
Algorithmic Algebraic Model Checking:
Hybrid Automata and Systems Biology

by

Venkatesh Pranesh Mysore

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 2006

Bud Mishra

c© Venkatesh Pranesh Mysore

All Rights Reserved 2006

To Amma and Appa

—

Also dedicated to the memory of “Balsu Sir” Prof. Balasubramanian

iii

Acknowledgments

I always thought that the Acknowledgements section typically read the same, and

often found the words artificial, contrived and forced, as if to satisfy a requirement.

However, it was only when I began thinking about writing my thesis that I truly

appreciated the inner calling to acknowledge. One cannot but bewilder at the im-

probability of events that had to all occur to make such an accomplishment as a

Doctorate in Philosophy possible. I am now filled with an urge to thank the many

persons and events who played a part in making this momentous achievement pos-

sible. The list is long, but certainly incomplete – so apologies in advance for all

omissions.

I would first like to express my deepest and warmest gratitude to my thesis com-

mittee – Prof. Bud Mishra, Prof. Amir Pnueli and Prof. Jane Hubbard, for providing

the research direction that was fundamental to the development of most of the ideas

discussed in this thesis. They paid attention to my long presentations patiently, and

encouraged me to work harder and with greater rigor, by providing critical and timely

feedback. The breadth and depth of my research – I owe completely to their experi-

ence and wisdom. Prof. Mishra’s incredible breadth of knowledge and his tremendous

grasp of the state of the art of so many disconnected fields has been extremely in-

spiring. He played a foundational role in conceiving a multitude of ideas during our

discussions, some of which have found a home in my thesis. Similarly, I am honored

to have had Prof. Pnueli, an ACM Turing Award winner, in my thesis committee. His

humility, simplicity, humor and reassuring spirit, not to mention his model checking

iv

courses, saw me through my Ph.D. He goaded and assisted me in much of my work,

though often indirectly and implicitly. I was equally fortunate with my third advisor

– Prof. Hubbard, another prolific researcher with an unassuming nature. Though

I could not exploit the opportunity to learn from her extensively during my Ph.D.,

Prof. Hubbard was responsible for my choosing to work on metabolic networks, and

indirectly ensured that I address my original Systems Biology motivation.

I would like to thank the NYU Bioinformatics Group for providing a vibrant re-

search environment, and providing me financial support throughout my study. Prof.

Mishra again deserves a special mention for maintaining such a stimulated set of in-

dividuals from diverse departments working on different problems, all under one roof,

in one floor in fact. The opportunity to work full-time before my graduation and

all the travel awards are gratefully acknowledged. New York University’s Computer

Science Department has also been extremely gracious in providing me research and

teaching assistantships whenever required. It is a privilege that is so often taken for

granted. I am also grateful to them for having given me this opportunity to pursue

and realize my scientific ambitions in such a prestigious academic institution, and for

having given me a chance to interact with the eminent faculty of the Courant Insti-

tute of Mathematical Sciences, and to benefit from their remarkable array of courses.

Another scholar pivotal to the development of the algebraic model checking ideas was

Prof. Carla Piazza of the University of Udiné. Her sharp critiques of my research

drafts were often the seeds of newer and better thought-through ideas. Dr. Marco

Antoniotti was also instrumental in cementing my interest in model checking. Prof.

Vijay Saraswat’s guidance and encouragement towards the end of the thesis work was

particularly motivating. On a more informal note, all members of the NYU Bioin-

formatics Group, particularly Ofer Gill, Mathias Heynman and Giuseppe Narzisi,

deserve a mention for their research input, random discussions, group meetings and

of course, many a hearty laugh. Again, Dr. Salvatore “Toto” Paxia’s perennial

technical assistance cannot go unacknowledged.

v

On a very personal note, I’d like to thank my two greatest role models – my fa-

ther Dr. M.B. Pranesh and my mother Smt. Lakshmi Pranesh. As no apotheosis will

suffice, I will just remark that I owe everything completely to them. I am extremely

fortunate to have the blessings of my grandmother Smt. Subhadra Venkateswaran.

On the practical day-to-day level, my wife Meenakshi deserves no ordinary praise for

her astounding patience and tolerance, for being a perennial source of love, wit, joy

and excitement, and most importantly, for making my years as a graduate student

the most memorable time of my life. Rutgers University gave us a lovely home, and

NJ-Transit & PATH ensured I got to work on time! I would also like to thank my

entire family, especially my brothers Mr. Madukar & Mr. Jayanth, my sister-in-law

Mrs. Kavita, my divine niece Ms. Janani Sumitra Jayanth, my in-laws Sri. Venkate-

san & Smt. Jayashree Venkatesan, my uncle Dr. Raghunath and my sister-in-law

Prof. Archana for their continuous supply of happiness, moral support, backing, guid-

ance and encouragement, for their advice, interest, inspiration, e-mail forwards and

not to forget, their never-fading confidence in me! I could not have been luckier on

the familial front, and all my family members are veritably responsible for everything

that I am. Clichéd as such statements might be, they are nevertheless genuine and

heartfelt.

Finally, I feel incredibly lucky to have received such a fantastic education all my

life. From my foundational years at St.John’s Besant Nagar to my high-schooling at

P.S.Senior, my memories of my teachers in Madras continue to brim with warmth and

respect. Without any doubt, it was the IIT coaching classes offered by Prof. Bala-

subramanian, Prof. Ananthan, Prof. Santhanam, Prof. Govindarajan and Prof. K.S.

Ramachandran that helped me realize my full potential, permanently enhancing my

academic life. The four undergrad years that followed at IIT Kharagpur were easily

the most relaxed, liberating and rewarding. However, it was Prof. Thomas Anan-

tharaman, then at the University of Wisconsin at Madison, who was solely responsible

for my choosing to continue for my Ph.D. As his research assistant during my Mas-

vi

ters, I was overwhelmed by his brilliance and humility. It was he who recommended

that I continue my Ph.D. in his colleague’s lab at NYU.

vii

Abstract

The field of Systems Biology strives to hasten our understanding of the fundamen-

tal principles of life by adopting a global systems-level approach for the analysis of

cellular function and behavior. One central problem is modeling, simulation and

analysis of biochemical pathways, leading to the characterization of innate and emer-

gent properties. Hybrid Automata have established themselves as an ideal framework

for capturing the dynamics of such networks of interacting biochemical species. The

reactions are captured in terms of the concentrations of the biochemicals, with their

evolution governed primarily by the laws of chemical kinetics. Discrete states capture

regimes of cellular behavior with different biochemical species and reactions predomi-

nating, while transitions capture the biochemical conditions under which a new set of

flow equations operate. Our goal in this thesis is to aid Systems Biology research by

improving the current understanding of hybrid automata, by developing techniques

for symbolic rather than numerical analysis of the dynamics of biochemical networks

modeled as hybrid automata, and by honing the theory to two classes of problems:

kinetic mass action based simulation in genetic regulatory / signal transduction path-

ways, and pseudo-equilibrium simulation in metabolic networks.

Hybrid automata become decidable for the reachability problem, i.e., amenable

to useful symbolic analysis, only when their expressive freedom is appropriately cur-

tailed. We first inspect and refine the boundary between decidable and undecidable

subclasses of hybrid automata. We provide new constructions to characterize the

minimal extensions necessary for decidable classes like the 2-dim Piecewise Constant

Derivative (PCD) system to become equivalent to the “open” 2-dim Hierarchical PCD

(HPCD) class, and for the “open” 2-dim HPCD class to become undecidable. How-

viii

ever, the low dimensionality constraint that must be met for this class to be decidable

makes it unsuitable for modeling chemical reactions. Our quest for semi-decidable

subclasses leads us to polynomial hybrid systems, which we expand to define the

“semi-algebraic” subclass. This is the widest hybrid automaton subclass amenable to

rigorous symbolic temporal reasoning, and is sufficiently expressive to capture most

Systems Biology. We begin with the bounded reachability problem, and then show

how the dense-time temporal logic Timed Computation Tree Logic (TCTL) can be

model-checked by exploiting techniques from real algebraic geometry, primarily real

quantifier elimination. We also prove the undecidability of reachability in the real Tur-

ing Machine formalism. To help overcome the double exponential complexity of real

quantifier elimination, we then develop approximation strategies for semi-algebraic

hybrid systems by extending bisimulation partitioning, rectangular grid-based ap-

proximation and polytopal approximation. We identify well-behaved subclasses and

develop new optimizations. We also document the simplifications resulting from dis-

cretizing time.

Having developed a rigorous well-defined class of hybrid automata amenable to

algebraic model checking, we return to the Systems Biology domain. We develop a

uniform algebraic framework for modeling biochemical and metabolic networks. We

extend the flux balance analysis based approach for equilibrium characterization. We

thus translate these real-world problems into a form that can exploit the techniques

we previously developed for semi-algebraic hybrid systems. We present some prelim-

inary results using a prototypical tool Tolque. It is a symbolic algebraic dense time

model-checker for semi-algebraic hybrid automata, which uses Qepcad for quantifier

elimination.

