
As new ways of using biological material
to solve difficult computational prob-
lems continue to emerge, several fun-
damental questions arise: Are these

techniques practical? If so, what are the key appli-
cations? Do the techniques scale to larger prob-
lems? Do they give us anything more than a few
elegant theoretical insights into the nature of com-
putation? Ultimately, is this a productive endeavor?

Before exploring these questions, it might be
fruitful to examine a quotation by Richard Feyn-
mann, as it reflects on similar questions in the
context of quantum-mechanical computers:

The discovery of computers and the thinking
about computers has turned out to be extremely
useful in many branches of human reasoning. For
instance, we never really understood how lousy
our understanding of language was, the theory of
grammar and all that stuff, until we tried to make
a computer which would be able to understand
language. We tried to learn a great deal about psy-
chology by trying to understand how computers

work. There are interesting philosophical ques-
tions about reasoning and relationship, observa-
tion, and measurement and so on, which comput-
ers have stimulated us to think about anew, with
new types of thinking. And all I was doing was
hoping that the computer type of thinking would
give us some new ideas, if any are really needed.2

In a similar vein, I argue that although bio-
computing approaches use classical biotechno-
logical tools, ultimately the reasoning and de-
sign style emerging in the biocomputing field
will lead to more sophisticated, robust, and high-
throughput biotechnology—a technology pri-
marily centered around manipulating biological
material in living cells (in vivo), in test tubes (in
vitro), or in computational models (in silico) with
the hope of creating a detailed picture of how
living organisms function.

To develop these ideas, this article focuses on
just one example: using a randomized technique
from the world of computer algorithms to com-
pare two related genomes. This method of
genome comparison, which has many applica-
tions in cancer research, was originally devel-
oped in collaboration with my colleague Mike
Wigler and his laboratory at Cold Spring Har-
bor. The description here, focusing simply on
the problem’s computational aspect, uses some
ideas from a recent article.3
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COMPARING GENOMES
Can it then be that there is…something of use for unraveling the universe to be learned from the philosophy of computer
design?—J.A. Wheeler1

The theory behind biocomputing is to look to biological structures and processes for new ways
of solving difficult computational problems. But this need not be a one-way street: advances
in computing can feed back into the study of biology, leading to better biotechnological tools.
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The problem: Comparing genomes

The motivation for comparing two related
genomes comes from our efforts to understand
the genetic basis of cancer. Roughly, to deduce
what makes a cell go into uncontrolled growth,
we must focus on the genes involved in a cell’s
important decisions about growth, growth arrest,
and cell death (apoptosis). The genes involved in
these processes fall into two categories: oncogenes,
of which there are about 100, and tumor suppres-
sor genes, of which there are about 1,000.

A healthy cell deviates from its normal function
to initiate tumor formation because of various
changes to the genome: amplifications, deletions,
translocations, and point mutations. Both amplifica-
tion and deletion are fluctuations in a gene’s copy
number—the number of occurrences of that gene
in the genome: an amplification increases the
copy number, and a deletion decreases it. Thus,
detecting regions of amplification can lead us to
the locations of oncogenes; detecting regions of
deletion can lead us to tumor suppressor genes.
A translocation occurs when a gene moves from
its original location to another without changing
its copy number, and a point mutation occurs
when a single base pair is replaced by another.
The differences between the genomes from
healthy tissue and those from cancer tissue tell us
a lot about where the oncogenes and tumor sup-
pressor genes might be located. 

Comparing two genomes rapidly appears to be
an elusive goal. Recently, Douglas Hanahan and
Robert Weinberg wrote pessimistically, “At pre-
sent, description of a recently diagnosed tumor in
terms of its underlying genetic lesions remains a
distant prospect. Nonetheless, we look ahead 10
or 20 years to the time when the diagnosis of all
somatically acquired lesions present in a tumor
cell genome will become a routine procedure.”4

Clearly, we cannot simply sequence the genomes
completely and compare them; such an approach
is not cost-effective and won’t be for the foresee-
able future. So instead, my colleagues and I are
focusing on a randomized approach that is quite
common in the computer algorithm field. 

Tools of the trade

Before we get to the algorithm, however, let’s
start with some biological background, leading
to the three key biotechnological operations that
are the tools of our trade.

The usual configuration of DNA is a double he-
lix consisting of two chains or strands coiling
around each other, with two alternating grooves

of slightly different spacing. The backbone in
each strand is made of alternating big sugar mol-
ecules (Deoxyribose residues) and small phos-
phate molecules.

