a
(tive, Xj(tiva), Xj(tit2)),
(tivs, Xj(tivs), Xj(tivs))s---)

Now suppose to have a different function Xy (t). We associate to Xy (t) the col-
lapsed automata Agy,, such that

states(As) = (... (ts, Xu(t:), Xi (1)), (tira, Xe(tiva), Xn(tira)), . ..)

i.e. the “landmark” times are t; and t;44 in this case. In order to construct a
useful automata for the analysis tool we construct the merged automata As jy
such that

states(Asy) = (... (¢, X (

(i), X;(t:)

(tit2, (tz+2)=Xj(ti+2))7
(ti), X

() Xj(tits))s - -)

i.e. automata Asjj is an ordered merge of the two automata As;, Asg-

tz+57 (tz+5 y

IX

X1 X

S system trace S system trace
for variable X/ for variable X,
da T t A !
—e—e—e—e—e—o— 7 automata —eo—e——o— 4 collapsed automata
(a) Simple (b) Collapsed

Fig. 2. (a) Simple one-to-one construction of the “trace” automata As for a S-system
S, and (b) the effects of the collapsing construction of the “trace” automata As for a
S-system S.

Normalizing and Projecting. According to the previous remark, in order to cap-
ture state-equivalence modulo normalization we begin with the following defini-
tion:

Definition 5. Given a subset V of the set {X1,...,Xn+m} of variables, we
define the set of states normalized with respect to V as the following set of
tuples:

_ Xi(to + kstep))
S\V_{<1/z-(V,to+kstep) P keNp,

with the v;’s are normalizing functions.

More complex forms of normalization can be obtained when other variable con-
tribute into play. Moreover, notice that when we normalize with a collection of
normalizing functions {v;} defined as v;(U,t) = X; if X; ¢ U, or v;(U,t) = 1
otherwise. Then the normalization corresponds to projecting with respect to the
set of variables U.

3 Pathways Simulation Query System

In this section we briefly outline a language that can be used to inspect and for-
mulate queries on the simulation results of XS-systems. The language is called
ASySA (Automata S-systems Simulation Analysis language) and is used for ex-
pressing and verifying temporal properties of XS-systems and ADA systems.
ASySA is essentially a Temporal Logic language (cf. [8]) with a specialized set of
predicate variables whose aim is to make it easy to formulate queries on numer-
ical quantities. The full rendition and semantics of ASySA is beyond the scope
of this paper. Suffice to say that the standard CTL operators are available in

X

English-ized form®. The main operators in ASySA (and CTL) are used to denote
possibility and necessity over time. E.g. to express the query asking whether a
certain protein p level will eventually grow above a certain value K we write
eventually(p > K).

Extensions: Domain Dependent Queries We augment the standard CTL lan-
guage with a set of domain dependent queries. Such queries may be implemented
in a more efficient way and express typical questions asked by biologists in their
daily data analysis tasks.

— growing(<variable>1, ..., <variable>}) and
shrinking(<variable>1, ..., <variable>},): the growing special operator is
a state formula saying that all the variables mentioned are growing (shrink-
ing) in a given state.

— represses(<variable>,, <variable>5) and
activates(<variable>,, <variable>5): this special predicate is to be inter-
preted as a path formula stating that <variable>; (informally interpreted as
a “gene product”) represses (activates) the production of <variable>.

A Simple Example. Suppose we have a system like the well known repressi-
lator system [7], coded as an S-system, as displayed in Figure 1. One of the
proteins in the system is Lacl. We can easily formulate and compute the follow-
ing query oscillates(lacI_low, lacI_high) which can be translated into a
regular Temporal Logic formula stating

eventually (not (always(lacI_low)) or (always(lacI_high))))

where lacI low = (lacI low < low) and lacI high = (lacI_high > high), for
appropriate values of low < high. The query asks the system whether the main
property of the repressilator system holds over the length of the trace.

Implementation. We have implemented a prototype system embodying the con-
cepts we have described in the previous sections. The system we describe here
is the analysis component of the larger Simpathica (Simulation of Pathways
and Integrated Concurrent Analysis). Figure 3 shows the main windows of the
Simpathica pathway simulation tool and of the XSSYS analysis tool with the
repressilator trace loaded and several queries performed.

4 Conclusions and Future Work

We have presented a “work in progress” that aims to construct a useful anal-
ysis tool by combining in a novel way several tools and techniques from Com-
puter Science, Engineering and Biology/Biochemistry. By combining different

4 We are providing an English form to the standard operators, in order to make the
content of resulting language easier to manipulate for the intended audience, who
has not been exposed to the notation used in Temporal Logic. We also note that,
technically, we are missing EG, since we are only providing always as a rendition of
AG.