The techniques developed in this thesis present a theoretically grounded mathe-

ix

matically sound platform for powerful symbolic temporal reasoning over biochemical

networks and other semi-algebraic hybrid automata. It is hoped that by building

upon this thesis, along with the development of computationally efficient quantifier

elimination algorithms and the integration of different computer algebra tools, scien-

tific software systems will emerge to fundamentally transform the way biochemical

networks (and other hybrid automata) are investigated and understood.

x

Contents

Dedication iii

Acknowledgments iv

Abstract viii

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Systems Biology . 1

1.2 Modeling and Analyzing Biochemical Systems 4

1.3 Motivation and Purpose . 6

1.3.1 The Theory of Hybrid Automata 7

1.3.2 Reducing Biology to a Dynamical System 10

1.3.3 Tolque: A Prototype . 11

1.4 Organization of the Thesis . 11

2 Background: Model Checking Hybrid Automata 14

2.1 Hybrid Systems . 15

xi

2.2 Temporal Logic . 18

3 Modeling and Analyzing Biochemical Systems 20

3.1 The Biology of Cells . 21

3.1.1 Genetic Regulation . 21

3.1.2 Signal Transduction . 22

3.1.3 Metabolism . 23

3.2 The Chemistry of Life . 23

3.2.1 Chemical Kinetics . 24

3.2.2 The Cell as a System of ODEs 25

3.3 Modeling Biology . 26

3.3.1 Logical Modeling . 28

3.3.2 Differential Equations . 29

3.3.3 Stochastic Master Equations 29

3.3.4 Hybrid Systems . 29

3.3.5 Other Methods . 30

3.4 Examples of Biochemical Pathways 31

3.4.1 Delta-Notch . 31

3.4.2 Wnt Signaling . 38

3.4.3 Quorum Sensing . 39

3.4.4 Repressilator and Other Artificial Circuits 42

3.4.5 Yeast Cell Cycle . 44

3.4.6 Bacterial Chemotaxis . 45

3.4.7 Other Examples . 47

3.5 Analyzing Biochemical Models . 49

3.6 Discussion . 52

xii

4 Refining the Undecidability Frontier 54

4.1 Introduction . 55

4.2 Background: Hybrid Automata and Subclasses 58

4.2.1 Timed and Rectangular Automata 59

4.2.2 PCDs and HPCDs . 60

4.3 Open HPCD Subclasses . 64

4.3.1 PCD with Translational Resets 65

4.3.2 Other Open Subclasses . 68

4.4 Undecidable HPCD Extensions . 72

4.4.1 HPCDs with Zeno Executions 74

4.4.2 HPCDs with Integer-Checks 74

4.5 Understanding PAMs . 75

4.5.1 PAM’s Proximity to Undecidability 76

4.5.2 PAM’s Proximity to Decidability 76

4.5.3 An Approximate Reachability Algorithm 77

4.6 Discussion . 79

5 Semi-Algebraic Hybrid Systems 82

5.1 Background . 83

5.1.1 Hybrid Automaton Subclasses 83

5.1.2 Computational Real Algebraic Geometry 86

5.2 Semi-Algebraic Hybrid Automata . 91

5.3 Reachability . 96

5.4 General Undecidability of Reachability 100

5.4.1 Real Turing Machines . 100

5.4.2 General Undecidability Of Reachability 102

xiii

5.5 Discussion . 104

6 Decidability of TCTL Model Checking 109

6.1 Introduction . 109

6.2 Background: TCTL . 111

6.3 Symbolic Algebraic Model Checking 114

6.4 Discussion . 119

7 Approximate Methods 125

7.1 Introduction . 125

7.2 Bisimulation Partitioning . 128

7.2.1 Extended Bisimulation Partitioning 128

7.2.2 Convergent Deterministic Automata 131

7.3 Approximating as a Polytope . 136

7.3.1 Hyper-Rectangular Approximation 137

7.3.2 Hyper-Polygonal Approximation 138

7.4 Rectangular Grid Abstraction . 140

7.4.1 Union of “Griddy” Hyper-Cubes 142

7.4.2 Union of “Isothetic” Hyper-Rectangles 144

7.4.3 Battleship Strategy . 146

7.5 Time Discretization . 149

7.5.1 Background: CTL . 151

7.5.2 Discrete-Time Model-Checking 152

7.5.3 Simpler TCTL Expressions . 159

7.6 Discussion . 160

xiv

8 Metabolic Networks 163

8.1 Introduction . 164

8.2 Background: Metabolism . 168

8.2.1 Analyzing Metabolism . 168

8.2.2 Flux Balance Analysis . 170

8.3 Algebraic Analysis of a Biochemical Dynamical System 172

8.3.1 Motivation . 172

8.3.2 An Algebraic Framework . 173

8.4 Algebraic Analysis of Metabolic Dynamical Systems 174

8.4.1 Detailed Kinetic Mass Action Based Approximation 177

8.4.2 Flux Balance Analysis Based Approximation 182

8.5 Discussion . 186

9 Tolque: An Algebraic Model Checker 189

9.1 Tolque: A Preliminary Prototype . 190

9.2 Survey of Computational Tools . 191

9.2.1 Discrete Model Checkers . 191

9.2.2 Hybrid Model Checkers . 192

9.3 A Case Study: The Delta-Notch Protein Signaling 198

9.3.1 One-Cell Delta-Notch Analysis in Tolque 199

9.3.2 Two-Cell Delta-Notch Analysis in Tolque 204

9.3.3 Summary of other Efforts . 208

9.4 Other Examples . 211

9.4.1 One-State Harmonic Oscillator Example 211

9.4.2 The Repressilator Example . 212

9.5 Discussion . 214

xv

10 Conclusion 216

Appendix 221

Bibliography 238

xvi

List of Figures

1.1 Repressor Hybrid Automaton . 5

3.1 Layout of a typical Biomodeler . 50

3.2 Typical steps in analyzing a biochemical model using numerical simu-

lation . 51

4.1 One-State Tent Map HPCD . 63

4.2 PCD with Translational Resets simulating the Tent Map 69

4.3 Decidable, Open and Undecidable subclasses of HA 80

5.1 Trace of a Hybrid Automaton . 93

5.2 A 3-State Semi-Algebraic Hybrid Automaton 96

5.3 Mandelbrot Hybrid Automaton . 104

6.1 One-Step Until Operator . 115

7.1 Standard Bisimulation Partitioning and its Extended Version 131

7.2 Typical result of cycling over two linear functions 134

7.3 Typical result of cycling over two monotonic functions 136

7.4 Over-Approximating as 1 Hyper-Rectangle 139

7.5 Over-Approximating as 1 Hyper-Polygon 141

xvii

7.6 Over-Approximating using a Rectangular Grid 144

7.7 Over-Approximating using many Hyper-Rectangles 147

7.8 Battleship strategy for identifying candidate vertices 150

8.1 Kinetic Mass Action based approximate analysis of a metabolic dy-

namical system . 181

9.1 One-Cell Delta-Notch Hybrid Automaton 199

9.2 Two-Cell Delta-Notch Hybrid Automaton 205

xviii

List of Tables

3.1 Biochemical Pathways Modeled as Hybrid Automata 31

3.2 Biochemical Pathways Modeled using other Formalisms 32

9.1 Tools for the Analysis of Hybrid Automata 194

.1 Abbreviations used in this thesis . 236

.2 Symbols used in this thesis . 237

xix

Chapter 1

Introduction

1.1 Systems Biology

Advances in biotechnology and genetic engineering have enabled biochemists and ge-

neticists to perform a vast array of experiments rapidly, resulting in the generation of

a huge amount of biological data [228, 148]. Organizations such as the Gene Ontol-

ogy Consortium [131], the Systems Biology Markup Language team [154], the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [165], and the Alliance for Cellular

Signaling [3] face the gargantuan task of organizing the information in the best pos-

sible way [172]. The task of managing these databases (for a list see [53]) is in itself

a huge computational challenge, as discussed in the reviews by Navarro et al. [228]

and Deville et al. [105]. Several software systems and standards have been developed

for creating, updating and managing this information about cellular pathways, events

and behaviors (e.g., Pathway Tools [167], Patika [104], CellML [198]).

However, there is an increasing lag between the rate of data collection and the rate

of information extraction. One of the biggest challenges facing the scientific commu-

nity now is to excavate the biological truths which lie obfuscated in the distributed

1

results of diverse experiments. There are two ways in which computer scientists can

aid this revolution in Biology. The first line of research involves performing statistical

analysis, pattern recognition and other machine learning operations on the data. The

second set of tasks that Computer Scientists have at hand is simulation-based analy-

sis, i.e., model and simulate biochemical systems using computers to test hypotheses,

validate predictions and suggest experiments for Biochemists to carry out. The rela-

tively new terms Bioinformatics and Systems Biology, originally denoting these two

categories respectively [157, 171, 106], are now being used ambiguously, further be-

fuddled by “Computational Biology”, “Computational Chemistry” and occassionally,

“Theoretical Biology”.