Connected to each sugar molecule is one of
four bases—adenine (A), thymine (T), cytosine (C),
or guanine (G). Reading the sequence of bases
defines the information encoded by the DNA.
Complementary base pairs (A-T and C-G) in the
two strands are connected by hydrogen bonds,
and each of these base pairs forms an essentially
coplanar “rung” connecting the two strands.
This characteristic, known as Watson-Crick com-
plementarity, makes DNA chemically inert and
mechanically stable; hence, it is an ideal mole-
cule for mechanical and computational devices.
However, we can manipulate DNA molecules
with various biochemical tools: scissors, glues,
and copiers.

Scissors: Restriction activity
Type II sequence-specific restriction endonu-

cleases are enzymes that can “cut” a double-
stranded DNA by breaking the phosphodiester
bonds on the two DNA strands at specific target
sites. These target sites, known as restriction sites,
are determined completely by their base pair
composition—usually, a short sequence of four,
six, or eight base pairs. For instance, the restric-
tion enzyme Hpa II cuts DNA at any occurrence
of the tetranucleotide CCGG. Such enzymes
have been extremely useful in biotechnology as
biochemical scissors and biochemical markers, be-
cause they always cut DNA at the same short,
specific patterns. 

In our application, we use restriction enzymes
to cut a genome into small pieces and then se-
lect only a subset of these fragments for further
use as probes. (I’ll explain exactly how we use the
probes when I get into the details of our genome
comparison method.) Because we know exactly
how the restriction enzymes will cut the DNA,
the probes we generate are reproducible, reli-
able, and consistent. Furthermore, parallel rep-
resentations—probe sets selected from two
genomes—preserve gene ratios and hence pro-
vide a crucial tool for our application. 

Glues: Ligation and hybridization
In contrast to scissors enzymes, a DNA ligase

is a cellular enzyme that can join two strands of
DNA molecules by repairing a phosphodiester
bond. We do not make explicit use of DNA lig-
ases in our application, but they are widely used
as a key biotechnological tool. 
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We do focus, however, on the process of hy-
bridization, by which hydrogen bonding between
two complementary, single-stranded DNA frag-
ments (or an RNA fragment and a complemen-
tary single-stranded DNA fragment) creates a
double-stranded DNA (or a DNA–RNA com-
plex). In our application, we use hybridization
primarily to determine whether a short string (a
probe, in our case) appears as a substring in a
longer string (a clone or subgenomic DNA). To
achieve this, we create a DNA fragment encod-
ing the sequence that is complementary to that
of the probe; then we experiment to see whether
the complementary fragment hybridizes to a
DNA fragment encoding the longer sequence. If
it does, the longer sequence includes our probe.

We can parallelize the method by spotting on
a surface several probe sequences as a matrix of a
very large number of spots (several thousand)
and hybridizing all the probes with one or more
clone sequences in parallel. If more than one
clone sequence is involved, this approach lets us
determine whether a particular probe sequence
belongs to any one of the clone sequences. This
technology, embodied as microarrays, has wide-
spread application in measuring gene expres-
sions, classifying genes, mapping markers on the
genome, and detecting polymorphisms.

Copiers: Cloning and PCR
For our purposes, a clone is a rather large DNA

fragment that has been preselected and kept in
a library, which we can use to make many faith-
ful copies. We use four different kinds of clones
in the laboratory: yeast artificial chromosomes
(YACs), which range in size from 1 to 2 million
base pairs (Mb); bacterial artificial chromosomes
(BACs), which range from 100 to 200 thousand
base pairs (Kb); cosmids, which range from 20
to 45 Kb; and lambdas, which range from 2 to
20 Kb. Molecular cloning is an in vivo approach
involving a living host organism (usually the E.
coli bacteria or yeast) that replicates a suitably
modified foreign DNA as if the foreign DNA
were one of its own. The modification involves
combining a cloning vector with the foreign
DNA to be amplified (the insert) to create a cir-
cular recombinant DNA molecule called the
replicon. The cell will not replicate any foreign
DNA without a suitable vector. 

In our application, we use BACs more or less
as measuring devices. If two probes cohybridize
to the same BAC, we know that those two
probes are within a distance shorter than the
length of the BAC. However, hybridizing with

just one BAC at a time would be inefficient. Hy-
bridizing with several thousand randomly se-
lected BACs can simultaneously give us distance
information for many pairs of probes. The fact
that we can make vast numbers of copies of the
same BAC reliably and rapidly is the key to our
approach’s overall robustness. 