XI

(a) Simpathica Main (b) XSSYS Interaction.
Window.

Fig. 3. (a) The Simpathica main window. Reactants are entered on the upper left side
and single reactions are entered in the top right side. Their list and graphical rendition
appears in the bottom quadrants. (b) A view of the main window of the XSSYS XS-
system analysis tool.

and relatively simple components we obtain a synergistic effect that allows us
to construct an efficient and effective analysis tool. We motivated our approach
by analyzing a simple, yet interesting synthetic biological system: the “repressi-
lator” [7].

Future Work. There are several topics we will investigate in our future work.
First of all, since our collapsed automata relies on a “linear” approximation of a
system trace, we will investigate the connections with the body of work on the
analysis of Hybrid Systems (cf. [2]).

We are aware that our approach is be generalizable in several ways. We will
explore ideas from Signal Processing in our future work. The “model checking”
algorithm we have implemented so far is extremely simple minded (yet extremely
efficient), and is exploits the linear and finite nature of the XS-systems traces.
This may turn out to be insufficient when comparing different traces produced
under different conditions. Nevertheless, we conjecture that because of the special
format of the XS-system traces we will be able to construct simple and efficient
algorithms even in that case, without resorting to the full complexity of general
Model Checkers and Theorem Provers.

Finally, the study of the XS-systems’ canonical form poses two sets of prob-
lems. First, the use of XS-systems automata as semantics of S-systems in con-
nection with the modular design of large maps simulating biochemical systems is
still not completely resolved. Secondly, the symbolic manipulation of the DAE,
algebraic constraints and collapsed automata, along with novel property checking
algorithms is still open. We conjecture that the specialized and constrained form
of XS-systems will allow us to successfully walk the fine line between efficiency,
efficacy and expressiveness.

XII

References

1.

10.

11.

12.

13.

14.

15.

16.

R. Alur, C. Belta, F. Ivanc¢i¢, V. Kumar, M. Mintz, G. Pappas, H. Rubin, and
J. Schug. Hybrid modeling and simulation of biological systems. In Proc. of
the Fourth International Workshop on Hybrid Systems: Computation and Control,
LNCS 2034, pages 19-32, Berlin, 2001. Springer-Verlag.

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. -H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The Algorithmic Analysis of Hybrid Systems.
Theoretical Computer Science, 138:3-34, 1995.

U. S. Bhalla and R. Iyengar. Emergent properties of networks of biological signaling
pathways. SCIENCE, 283:381-387, 15 January 1999.

R. W. Brockett. Dynamical systems and their associated automata. In U. Helmke,
R. Mennicken, and J. Saurer, editors, Systems and Networks: Mathematical Theory
and Applications—Proceedings of the 1998 MTNS, volume 77, pages 49-69, Berlin,
1994. Akademie-Verlag.

A. Cornish-Bowden. Fundamentals of Enzyme Kinetics. Portland Press, London,
second revised edition, 1999.

H. de-Jong, M. Page, C. Hernandez, and J. Geiselmann. Qualitative simulation of
genetic regulatory networks: methods and applications. In B. Nebel, editor, Proc.
of the 17th Int. Joint Conf. on Art. Int., San Mateo, CA, 2001. Morgan Kaufmann.
M. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional reg-
ulators. Nature, 403:335-338, 2000.

E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, chapter 16, pages 995-1072. MIT Press,
1990.

D. Endy and R. Brent. Modeling cellular behavior. Nature, 409(18):391-395,
January 2001.

R. Hofestéddt and U. Scholz. Information processing for the analysis of metabolic
pathways and inborn errors. BioSystemns, 47:91-102, 1998.

D. H. Irvine and M. A. Savageau. Efficient solution of nonlinear ordinary differen-
tial equations expressed in S-System canonical form. SIAM Journal on Numerical
Analysis, 27(3):704-735, 1990.

B. Kuipers. Qualitative Reasoning. MIT Press, 1994.

B. E. Shapiro and E. D. Mjolsness. Developmental simulation with cellerator.
In Proc. of the Second International Conference on Systems Biology (ICSB),
Pasadena, CA, November 2001.

B. Shults and B. J. Kuipers. Proving properties of continuous systmes: qualitative
simulation and temporal logic. Artificial Intelligence Journal, 92(1-2), 1997.

E. O. Voit. Canonical Nonlinear Modeling, S-system Approach to Understanding
Complezity. Van Nostrand Reinhold, New York, 1991.

E. O. Voit. Computational Analysis of Biochemical Systems A Practical Guide for
Biochemists and Molecular Biologists. Cambridge University Press, 2000.