Kirschner [170], who remarks that “Scientific fields, like species, arise by descent

with modification”, gives us a comprehensive definition of Systems Biology:

“Systems biology is the study of the behavior of complex biological organi-

zation and processes in terms of the molecular constituents. It is built on

molecular biology in its special concern for information transfer, on phys-

iology for its special concern with adaptive states of the cell and organism,

on developmental biology for the importance of defining a succession of

physiological states in that process, and on evolutionary biology and ecol-

ogy for the appreciation that all aspects of the organism are products of

selection, a selection we rarely understand on a molecular level. Systems

biology attempts all of this through quantitative measurement, modeling,

reconstruction, and theory.”

Liu [197] describes Systems Biology as being “integrative biology with the ulti-

mate goal of being able to predict de novo biological outcomes given the list of the

components involved” ([230] is an exemplary instance), and emphasizes the computa-

2

tional requirements: the ability to digitalize biological output, computational power

for analysis, and algorithms for integrating heterogeneous data. Several insightful ar-

ticles critically evaluating the definition, scope and potential of “Systems Biology” are

continuing to appear [231, 194, 253, 284, 93, 197, 69, 68]. Uniformly, it is hoped that

eventually there will be computational systems that will have access to all published

biological truths (possibly encoded in their models), allowing Biologists to experiment

in an entirely new way (see [169] for a glimpse into the future). Facts not patent may

be extracted through the analysis of simulations, verification by wet-lab experiments,

and iterative model refinement (see Figure 3.1 and Figure 3.2).

The Problem with Biological Problems

Biological problems do not always invite mathematical treatment. The reason is

twofold: (1) There seems to be no inherent formal structure to many of the phenom-

ena, beyond some basic cause-and-effect rules; (2) The experimental data, despite

being superfluous and redundant in some cases, is almost always insufficient and

incomplete.

The technological advancements have propelled the discovery of biochemical truths

at the micro and macro level, all leading up to the conclusion that the assumption

about the lack of inherent formal structure is not warranted. However, since this

attitude change is relatively recent1, much of the current body of biological facts re-

mains analytically uninterpreted in its entirety. Another dimension of the problem

surfaces due to the dynamic nature of cellular behavior, i.e., the time-variation in cel-

lular composition and function, in addition to growth, mitosis, meiosis and motility.

Clearly, a mathematically well grounded approach for expressing the current hypothe-

1“That we are at a crossroads in how to explore biology is not at all clear to many.” [170]

3

ses formally, and checking their mutual consistency automatically is needed to refine,

revise and improve our understanding of biology2. Further, the logical consistency of

the hypothesized “axioms of biology” needs to be verified at all time instants of the

cellular life cycle. Thus, tools like model checking of temporal logic properties are

imperative, if this formalization of a “theoretical biology” is to be attempted.

1.2 Modeling and Analyzing Biochemical Systems

As Aderem[2] points out, “Network biology is in its infancy – future needs range from

the development of new theoretical methods to characterize network topology, to

insights into the dynamics of motif clusters and biological function”. Analysis of the

dynamical properties of complex systems has been performed before in control theory

applications, VLSI circuit verification, program verification, robotics, etc. In this

thesis, we explore how biological processes could be subject to similar analyses [101,

156] and develop the theoretical framework necessary for representing biochemical

networks, for describing their temporal properties and for verifying them algebraically.

Though the focus is on solidifying the theoretical component, we ensure that we

develop decidable algorithms and build a software tool that implements some of the

key concepts of our approach.

Modeling using Hybrid Automata

A dynamical system is defined by a set of mathematical rules, usually ordinary dif-

ferential equations, describing the continuous evolution of the system’s variables with

time. When there are different sets of rules operating at different sets of conditions

2In this thesis, “Biology” stands only for cellular and subcellular biochemical processes, and deals

only with the dynamical behavior of interacting biochemicals in a specific pathway.

4

(the notion of multiple “discrete states”), or when there are variables that change

instantaneously or discontinuously (the notion of “discrete variables” and “discrete

transitions”), the system is set to exhibit both continuous and discrete dynamical

properties. Such a system is a “hybrid” dynamical system, and its formal represen-

tation is termed a hybrid automaton [147, 285].

Example 1.2.1 Consider the repressor mechanism common in molecular biology. A

protein P is produced at a rate p and consumed at a rate c. Its repressor protein R

is always produced at a rate r. When the repressor concentration R exceed a certain

“cutoff” level Rc, it begins to repress the production of protein P . As a result of this

consumption in the repressing reaction, the repressor concentration eventually drops

below a different cutoff Rc2, and the system resumes production of protein P . This

simple abstraction of a common biochemical machinery is modeled using a two-state

hybrid automaton in Figure 1.1.

Figure 1.1: Repressor Hybrid Automaton

Hybrid automata are a very natural way of capturing networks of interacting

biochemicals [6, 213]. As seen in Fig. 1.1, the different discrete states correspond to

different regimes of behavior where different species predominate, leading to different

5

approximations. The flow equations follow from the laws of chemical kinetics, while

the discrete transitions capture the specific conditions leading to a state change,

with a possible reset of variables. Hybrid automata have been very popular in many

engineering disciplines like VLSI, control systems and robotics.

Model-Checking Temporal Logic Properties

The biggest advantage of formally capturing a dynamical system such as a biochem-

ical network as a hybrid system is that the formal reasoning tools developed for

hybrid automata may be exploited. In particular, the technique for proving that

a hybrid automaton satisfies a certain temporal property may be automated for

certain subclasses. The language for formally expressing such queries is temporal

logic, and the procedure for automatically answering the queries is termed model

checking[203, 87, 216]. In addition, if the model checking procedure can answer

queries involving symbolic3 parameters, it becomes an extremely powerful means of

reasoning about the behavior of a system.

1.3 Motivation and Purpose

Mathematical analysis of network structure, classification of networks into functional

modules, and de novo network design will be the keys in understanding Biology

through network analysis [4]. In this thesis, an approach to the modeling and analysis

of biochemical processes is presented. The ideas are developed in logical sequence

and are integrated under the umbrella of “Algorithmic Algebraic Model Checking”

(AAMC) [239, 222, 221, 225].

3In this thesis, “symbolic” and “algebraic” denote the retaining of variables and parameters as

symbols rather than numbers.

6

Over the last decade or so, hybrid automata have emerged as one of the most

suitable formalisms for modeling biochemical networks [102]. Hybrid automata have

been investigated from a theoretical computer science perspective for over two decades

[11, 14, 8, 15, 12]. The only way of analyzing a general hybrid automaton is via

numerical simulation. Researchers have constrained hybrid automata in different

ways to enable efficient analysis. In some cases, even parametric analysis becomes

possible. However, it is not clear what the most general subclass is that is amenable

to symbolic analysis.

1.3.1 The Theory of Hybrid Automata

A fundamental temporal property of a system is reachability: “is a certain end state

reachable from a certain initial state?”. Decidability of reachability is a tangible way

of understanding how unwieldy a subclass is. If it is decidable, it means that any

reachability query that can ever be asked about any member of the subclass can

always be answered, i.e., algorithmically verified. If it is undecidable, it means that

we might encounter queries which we may never be able to answer. Semi-decidability

means that there exists a decision procedure which will terminate when the query is

true, but may never terminate if the query is false.

What is Decidable?

We first try to see if we can identify a decidable hybrid automaton subclass that

is expressive enough to capture biochemical systems. The literature quickly reveals

that simple two and three dimensional hybrid automata can become undecidable [38].

While one could argue that the artificial constructs that lead to undecidability can

never occur in natural biochemical networks, we recall our original goal: to identify

7

the most general theoretical solution, rather than study an efficient subclass. Our first

contribution in this thesis is the sharper characterization of decidable subclasses of hy-

brid systems, by refining the boundary between decidable and undecidable subclasses

[223]. We present new restrictions and extensions of the open subclass Hierarchical

Piecewise Constant Derivative (HPCD) systems[39], which characterize its proximity

to decidability and undecidability.

What is Semi-Decidable?

Having found HPCDs unsuitable for biochemical systems (due to their low dimen-

sionality requirement), we review more general subclasses that are decidable. Linear

systems are not suitable because quadratic terms are predominant in kinetic mass

action based flow equations. O-minimal systems [185] are excellent in terms of con-

tinuous dynamics, but their discrete transitions are extremely restrictive. Then we

encounter polynomial hybrid systems [121, 122] that seem most appropriate. We find

that it has already been shown how many temporal logic queries over polynomial sys-

tems can be solved by transforming them into real quantifier elimination problems,

which are decidable. We rigorously extend this class in an attempt to characterize

the broadest subclass that is amenable to symbolic analysis.