PCR, or polymerase chain reaction, is an in vitro
technique for replicating a fragment of DNA to
produce many copies of a short, specific DNA
sequence. The biochemical process involved in
PCR operates iteratively: In the first step, we de-
nature (separate) two strands of the DNA by
heating. In the subsequent step, we add short se-
quences of a single DNA strand (primers), to-
gether with a supply of free nucleotides and
DNA polymerase, to create two double-stranded
copies, each originating from the two comple-
mentary single strands obtained in the earlier
step. The original DNA sequence doubles in
each repetition of the heating and cooling cycle,
resulting in rapid amplification. 

PCR is commonly used as an alternative to in
vivo cloning to amplify DNA material. This
technique finds use in many medical and biolog-
ical applications (measuring gene expressions,
DNA sequencing, and so on), but its most
prominent applications are in forensic science,
where it is used to amplify minuscule traces of
genetic material for DNA fingerprinting.

Sampling rather than sequencing

Now let’s turn to how we use these biotech-
nological tools with a randomized approach to
actually compare genomes. We can sample the
genome uniformly to create a large number of
probes—150,000—located every 20 Kb. These
probes, which are short subsequences of 200 to
1,200 base pairs, come from regions of the
genome that do not share homologous se-
quences elsewhere in the genome, so each probe
is almost surely unique. Our approach then boils
down to determining the relative locations of
these probes in the two genomes: their relative
ordering, their presence (possibly multiple
times) or absence, or simply the changes in their
relative distances from each other within a small
chromosomal region.

Thus, if we can create an inexpensive biotech-
nological method of measuring the distance be-
tween any two probes, we can then shift the focus
of our research to the algorithmic problem of find-
ing the probes’ locations along the two genomes,
or even to the simpler problem of determining



JANUARY/FEBRUARY 2002 45

when the relative locations of a small group of
closely clustered probes are perturbed from one
genome to another. Of course, any biochemical
method we develop will be subject to the corrupt-
ing effects of many independent error sources;
modeling these errors will be a key challenge.

The fundamental idea of our algorithm, which
localizes the probes along the genome, comes
from the simple observation that if we can de-
termine the pairwise distances among all the
probes, then we can place these probes along the
genome correctly. If we know the distances with
accuracy, then any three probes satisfy a triangle
equality; with the known locations of any two of
the three probes, we can uniquely determine the
third probe’s location. 

When the pairwise distance data are inaccu-
rate, the triangle equality (and other similarly
higher-order constraints) are violated, and the
distance data is inconsistent. Thus, the algorith-
mic question becomes, “How can the distance
data be minimally perturbed so that they become
consistent?” We can formulate this question as
an optimization problem for a weighted sum-of-
square cost function. Although in the most
pathological context such problems can be com-
putationally infeasible, we have developed a sim-
ple, almost-linear-time probabilistic algorithm
that works well for a carefully designed experi-
ment—for example, choosing the expected num-
ber of probes per clone, the number of hy-
bridization experiments, and so on.3

Thus, the focus of our research moves to the
following key questions: How do we model the
errors in the distance function? How do we de-
sign the experiments’ parameters?

Roughly, a single biochemical hybridization
experiment (conducted with a microarray) as-
signs a discrete value—a “color”—to each probe:
B = blank, R = red, G = green, and Y = yellow. A
sequence of such experiments assigns a color vec-
tor to each probe, and the number of places in
which these color vectors differ for any two
probes gives us a clue about the distance between
these two probes. Thus, we derive the distance
metric between two probes from a Hamming
distance between every pair of color vectors as-
signed to the probes. As we conduct a succession
of these hybridization experiments, the Ham-
ming distance between two probes is incre-
mented by one every time the probes disagree
on the outcomes of any hybridization experi-
ment. Thus, the probabilistic modeling of the
errors in distance simply involves deriving a con-
ditional probability that the two probes will dis-

agree in an experiment, given that they are some
particular distance apart.

Probes and their distances

To measure the pairwise distances among a
large number of probes, we’ve devised a method
that relies on the available microarray technol-
ogy. The basic technology uses unordered probes
that are microarrayed and hybridized to an orga-
nized sampling of arrayed but unordered mem-
bers of libraries of large insert genomic clones.
In this article, we’ll focus on BACs, but the basic
ideas can be applied to other types of clones,
chromosomal fragments, or random PCR prod-
ucts derived from genomic DNA. (A detailed dis-
cussion of this technology’s challenges as well as
its full potential would include our knowledge of
genome organization, DNA hybridization, repet-
itive DNA, gene duplication, and the varieties of
microarrays. For the sake of simplicity, however,
this article omits these details.)

Imagine a set of P points on a line segment of
length G (representing probes on a chromosome
or a genome, which denotes the collection of all
the chromosomes). Further imagine a set of ran-
dom intervals of length L from the line segment
(representing a BAC or YAC library or the chro-
mosomal fragments contained in a panel of ra-
diation hybrid cell lines). For our purposes, the
line segments will be BACs, and length L will be
160 Kb.

Now, we perform the following array hy-
bridization. We pick two random subsets of K in-
tervals each and denote one set as the red set and
the other as the green set. We assign each point
a color based on whether the point belongs to
neither the union of intervals in the red set nor
the union of intervals in the green set (blank); or
does belong to either the former (red), the lat-
ter (green), or both (yellow). That is, 

• B = blank (¬ red ∧ ¬ green),
• R = red (red ∧ ¬ green),
• G = green (¬ red ∧ green), or
• Y = yellow (red ∧ green).

We can easily achieve these logical steps by an
array hybridization step with microarrays. The P
probes are Watson-Crick complements of short,
“unique” subsequences of the genomes; we can
produce them reliably and in large quantity by
using restriction enzymes, or we can synthesize
them as oligoes. Each probe is spotted at a fixed
physical location on a microarray. 
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Now, if we hybridize a collection of several
BACs to this microarray, the BACs that contain
a subsequence complementary to the probe se-
quence hybridize to the probe. Because these
BACs each possess a color, which we achieve
physically by attaching a colored fluorescent dye,
the probe acquires the colors of the BACs that
it hybridizes to. For instance, if the complement
of the probe sequence is contained in a BAC se-
quence dyed red, but not in any BAC sequence
dyed green, we will see that probe as red. Analo-
gously, we can see the relation between points
and intervals in our earlier discussion to be bio-
chemically determined for the probes and BACs
through hybridization. Thus, array hybridiza-
tion lets us observe a color outcome for each of
the 150,000 probes in a short, constant amount
of time.

The probability that two probes have different
color outcomes in a single array hybridization de-
pends on how far apart they are and monotoni-
cally increases with the distance. Thus, if we can
estimate this probability by several array hy-
bridization experiments, we can estimate the dis-
tance between two probes. We can easily esti-
mate the probability by counting the number of
experiments in which the probes have different
color outcomes and expressing it as a fraction of
the total number of experiments. In other words,
we can present the outcomes of M different ex-
periments as color vectors of length M, one as-
sociated with each probe, and estimate the dis-
tance between two probes from the Hamming
distance between their associated color vectors.
The Hamming distance between two discrete-
valued vectors is defined as the number of posi-
tions where the entries of the two vectors differ.

To explore the relation between the “true” dis-
tance between probes and the Hamming dis-
tance between their color vectors, we proceed as
follows: Represent the probes as points {p1, ...,
pP}. Assume that the probes are independent and
identically distributed (i.i.d.) with uniform ran-
dom distribution over the interval [0,G]. Let S
be a collection of intervals of the genome, each
of length L. Suppose the left-hand points of the
intervals of S are i.i.d. uniform random variables
over the interval [0,G]. Take a small subset—
2K—of intervals S′ ⊂ S, chosen randomly from
S. Divide S′ randomly into two equal-sized, dis-
joint subsets S′ = S′R ∪ S′G, where R indicates a
red color set and G indicates a green color set.
Now specify any point pi in [0,G] and consider
the possible associations between pi and the in-
tervals in S′:

• Point pi is not covered by any interval in S′.
Probe pi hybridizes to no BACs. We say the
outcome is blank, B.

• Point pi is covered by at least one interval of
S′R but no intervals of S′G. Probe pi hy-
bridizes to at least one red BAC and no
green BACs. We say the outcome is red, R.

• Point pi is covered by at least one interval of
S′G but no intervals of S′R. Probe pi hy-
bridizes to at least one green BAC and no
red BACs. We say the outcome is green, G.

• Point pi is covered by at least one interval of
S′R and at least one interval of S′G. Probe pi
hybridizes to at least one green BAC and at
least one red BAC. We say the outcome is
yellow, Y.