The second major contribution of this thesis is the introduction of a new, broad,

mathematically well-founded subclass, that has the complexity necessary to capture

most Biochemistry accurately. In this subclass “Semi-Algebraic Hybrid Automata”

[239], we restrict the expressions appearing in the automaton description to be semi-

algebraic, i.e., Boolean combinations of polynomial equations and inequalities. This

allows the utilization of the sophisticated mathematical machinery already developed

in the field of Real Algebraic Geometry [212, 214]. We show that bounded reachability

8

in non-zeno4 semi-algebraic hybrid automata is decidable [239]. As an aside, we dis-

cuss the Blum-Shub-Smale model[66] of real computation, and prove that the hybrid

automaton reachability problem is undecidable even in that more powerful frame-

work. We then evaluate semi-algebraic hybrid automata in the context of methods

in literature that rely on quantifier elimination and other symbolic techniques.

Endless Possibilities

Having characterized a suitable subclass, we then try to assess its “analyzability”.

There are several planes along which the reachability analysis can be extended: Is it

possible to solve all model checking queries over some temporal logic? Is it possible to

handle dense time, or is time discretization an implicit part of the algorithm developed

for the reachability problem? Does the algebraic procedure support an enhanced

query vocabulary with non-standard operators and expressions? We address these

motivating questions by showing that the dense-time logic Timed Computation Tree

Logic (TCTL), enhanced with new expressions, is semi-decidable in general, and

decidable in the bounded-time non-zeno case [222]. We talk about the relevance of

these assumptions in the biological context, and discuss related literature. This work

represents a significant step forward in terms of the applicability of symbolic methods,

and establishes semi-algebraic hybrid automata as an extremely powerful framework.

Approximating Decidability

Having shown that a powerful technique for general hybrid automata exists, the

issue that naturally emerges is its practicability and computational complexity. Since

several approximation approaches have been developed for simpler subclasses, we

4A “zeno” dynamical system is one where infinite computation can happen in zero time

9

investigate whether any of them be applied to semi-algebraic hybrid automata. We

show how several existing techniques for approximation like bisimulation partitioning,

using rectangular grids, using polytopes, and time discretization can be applied to

the semi-algebraic domain by non-trivial extension [221]. We also identify some well-

behaved subclasses and present optimizations of these approximate methods.

We show how bisimulation partitioning can be applied to semi-algebraic hybrid

automata. In the process, we also see how linearity leads to decidability, while mono-

tonicity guarantees approximate decidability. Another popular technique for approxi-

mation is over / under approximating by rectangular grids or polyhedra. Here, rather

than trying to simplify the continuous flow equations, we try to see if we can reduce

the complexity of the semi-algebraic sets obtained at each iteration. In the case of

grids, we keep track of unions of numerical intervals, while in polyhedra, we bound

the set using linear terms (lines, planes, etc.). Another more trivial kind of approxi-

mation is time discretization, where points sampled at periodic time-points are used

to interpret a temporal query. We discuss how the time-step of integration can be

made large, without disallowing the intermediate discrete transitions. We also point

out how discretization can be applied in conjunction with the theory developed earlier

and in combination with other approximation methods. We conclude by discussing

when and where the different approximation strategies are likely to work, what sort

of speed-up is possible, etc. We also point out other techniques that remain to be

extended to the semi-algebraic domain.

1.3.2 Reducing Biology to a Dynamical System

Having developed the theory, we return to our motivating problems in Systems Bi-

ology. While the basic case of biochemicals interacting as per kinetic mass action

10

has already been extended to the algebraic domain, we find that metabolic networks,

which have special properties, have not been handled algebraically. We develop a

general algebraic framework for biochemical and metabolic networks [225]. We then

show how metabolic networks, which have special properties, can be characterized

algebraically. We show how fast and slow reactions can be handled effectively, and

also show how the equilibrium description can be extracted from both the kinetic

mass action description and flux balance analysis.

1.3.3 Tolque: A Prototype

We conclude with a brief look at a prototypical implementation: Tolque [222, 224]. It

is a dense-time symbolic algebraic model-checker for semi-algebraic hybrid systems,

that uses Qepcad[151] for quantifier elimination. The double-exponential complexity

of quantifier elimination [90] results in Tolque being impractical for large problems.

However, the ability to address diverse problems algebraically and uniformly becomes

evident in the examples. We demonstrate the tool’s performance on the one-cell and

two-cell Delta-Notch protein-interaction network, and some other simple examples.

1.4 Organization of the Thesis

In this thesis, we suggest a possible confluence of the theory of hybrid automata

and the techniques of algorithmic algebra to create a computational basis for systems

biology. We start by discussing our basis for this choice, as we also recognize its power

and limitations. Admittedly, the work described here is built on biological foundations

that can be faulted for being simple and abstract. We address those issues and present

approximation schemes for simplifying the procedure. We conclude by discussing how

to extend the methodology proposed here, and use a prototypical implementation to

11

analyze the issues in scaling up.

The consistent and cogent techniques that are described in this thesis lay the

foundation of a new research topic: Algorithmic Algebraic Model Checking. In the

next two chapters, we review the fundamentals of the three fields of study that are

relevant to AAMC: Systems Biology, Hybrid Systems and Model Checking. In par-

ticular, Chapter 2 introduces Hybrid Automata and Temporal Logic, while Chapter 3

provides the relevant biochemistry, along with a critical review of the various schemes

for modeling and analyzing biochemical systems. Having surveyed such a diverse set

of sciences, we then present in Chapter 4 an analysis of the open subclasses of hybrid

automata. We start with decidable 2-dimensional Piecewise Constant Derivative sys-

tems (PCDs) and discuss relevant research about extending them to create the open

subclass 2-dim Hierarchical PCD. Our primary contribution here is the refinement

of the proximity of the HPCD class to decidability and undecidability. Effectively, a

clearer picture of the computational power of hybrid automata emerges.

This chapter lays a good foundation for Chapter 5, where we introduce a new

subclass – “Semi-Algebraic Hybrid Systems”. Semi-algebraic hybrid automata repre-

sent the broadest subclass of hybrid systems that are amenable to rigorous symbolic

mathematical analysis. We summarize the results from real algebraic geometry which

enable these computations. We discuss the bounded reachability problem over semi-

algebraic hybrid automata, and also prove the undecidability of reachability in the

Real Turing Machine formalism. In Chapter 6, we solve the algebraic dense-time

model-checking problem over this class. TCTL is used to pose algebraic temporal

logic queries which are then reduced to iterations of the one-step until operator.

That operator is shown to be decidable, and hence most fragments of TCTL become

semi-decidable. Further, we show how the vocabulary of TCTL can be expanded with-

12

out any modification to the computation procedure. In Chapter 7, we address the

double exponential computational complexity of quantifier elimination by exploring

approximation schemes. We show how other techniques applicable for simpler sub-

classes can be extended to the semi-algebraic domain. We characterize well-behaved

subclasses and develop new optimizations. We also document the simplifications that

result from discretizing the hybrid system analysis. Proofs omitted for clarity and

brevity in chapters 4 and 7 are provided in the Appendix 5. Having worked out the

theory necessary for model checking hybrid automata efficiently, we return to our

motivating problems in Systems Biology in Chapter 8. We describe the procedure for

modeling a generic biochemical system, and then present in detail the algebraic tech-

niques for the subclass of metabolic networks. We show how the multi-time-scale and

pseudo-equilibrium properties of these networks can be exploited to perform efficient

algebraic analysis. We demonstrate how the algebraic equilibrium description can be

obtained from direct kinetic mass action models and also from flux balance analysis.

In Chapter 9, we present the prototypical implementation “Tolque”. It is a symbolic

algebraic dense time model checker that can solve semi-algebraic TCTL queries over

semi-algebraic hybrid automata. We document some examples popular in the formal

verification and in the Systems Biology communities. We conclude with a discussion

in Chapter 10, where a critical analysis of the contributions of the thesis is presented.

We discuss the several lines of future work that merit attention, and summarize our

perspective.

5Abbreviations frequently used in the thesis have been tabulated in Table .1 in Section C of the

Appendix

13

Chapter 2

Background: Model Checking

Hybrid Automata

The technical background necessary for this thesis falls under several broad cate-

gories: (1) Systems Biology provides the motivation, introducing us to the problems

we are interested in solving; (2) Hybrid Automata provide the theoretical framework

necessary for modeling these problems of interest; (3) Temporal Logic is the means

of mathematically expressing the properties of the hybrid automata that we want to

prove or disprove; (4) Model Checking is the process of verifying the temporal logic

query over the hybrid automaton model of the original Biological problem; (5) Real

Algebraic Geometry becomes necessary to perform the model checking for the new

expressive subclass of hybrid sutomata that we introduce in this thesis.

In this chapter, we only introduce the fundamentals of temporal logic, model check-

ing and hybrid automata. The other concepts will be introduced in the appropriate

chapters, so as to better motivate their relevance to the thesis 1.

1The interested reader can peruse Sections 5.1.2 and 8.4.1for an introduction to computational

real algebraic geometry

14

2.1 Hybrid Systems

A continuous dynamical system involves a set of variables evolving over time as per

a set of laws. Typically, these laws are differential equations. In addition to these

continuous dynamics, many dynamical systems have discrete properties. Further, the

system evolves as per different continuous dynamics in different modes of operation.

To capture this confluence of continuous and discrete dynamics, the general framework

of hybrid automata 2 was defined [147, 285].

A hybrid automaton can be used to approximate a complex non-linear system

in terms of a model that is partly discrete and partly continuous. It can be under-

stood as a directed graph of discrete states and transitions, which allows arbitrary:

(1) “invariant” expressions dictating when the system can remain within a discrete

state; (2) continuous dynamics (e.g., differential equations / inclusions) in the “flow”

expressions, in each discrete state (continuous evolution with time); (3) conditions

controlling when each transition can be taken, in the “guard” expressions; (4) ex-

pressions describing the change in the values of the variables in the “reset” relations,

during each discrete state transition (instantaneous discrete evolution). A compu-

tation of a hybrid automaton is a series of continuous evolution steps of arbitrary

time-length each, interspersed with an arbitrary number of zero time-length discrete

transition steps, where no continuous or dicrete step violates any of the constraints

of the automaton. Hybrid automata may be formally described thus:

Definition 2.1.1 Hybrid Automata. [239, 222] A k-dimensional hybrid au-

tomaton is a 7-tuple, H = (Z, V , E, Init, Inv, Flow, Jump), consisting of the

2A hybrid automaton typically refers to the mathematical model, while a hybrid system typi-

cally refers to the physical dynamical system that happens to exhibit both continuous and discrete

dynamics.

15

following components:

• Z = {Z1, . . . , Zk} a finite set of variables ranging over the reals R; Ż =

{Ż1, . . . , Żk} denotes the first derivatives with respect to the time t ∈ R during

continuous change; Z ′ = {Z ′
1, . . . , Z

′
k} denotes the set of values at the end of a

discrete change;

• (V,E) is a directed graph; the vertices of V are called control modes, the edges

of E are called control switches;

• Each vertex v ∈ V is labeled by “initial”, “invariant” and “flow” labels: Init(v),

Inv(v), and Flow(v); the labels Init(v) and Inv(v) are constraints whose free

variables are in Z; the label Flow(v) is a constraint whose free variables are in

Z ∪ Ż;

• Each edge e ∈ E is labeled by “jump” conditions: Jump(e), which is a constraint

whose free variables are in Z ∪ Z ′. 2

Let H be a hybrid automaton of dimension k. For any given control mode v ∈ V ,

we denote with Φ(v) the set of functions from R+ to Rk satisfying the constraints

in Flow(v). In addition, for any given r ∈ Rk, we use Init(v)(r) (Inv(v)(r) and

Flow(v)(r)) to denote the Boolean value obtained by pairwise substitution of r with

Z in Init(v) (Inv(v) and Flow(v), respectively). Similarly, for any given r, s ∈ Rk,

we use Jump(e)(r, s) to denote the Boolean value obtained by pairwise substitution

of r with Z and s with Z ′ in Jump(e). The semantics of hybrid automata can now

be given in terms of execution traces as in the definition below.

Definition 2.1.2 Semantics of Hybrid Automata. [239, 222] Let H = (Z, V ,

E, Init, Inv, Flow, Jump) be a hybrid automaton of dimension k.

16

A location ℓ of H is a pair 〈v, r〉, where v ∈ V is a state and r ∈ Rk is an

assignment of values to the variables of Z. A location 〈v, r〉 is said to be admissible

if Inv(v)(r) is satisfied.

The continuous reachability transition relation,
t
−→
C

, between admissible locations

is defined as follows:

〈v, r〉
t
−→
C
〈v, s〉

iff ∃f ∈ Φ(v)

(

f(0) = r ∧ f(t) = s ∧ ∀t′ ∈ [0, t](Inv(v)(f(t′)))

)

.

The discrete reachability transition relation,
0
−→
D

, between admissible locations is

defined as follows:

〈v, r〉
0
−→
D
〈u, s〉 iff 〈v, u〉 ∈ E ∧ Jump(〈v, u〉)(r, s)

A trace of H is a sequence ℓ0,ℓ1, . . ., ℓn, . . . of admissible locations such that

∀i ≥ 0 ℓi
ti−→
C
ℓi+1 ∨ ℓi

0
−→
D
ℓi+1. 2

Effectively, a hybrid automaton may be understood as a set of variables evolving

as per the “flow” equations (continuous dynamics) in the initial state. At a certain

point in time, certain “guard” conditions are satisfied; the hybrid system now has

the choice of taking a discrete transition to a new state, where the variables will

evolve as per a new set of flow equations. As a result of such a transition, the

variables of the system may get reset to new values, described by the “reset” relation.

Alternatively, the system can choose to continue in the current discrete state, and at

any later time instant, take one of the many discrete transitions whose guards are

all satisfiable. However, the system cannot endlessly remain in the current discrete

state: it is forced to jump out of it when it no longer satisfies the state’s “invariant”.

This broad definition imposes no restrictions on the nature of the functions that can

17

appear in the flow, invariant, guard or reset relations. Clearly, the only possible

means of “analysis” in this case is numerical simulation.

The natural course of research has been identifying subclasses of general hybrid

systems that are amenable to efficient analysis. Subclasses like timed automata, rect-

angular automata, piece-wise constant derivative systems and hierarchical piece-wise

constant derivative systems are elaborated in Sec. 4.2. Other well-studied subclasses

like multirate automata, linear systems, time-invariant systems, O-minimal systems

and polynomial systems have been discussed in detail in Sec. 5.1.1. Semi-algebraic

hybrid automata, the new class introduced in this thesis, is defined in Sec. 5.2. The

reader may also benefit from the pictorial representations of different types of hybrid

automata in Figures 1.1, 4.1, 4.2, 5.1, 5.2, 5.3, 9.1 and 9.2.

2.2 Temporal Logic

Model checking using temporal logic is a standard tool for analysis in diverse engi-

neering disciplines like hardware design, embedded systems, communication proto-

cols, computer security, and more recently biochemical pathways. Model Checking

over Kripke structures [178] arose as a viable method for the automatic verification

of artificial systems within the Electrical Engineering community.

Temporal logic (TL) with its linear (LTL) and branching (CTL) time variants

has been used successfully to verify the behavior of several discrete systems model-

ing many applications from engineering [203, 87, 216]. Model checking over hybrid

systems has also made great advances in the last decade [7, 11, 12, 266]. The

discrete time logics CTL and LTL have been extended to dense time to facilitate

characterization of real time and hybrid systems. For linear time temporal logics, the

extensions include Metric Temporal Logic (MTL) [14], Timed Propositional Tem-

18

poral Logic (TPTL) [15], Real-Time Temporal Logic (RTTL) [232], Explicit-Clock

Temporal Logic (ECTL) [140] and Metric Interval Temporal Logic (MITL) [13]. The

branching time extensions include Real-Time Computation Tree Logic (RTCTL) [116]

and Timed Computation Tree Logic (TCTL) [7].

Since TCTL and CTL will be referenced in the course of this thesis, they have

been summarized in Sec. 6.2 and Sec. 7.5.1 respectively. A summary of relevant

model-checking / formal-verification approaches for hybrid automata may be found

in Sec. 5.5, Sec. 6.4 and Sec. 7.6, with a detailed survey of tools in Sec. 9.2.

19

Chapter 3

Modeling and Analyzing

Biochemical Systems

In this chapter, we attempt to understand the problem of modeling and analyzing

biochemical systems. This problem is central to the field of Systems Biology. This

chapter represents the motivation behind this thesis, rather than being an “appli-

cation” example. We establish the following points: (1) Systems Biology is a very

promising field that uses the mathematical and computational sciences to extract

a systems-level understanding of the cellular and subcellular processes underlying

all life; (2) Modeling, simulating and analyzing biochemical networks is one of the

fundamental methodologies employed by Systems Biologists; (3) Hybrid Automata

present an excellent platform for capturing the dynamical behavior of biochemical

networks; (4) Symbolic rather than numerical methods hold the key to unlocking

deeper and more fundamental biological principles, and could potentially shed some

light on whether there indeed exists a universal “theory of life”. We introduce cellu-

lar biology and biochemistry, and then present the different modeling frameworks in

20

existence. We then detail some real biochemical examples before discussing the types

of analyses that can be performed.

3.1 The Biology of Cells

We first introduce the three broad categories into which the vast array of cellular

biochemical processes may be organized: Genetic Regulation, Metabolism and Signal

Transduction.

3.1.1 Genetic Regulation

The oft repeated “central dogma of biology” states that biochemical information in

cells is encoded primarily in the Deoxyribo Nucleic Acid (DNA) molecules. DNA

gets transcribed into messenger Ribo Nucleic Acid (mRNA), and the mRNA then

gets translated into proteins at the ribosomes. Genetic regulation is the process of

modulation of the expression of the relevant genes at the correct locations and times.