We call these events iB, iR, iG, and iY respec-
tively. If we perform a sequence of M such ex-
periments, for each pi we get a sequence of M
outcomes represented as a color vector of length
M. The parameter domain for the full experi-
ment is 〈P, L, K, M〉, where P is the number of
probes, L is the average length of the genomic
material used (for BACs, L = 160 Kb), K is the
sampling size, and M is the number of samples.
The output is a color sequence for each probe.
The sequence corresponding to probe pj is sj =
〈sj,k〉M

k = 1, with sj,k ∈ {B, R, G, Y}.
With the resulting color sequences sj we can

compute the pairwise Hamming distance. Let

• Hi,j = the number of places where si and sj
differ,

• Ci,j = the number of places where si and sj
are the same but si ≠ B, and

• Ti,j = the number of places where si and sj
are B.

The Hamming distance Hi,j defines a distance
metric on the set of probes. The roles of the func-
tions Ci,j and Ti,j will become clear as we go on.

Because the M array hybridization experi-
ments are independent, we must look at any sin-
gle experiment—that is, M = 1 case. Let’s define
events T = (iB ∧ jB), C = ((iR ∧ jR) ∨ (iG ∧ jG) ∨ (iY
∧ jY)), and H = (¬ T ∧ ¬ C). We will compute the
conditional probabilities of these events when
we know the distance between the correspond-
ing probes—that is, x = | pi – pj |.

Given a set of 2K BACs on a genome [0,G],
the probability that none starts in an interval of
length l is (1 – α)l ≈ e–αl, where α = 2K/G. Sim-
ilarly, the probability that no red BACs start in
an interval of length l is (1 – αR)l ≈ exp[-αRl] (and
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the probability that no green BACs start in an
interval of length l is exp[-αGl]), where αR = αG =
K/G = α/2. Let c denote αL = 2KL/G, the cover-
age by the BAC sublibrary S′ ⊂ S.

The diagram in Figure 1 is helpful in comput-
ing the probabilities for events C, H, and T when
x < L. Hence, we can compute various condi-
tional probabilities:

P(T | x ≤ L)  =  exp[ –(αR + αG)(L+x)],

P(iR ∧ jR | x < L)
= exp[–αG(L+x) ]{1 – 2 exp[–αRL]
+ exp[–αR(L+x)]},

P(iG ∧ jG | x ≤ L)
= exp[–αR(L+x) ]{1 – 2 exp[–αGL]
+ exp[–αG(L+x)]},

P(iY ∧ jY | x ≤ L)
= (1 – 2 exp[–αRL] + exp[–αR(L+x) ]) 
× (1 – 2 exp[–αGL] + exp[–αG(L+x) ]) ,

P(C | x ≤ L)
= P(iR ∧ jR | x ≤ L) + P(iG ∧ jG | x ≤ L)
+ P(iY ∧ jY | x ≤ L), and

P(H | x ≤ L) = 1 – [P(T | x ≤ L) + P(C | x ≤ L)].

Similarly, when x ≥ L the probabilities are

P(T | x ≥ L) = exp[– (αR + αG)(2L)],

P(iR ∧ jR | x ≥ L)
= exp[–αG(2L)] {(1 – exp[–αRL])2},

P(iG ∧ jG | x ≥ L)
= exp[–αR(2L)] {(1 – exp[–αGL])2},

P(iY ∧ jY | x ≥ L)
= (1 – exp[–αRL])2 (1 – exp[–αGL])2,

P(C | x ≥ L)
= P(iR ∧ jR | x ≥ L) + P(iG ∧ jG | x ≥ L)
+ P(iY ∧ jY | x ≥ L), and

P(H | x ≥ L)  = 1 – [P(T | x ≥ L)  + P(C | x ≥ L)].

Recall that αRL = αGL = c/2 = KL/G. Let q =
q(x) = P(H) and p = p(x) = P(C). In general, q(x)
and p(x) are complicated functions of x:

(1)

p(x) = P(C) = 1 – e–c + c/2(e–c – 2e–c/2)x + O(x2) (2)

With independent sampling, we now have the
following Binomial probability distribution
functions:

P(Hi,j)∼ Binomial (M, q(x))
P(Ci,j) ∼ Binomial (M, p(x))