Proteins, the products of genes, themselves partake in this genetic regulatory process,

thus giving rise to complex interaction networks. As transcription factors, some of

these proteins interact with regions of the DNA to effect these changes. The binding

of the transcription machinery and the transcription factors to the DNA involves

complex protein-DNA-protein interactions, where, more often than not, the structural

modification of the DNA (such as euchromatin and heterochromatin regions) and the

protein have to be considered.

The rate of gene transcription, the post-transcriptional mechanisms that affect

mRNA half-life / stability and the formation of the mRNA-ribosome complex are

other aspects of genetic regulation. Similarly, there are post-translational mechanism

for protein modification such as phosphorylation of key residues, multimerization,

21

chaperone-guided complex formation, protein-folding control, and genetic control by

small interfering RNA.

3.1.2 Signal Transduction

The cell responds to external signals through receptors, which may be on its surface

or in its cytoplasm. The signal is transmitted to the interior through messengers

which induce the desired response to the external signal. Typically, a ligand binds to

a trans-membrane receptor whose conformation subsequently changes. This change

is detected by proteins bound to it (usually on the cytoplasmic side), or is manifested

as a change in the receptor’s chemical properties. Subsequently, second messenger

molecules amplify the signal and communicate it to the target(s). Alternatively, the

ligand can directly enter the cell through non-specific channels and then bind to the

receptors inside the cell. Small molecules like Calcium often participate in these

pathways, where most of the reactants are enzymatic proteins. The net result of the

signal transduction pathway is an appropriate response by the specific subcellular

component. Very often, the signaling pathway results in the nuclear localization of

transcription factors, leading to the transcription (or shutting down) of corresponding

genes. The binding of the signaling molecule with the receptor, the modification of

the structure of the receptor and associated proteins (with the receptor sometimes

acting as an enzyme) and dispatching of second messengers are the activities near the

cell membrane. Receptor desensitization, internalization and regeneration are other

complex sub-processes, adding to the physical aspects like binding and diffusion.

22

3.1.3 Metabolism

Metabolism1 represents almost all processes that are not genetic regulatory or signal

transducing. The gigantic set of biochemicals needed by the cell are continuously

produced and consumed by complex enzyme catalyzed pathways. These comprise

the metabolic network. They essentially govern the matter and energy cycles of a

cell – the way energy and matter are obtained, transformed and consumed by liv-

ing organisms. Photosynthesis for example is the process by which light energy is

converted into chemical energy during sugar (e.g., glucose) formation. During respi-

ration, the oxidation of glucose transforms the energy into Adenosine Tri-Phosphate

(ATP). While the ATP-cycle and photosynthesis comprise the well-known energy

metabolism, carbohydrate metabolism deals with Glycolysis and Phosphates, lipid

metabolism pertains to Triacyl Glycerol and Fatty Acids and amino acid metabolism

mostly refers to Glutamate and Urea.

Other Processes

There are still more aspects of cellular biology beyond this simple tri-fold character-

ization. These include the biophysics of DNA packaging, protein folding and DNA-

protein interaction, cell adhesion, non-transcriptional regulatory pathways, cellular

compartments and related spatio-temporal phenomena, cell proliferation, and cell

migration.

3.2 The Chemistry of Life

We follow the introduction to Biology with an introduction to chemical kinetics.

1Chapter 8 deals with the modeling and analysis of metabolic networks.

23

3.2.1 Chemical Kinetics

The fundamental law of chemical kinetics states that the rate of a reaction is propor-

tional to the concentration of the reactants. The law can be understood by thinking

about the situation at a molecular level: the probability of a reaction occurring is

directly proportional to the probability of the reactant molecules coming physically

close together. The chances of such a meeting are clearly dependent on the num-

ber of reactant molecules present in a region, in other words, the product of the

concentrations. Its implications are summarized below: 2

Theorem 3.2.1 The Law of Kinetic Mass Action [91, 168, 289]

• For the reaction aA + bB ←→ cC + dD, the rate of the forward reaction vf ≡

kf [A]a[B]b and the rate of the backward reaction vb ≡ kb[C]c[D]d, where kf and

kb are the forward and backward rate constants respectively.

• The rates of the reactions are related to the rate of individual reactants via the

number of molecules as: 1
c
Ċ = 1

d
Ḋ = −1

a
Ȧ = −1

b
Ḃ = (vf − vb).

• If the chemical system is at equilibrium at a given temperature, then the following

ratio is a constant termed the equilibrium constant: [C]c[D]d

[A]a[B]b
=

kf

kb
= Keq, which

is often rephrased as kf [A]a[B]b = kb[C]c[D]d.

• If the system is not at equilibrium, the ratio
kf

kb
is different from the equilibrium

constant Keq. In such cases, the ratio is called the reaction quotient, designated

Q.

• A system not at equilibrium tends to equilibrium i.e., Q→ Keq. 2

2The square brackets “[]” around the chemical species denote their concentrations. The rate of

a reaction is also referred to as its “flux”.

24

The kinetic mass action (KMA) law thus directly yields ordinary differential equations

(ODEs) governing the rate of a reaction, in terms of the concentrations and rate

constants.

The stoichiometric matrix is an alternate form of representing the system of ODEs,

where all rate terms are replaced by corresponding flux variables. This representation

is particularly useful when all derivatives are zero (see Chapter 8), thus reducing the

system of polynomial equations to a linear system.

Note 3.2.1 In nature, the rate of otherwise slow reactions is increased dramatically

by the action of catalysts. Catalysts (typically enzymes) lower the activation energy

of a reaction, thus increasing the number of reactant molecules likely to interact and

produce product. The kinetics of enzyme mediated reactions is often expressed using

specialized equations that represent the solution of the simultaneous equations involv-

ing the enzymes and the reactants.

3.2.2 The Cell as a System of ODEs

Thus, we can write down kinetic mass-action equations for the time variation of the

concentrations of the biochemical species in a cell, in the form of a system of ordinary

differential equations. If one knew all the species xi involved in any one pathway, the

mass-action equations for the system could be expressed in the following form

ẋi = fi(x1, x2, . . . , xn), i = 1, 2, . . . , n.

Each equation above is an algebraic differential equation consisting of two algebraic

terms, a positive term representing synthesis and a negative term representing degra-

dation (see Defn. 8.3.1 for a more explicit formalization).

25

Example 3.2.1 The transcription process can be described by equations of the Hill

type, with its Hill coefficient n depending on the cooperativity among the transcription

binding sites. If the concentrations of DNA and RNA are denoted by xM , yM , etc.,

and those of proteins by xP , yP , etc., then the relevant equations are of the form:

ẋM = −k1xM + k3
1 + θyn

P

1 + yn
P

ẋP = −k2xP + k4xM

where the superscripted dots denote the time-derivatives. For both RNA and DNA, the

degradation is represented by a linear function; for RNA, synthesis through transcrip-

tion is a highly nonlinear but a rational Hill-type function; and for proteins, synthesis

through translation is a linear function of the RNA concentration. In the equation for

transcription, yP denotes the concentration of proteins involved in the transcription

initiation of the DNA, k1 and k2 are the forward rate constants of the degradation of

RNA and proteins respectively, k3 and k4 are the rate constants for RNA and protein

synthesis and θ models the saturation effects in transcription. It is to be observed

that when n = 1, the equation closely resembles the Michaelis-Menten equations that

describe the rate of enzyme mediated reactions at high substrate concentration.

3.3 Modeling Biology

Bork and Serrano [69] emphasize that Systems Biology aims at a quantitative under-

standing of biological systems, with activities ranging “from collections of physiolog-

ical data with quantified molecular parts lists to abstract mathematical modeling of

biological processes”. With the advent of powerful computers and the development

of Genetic Engineering and Biotechnology in the last quarter of the twentieth cen-

tury, a vast amount of raw data (such as the DNA sequence of different species, the

26

time profiles of mRNA and protein expression levels, and protein structures) started

becoming available. Building on the earlier research on cellular composition and

function, the field of Bioinformatics sprouted to process this raw data, using ideas

from statistics and machine learning; an offshoot was the field of Systems Biology,

which aimed to model, simulate and analyze biochemical pathways [157, 171, 106]. It

was hoped that a systems level approach would aid the elucidation of deeper truths

about cellular biology. Subsequently, this categorization / nomenclature dissolved,

with “Bioinformatics”, “Systems Biology” and “Computational Biology” all being

liberally generalized. For instance, Aderem [2] summarizes Systems Biology as be-

ing hypothesis driven, global, quantitative, iterative, integrative, and dynamic; these

characteristics could well apply to traditional Bioinformatics or any of the sister-fields.