By solving equations 1 and 2, and neglecting
higher-order terms, we get
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Figure 1. Computing probabilities for events C, H, and T: (a) set of BACs that covers probe pi but not pj;
(b) set of BACs that covers probe pi and pj; and (c) set of BACs that covers pj but not pi. Note that as 
the distance between pi and pj increases, the probability that a single BAC covers both probes will 
progressively diminish to zero. As a result, in the extreme cases, the only way two probes will receive
the same color would be by hybridizing to two different BACs of the same color. Thus by carefully
choosing the number of BACs of each color in an experiment, you can reliably predict the conditional
probability of each event (C, H, or T) as a direct function of the distance between two probes. Using
Bayes’ theorem, you can then estimate the distance between two probes as a function of the outcomes
of a series of  hybridization experiments. All these pairwise interprobe distances give us the basic means
to determine how the organization of the probes may have changed from one genome to another.
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We can use the following estimator of xij to mea-
sure the distance between two probes:

.

This estimator takes into account the variation
of sample coverage over the genome. Using a
simplifying normal approximation, we have, for
x < L, the measured distance

.

When x ≥ L, similarly we have

.

Here, N(0,1) represents a standard normal dis-
tribution of mean 0 and variance 1.

In summary, our biochemical process lets us
measure the distance between any two probes.
Furthermore, we have a good model of the er-
rors in the measurements, and we can accurately
control the amount of error by appropriately
choosing various experimental parameters such
as K, the number of BACs (affecting parameter
c); L, the clone length; and M, the number of ar-
ray hybridization experiments. We should note
that if two probes are further apart than the BAC
length (L = 160 Kb), the distance measured does
not provide any useful information.

Applications

Now let’s take a look at how we can use the
probe distance technology to compare two
genomes. In the simplest applications, we can
use the probe distance data to find the relative
locations of the probes along the genome. The
information created this way provides us a low-
resolution reference map of the probes. We can
compare this map to a specific genome (for ex-
ample, from tumor tissues) to see which probes
are present multiple times in the genome and
which probes are omitted. The simplest analy-
sis could involve hybridization with whole ge-
nomic DNA to microarrays of probes. If a re-
gion surrounding a probe is missing from the
selected genome, the genomic DNA lacks ma-
terial that could hybridize to the probe. Con-

versely, if a certain region surrounding a probe
has been amplified in the selected genome, the
genomic DNA has material that could hybridize
to the probe in abundance. Applying such an
analysis to cancer genomes could tell us the re-
gions of amplification and deletion, but not
translocations. Nonetheless, this analysis would
be sufficient to find the oncogenes and tumor
suppressor genes.

Although the ideas I’ve just described
are sound in principle, they are im-
practical, because a genome’s com-
plexity is high, and the signal-to-noise

ratio is inadequate to detect all but the grossest
amplifications. My colleagues and I, and other
researchers, have modified the basic technology
in several ways to improve the signal-to-noise
ratio and detect copy number changes accu-
rately—amplifications and deletions are specific
examples.3,5–8

We can further improve the basic technology
by measuring the probe distances with genomic
chromosomal fragments rather than clones.
When we use clones from a library, the distances
measured are distances with respect to a refer-
ence genome; these depend on how the clone li-
brary was created. If we avoid clones and use in-
stead genomic materials from a selected genome
to measure the distances between probe pairs, the
measured distances reflect the locations of the
probes along the selected genome; these mea-
surements are much more informative. As before,
the signal-to-noise ratio in the hybridization cre-
ates problems that we can solve through various
modifications to the basic technology.

In general, comparative genomics has many
applications of the utmost biological significance.
The technology described here can be adapted
to many different applications in those contexts.
Most important, the ideas developed here indi-
cate how the design principles developed for
computer algorithms, information theory, sys-
tems sciences, and so on are likely to find appli-
cations in biotechnology. The greatest impact of
biocomputing will be on biotechnology.
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Further Reading
For the basic ideas of the algorithm described in this article and

their extension to create genomewide maps of probes, see Will
Casey, Bud Mishra, and Mike Wigler.1 Other researchers have
published the algorithms for and the algorithmic complexity of
constructing probe maps, RH maps, and similar physical maps.2–6

Robert Lucito and his colleagues have published the experimental
work as well as the underlying foundations for detecting gene
copy number fluctuations.7 Several publications cover related
ideas, such as the low-complexity representation of genomes,
cloning genomic differences, application to genetic analysis, and
so on.7–9 Finally, the recent book by Charles Cantor and Cassan-
dra Smith provides a good reference for the biotechnology revo-
lution spurred by the human genome project.10
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