Clearly, the field of Systems Biology is still at a state where its very meaning and

scope are being debated (also see Sec. 1.1). A reasonable picture is obtained just by

observing the titles of key articles published on the topic in 2005: on the inherent

ambiguity of the categorization – “The Meaning of Systems Biology” [170], “Systems

biology: in the broadest sense of the word” [284] and “Is there biological research

beyond Systems Biology? A comparative analysis of terms” [68]; on the scope of the

field – “Fundamental issues in systems biology” [231], “Systems Biology: Its Practice

and Challenges” [2] and “Systems Biology, Integrative Biology, Predictive Biology”

[197]; on its potential and future – “Systems biology: where it’s at in 2005” [194],

“Systems Biology: Will it work?” [253], “Systems biology may work when we learn

to understand the parts in terms of the whole” [93] and “Towards Cellular Systems

in 4D” [69].

The problem of modeling, simulating and analyzing biochemical processes is with-

out doubt one of the foci of this young and evolving field. The different players

27

and processes in the biochemical domain may be represented at different levels of

abstraction[101, 156]. Some of the major approaches are summarized below.

3.3.1 Logical Modeling

The state of the reactant is captured through a finite number of abstract-states (where

intermediate expression levels are assumed to have the same behavior), and functions

are used to describe the new states (concentration range) of the chemical species,

given their old states. The transitions between states can be assumed to occur syn-

chronously or (more accurately) asynchronously. In the simplest case, only two states

(“on” and “off”) are used, and Boolean algebra is used to describe the dynamics.

Concurrent Transition Systems [80, 79] and Pathway (Rewrite) Logic [114] are good

expositions of logical modeling. Kappler et al. [166] demonstrate how to extend simple

Boolean networks by using ordinary differential equations to capture the concentra-

tion, while Boolean functions continue to determine the rates of the reactions. The

probability of being in a state is sometimes a more reasonable measure to estimate,

as in the case of Sachs et al. [250] who use Bayesian networks to model cell sig-

naling pathways. Similarly, Shmulevich et al. [264] describe the use of probabilistic

Boolean networks to model genetic regulatory networks and determine the long-term

joint probabilistic behavior of a few selected genes. Platzer et al. [240] simulate the

embryonic development of C. elegans by assuming Boolean states for the genes and

synchronously updating at each time step based on an interaction matrix. Batt et

al. [52] have applied model checking theory on biochemical systems modeled though

qualitative simulation.

28

3.3.2 Differential Equations

If instead the concentrations are represented exactly in the real continuous domain,

the differential equations of the dynamics directly follow from the KMA models. As a

compromise between discrete and continuous representations, qualitative differential

equations can be used with qualitative states corresponding to the different con-

centration ranges [52, 102]. Partial differential equations are necessary for spatially

distributed models, e.g., reaction-diffusion equations.

3.3.3 Stochastic Master Equations

The biochemical system may be treated as stochastic, and the probability of system

being in a certain state (rather than how the state of the system changes with time)

may be estimated [129]. In a stochastic simulation, at each time step the next re-

action and its time of occurrence are estimated, and the state of the system revised

accordingly.

3.3.4 Hybrid Systems

The discrete states of the hybrid system naturally describe regimes of system behavior

which are qualitatively different, in terms of which species and reactions predominate.

The guards and resets of the discrete transitions allow description of the biochemical

conditions under which the system-state changes. The use of hybrid automata for

modeling biomolecular networks has been described by Alur et al. [6] and Mishra

et al. [213]. Amonlirdviman et al. [19] demonstrated the utility of hybrid systems

by modeling Drosophila planar cell polarity. Starting with the S-System formula-

tion of Savageau and Voit[290], Antoniotti et al. [32] used an additional automaton

to broaden the set of representable systems, subsequently using full-fledged hybrid

29

automata [29]. Lincoln and Tiwari [195] detail hybrid automaton modeling of bio-

chemical networks, while Hu et al. [153] describe stochastic hybrid system modeling

of subtilin production in Bacillus subtilis (see Table 3.1 for a list of examples).

3.3.5 Other Methods

Chen and Hofestaedt [81] give a very good review of hybrid Petri nets and demon-

strate its application to quantitatively model and simulate gene regulated metabolic

networks. A slightly extended version - hybrid functional Petri nets have been used by

Nagasaki et al. [226] to capture continuous and discrete events and transitions. Regev

et al. [244] and Curti et al. [97] suggest the use of pi-calculus for biochemical model-

ing, while Phillips and Cardelli have proposed stochastic pi-calculus [237]. Another

popular formalism is statecharts [139], where states and events that cause transitions

between states are used to visually capture system dynamics that naturally allow con-

current, hierarchical and multi-scale modeling. Some applications of statechart-based

modeling of biochemical networks are [113, 163, 120]. Weimar [293] uses the cellular

automata approach to model enzyme catalyzed reactions. Bockmayr and colleagues

have suggested the use of hybrid concurrent constraint programming for biochemical

modeling [67, 117]. Faeder et al. [118] detail a general rule-based modeling approach

where interaction are specified between biochemicals (the components), leading to

the emergence of global behavior. Kohn and colleagues [175, 176] suggest molecu-

lar interaction maps (MIMs) as a standard for representing bioregulatory networks.

While all methods hitherto discussed involve approximating at various levels of ab-

straction, ab initio modeling involves quantum mechanics based simulation at the

atomic or sub-atomic level (large-scale projects include BlueGene[305], NAMD[238],

GROMACS[270] and Desrad[262]).

30

Table 3.1: Biochemical Pathways Modeled as Hybrid Automata

Pathway Models Analyses

Delta & neural net[205], optimization [205],

Notch [135] non-linear ODEs [89], simulation [89],

piecewise affine symbolic methods [126, 222]

hybrid automaton [126] Tolque in Sec. 9.3

Quorum hybrid automaton [6] Charon [6],

Sensing [160] Simpathica [30]

Bacterial non-linear ODEs [269, 62], simulation [269]

Chemotaxis [269, 62] indepdent dynamics automaton[75]

Purine S-System [289], simulation [289],

metabolism [289] XS-System [31] Simpathica [31]

Sporulation qualitative differential qualitative simulation &

in equations [52], model checking [52],

B. subtilis parametric hybrid system [195] symbolic analysis in HybridSAL [195]

Cell polarity partial differential equations[19], simulation [19],

in Drosophila hybrid automata[19, 128] symbolic analysis with MATLAB [128]

3.4 Examples of Biochemical Pathways

In this section, we try to convey the domain of application of the modeling and

analyzing techniques relevant to this thesis by documenting some popular examples.

For the convenience of the reader, the information about pathways and modeling

efforts have been summarized in Table 3.1 and Table 3.2.

3.4.1 Delta-Notch

We first summarize the biochemical details of this complex pathway based on the

review of Greenwald [135], and then present some simple mathematical models. Lin-

12, Notch and glp-1 belong to the LIN-12/Notch family of receptor proteins, while

apx-1, lag-2, Delta and Serrate belong to DSL family of ligand proteins. They are

often referred to as just the “Delta-Notch” pathway, with the specific protein often

31

Table 3.2: Biochemical Pathways Modeled using other Formalisms

Pathway Models Analyses

Wnt non-linear ODEs [193] control theoretic[193],

Signaling [193] simulation [193],

Simpathica [215]

Repressilator [115] non-linear ODEs [115], simulation [115],

S-System [32] Simpathica [32],

Tolque in Sec. 9.4.2

4-Gene Artificial non-linear ODEs [137] simulation [137]

Circuit [137]

Yeast Cell non-linear ODEs [282] simulation [282],

Cycle [282] Simpathica [28],

time-frequency analysis [45]

Mammalian Cell Molecular interaction map [175, 176], CTL–NuSMV–DMC [80, 79]

Cycle [175] Concurrent Transition System[80, 79]

Ras / MAPK non-linear ODEs [206] simulation [63],

Pathway [206] time-frequency analysis [45]

Immune Cellular Automaton[242], IMMSIM [242],

System time-frequency analysis[45],

statecharts [164, 113] simulation [164, 113],

visual summarization [113]

RTK / EGF Pathway Logic [114], Term rewriting & model-checking [114],

signaling linear control system [297] simulation [297]

G-Protein-coupled mechanistic Monte Carlo model [299] Monte Carlo simulation [299]

receptors

FAK-ERK activation Bayesian networks [250] Bayesian analysis [250]

determined by the organism (Caenorhabditis elegans, Drosophila melanogaster, ver-

tebrates, etc.). This receptor-ligand protein-protein interaction has been implicated

in intercellular communication leading to cell fate determination. The mechanism of

lateral inhibition (or lateral specification) whereby one cell expresses a ligand and

tries to force adjoining cells to adopt a different cell fate has been used to explain

pattern formation. The eventual fate of each cell seems to be determined by feedback

32

mechanisms that amplify initial uneven distributions (either random or biased).

In addition to the several roles of the Delta-Notch pathway, its activity has also

been documented in the AC/VU cell fate (Anchor Cell or Ventral Uterine precursor

cell) decision during the C. elegans gonad development and the induction of the

Drosophila wing margin. The complexity of these interactions is exemplified in the

latter case, where two different ligands Delta (from ventral to dorsal) and Serrate

(from dorsal to ventral) compete with the Notch receptors in the wing margin, under a

bias imposed by a fourth protein Fringe which makes Notch prefer Delta over Serrate.

Numb and Suppressor of Hairless (Su(H)) are also involved in related interactions in

Drosophila, while lag-1 and emb-5 are downstream effectors that physically interact

with LIN-12/Notch in C. elegans.

Another well-documented Notch mediated pathway in Drosophila is the specifica-

tion of sensory organ precursors (SOPs), where equivalent proneural cells differentiate

into one SOP and many epidermal cells. The process by which the ligand expression

is repressed following receptor activation during SOP specification is thought to follow

the following route:

Notch + Su(H)
+
−→ EnhancerofSplit − bHLH + Groucho

−
−→ Ac/Sc

+
−→ Delta,

where
+
−→ and

−
−→ denote positive and negative regulation, respectively. In addition,

Notch is thought to undergo positive autoregulation (see [135] for other genes involved

in the Notch pathway, their turnover, processing and trafficking).

One important aspect of the hypothesized pathway-models is that different as-

pects have been experimentally verified in different organisms, and the extrapolation

of results across species is not always justified. Further, lateral specification is just

one of the mechanisms in operation between the Delta and Notch families of pro-

teins, that too, only in certain pathways in certain organisms (for instance see [235]).

33

This complete picture is disturbingly absent in the analysis literature, which is re-

plete with attempts to explain the pattern formation aspect alone, assuming only

the fundamental dynamics of the underlying biochemical interactions (and always as-

suming laternal specification / inhibition). Nevertheless, these approaches represent

a promising starting point for developing more accurate models and performing more

rigorous analyses.

Neural Network Modeling

Marnellos and Mjolsness [205] suggested modeling genes as nodes in recurrent neu-

ral nets, with connection weights corresponding to the strength of interaction. They

modeled genetic regulation of the differentiation of neuroblasts and SOP cells from

proneural clusters of equivalent cells. Their model did not assume even prelimi-

nary knowledge of the Delta-Notch pathway, but instead assumed a lateral inhibition

mechanism.

A gene is assumed to “sum” the inputs from genes in the same cell or in neighboring

cells at time t according to the equation:

ua(t) = ΣbTabvb(t) + Σi∈NΛiΣbT̂abV̂
i
b (t),

where T is the matrix of gene interactions and the vb(t) are the gene product concen-

trations within the cell; T̂ is the matrix of gene interactions with neighboring cells and

the v̂i
b(t) are the product concentrations in neighboring cell i; N is the set of neigh-

boring cells and Λi is a factor depending on the overlap of the cell with neighboring

cell i. Concentration of the product of gene a then changes according to:

dva

dt
= Rag(ua(t) + ha)− λava(t),

34

where g is a sigmoid function, Ra is the rate of production of gene a’s product, ha is

the threshold of activation of gene a and λa is the rate of decay of gene product.

The key to their approach is optimizing gene interaction strengths to fit gene

expression patterns (obtained from literature) using simulated annealing. It is as-

sumed that the optimization will return the model parameters that will lead to the

corresponding biological system reaching the final state from the initial state. Their

method was successfully used to analyze lateral signaling, cell delamination and the

dynamics of proneural cluster resolution, and yielded interesting conclusions and pre-

dictions.

Differential Equation Modeling

Collier et al. [89] proposed a simple model to show that lateral inhibition (via feed-

back) was sufficient to explain much of the pattern formation. Rather than integrating

details of the biochemical mechanisms, they assumed that:

“(1) Cells interact through Delta-Notch signaling only with cells with which

they are in direct contact. (2) The rate of production of Notch activity is

an increasing function of the level of Delta activity in neighboring cells. (3)

The rate of production of Delta activity is a decreasing function of the level

of activated Notch in the same cell. (4) Production of Notch and Delta

activity is balanced by decay, described by simple exponential decay with

fixed rate constants. (5) The level of activated Notch in a cell determines

the cell’s fate: low levels lead to adoption of the primary fate, high levels

to adoption of the secondary fate.”

35

The differential equations that would result from these assumptions have the form:

d(NP/N0)

dτ
= F (D̄P/D0)− µNP/N0

d(DP/D0)

dτ
= G(NP/N0)− ρDP/D0,

where N is the level of Notch activation, D is the level of Delta activity, τ is time,

F is a continuous increasing function such as µ xk

a+xk and G is a continuous decreasing

function such as ρ 1
1+bxh . µ and ρ are positive constants–the rate constants (inverse

lifetimes) for decay of Notch and Delta activity respectively. D̄P denotes the mean of

the levels of Delta activity in the cells adjacent to cell P . Collier and colleagues [89]

showed that the homogenous steady state is unstable while the heterogeneous steady

state is stable under certain conditions.

Hybrid Automaton Modeling

Ghosh and Tomlin [126] proposed a simplified hybrid model to capture pattern for-

mation via lateral inhibition. Each biological cell is modeled as a four state piecewise

affine hybrid automaton, where the multiple states effectively allow the complex non-

linear terms in the Collier model [89] to be simplified into affine terms. Their formal

definition of the hybrid automaton is:

36

H1 = (Q1, X1,Σ1, V1, Init1, f1, Inv1, R1)

Q1 = q1, q2, q3, q4

X1 = (vD, vN)T ∈ R
2

Σ1 = {uD, uN : uD = −vN , uN = Σ6
i+1v

i
D}

V1 = φ

Init1 = Q1 × {X1 ∈ R
2 : vD, vN > 0}

flow 1(q, x) = [−λDvD;−λNvN]T if q = q1

= [RD − λDvD;−λNvN]T if q = q2

= [−λDvD;RN − λNvN]T if q = q3

= [RD − λDvD;RN − λNvN]T if q = q4

Inv1 = {q1, {uD < hD, uN < hN}} ∪

{q2, {uD ≥ hD, uN < hN}} ∪

{q3, {uD < hD, uN ≥ hN}} ∪

{q4, {uD ≥ hD, uN ≥ hN}},

where, vD and vN are the Delta and Notch protein concentrations, vi
D is the

Delta protein concentration in i-th neighboring cell; λD and λN are the Delta and

Notch protein decay constants; RD and RN are the constant Delta and Notch protein

production rates, respectively; hD and hN are the switching thresholds for Delta

and Notch protein production, respectively. All four states are accessible from each

other, with the guard of each transition equivalent to the destination state’s invariant.

Multiple cell models are obtained by composing many such single cell automata (see

Sec. 9.3 for a detailed analysis of this model in Tolque).

37

3.4.2 Wnt Signaling

The Wnt family of proteins is similar to the Delta-Notch family in its pivotal role in

signaling in developmental processes. With the major players in this pathway being

Wnt, Frizzled, Dishevelled, GSK3b, APC, axin, β-catenin, and TCF, the Wnt family

has also been implicated in oncogenesis. Lee et al. [193] developed a mathematical

model for the system taking into account the kinetics of protein-protein interactions,

protein synthesis / degradation, and phosphorylation / dephosphorylation. Here,

Wnt proteins bind cell surface receptors which transduce the signal to β-catenin,

which then activates transcription of Wnt target genes by complex formation with

TCF. The model also involves the formation of unstable core complexes involved

in β-catenin phosphorylation (involving GSK3b, APC and axin) and its subsequent

destruction.

The independent variables of the model are: X2 ≡ Dsha, X3 ≡ (APC* / axin* /

GSK3), X4 ≡ (APC / axin / GSK3), X9 ≡ (β-catenin* / APC* / axin* / GSK3),

X10 ≡ β-catenin*, X11 ≡ β-catenin and X12 ≡ Axin. The dependent variables of

the model are X1 ≡ Dshi, X5 ≡ GSK3, X6 ≡ (APC / axin), X7 ≡ APC, X8 ≡

(β-catenin / APC* / axin* / GSK3), X13 ≡ TCF, X14 ≡ (β-catenin / TCF) and X15

≡ (β-catenin / APC). The dynamics can be described thus:

38

dX1

dt
= −v1 + v2

dX2

dt
= k1W (Dsh0 −X2)− k2X2

dX9

dt
=

k9X3X11

K8
− k10X9

dX10

dt
= k10X9 − k11X10

dX4

dt
= −(k3X2 + k4 + k−6)X4

+k5X3 + k6X5
K17X12APC

0

K7(K17 +X11)

d(X6 +X12)

dt
= v3 − v6 + v14 − v15

d(X3 +X8)

dt
= v4 − v5 − v9 + v10

d(X8 +X11 +X14 +X15)

dt
= −v9 + v12 − v13

dX11

dt

(

1 +
X3

K8
+

TCF 0K16

(K16 +X11)2

)

+
X11

K8

dX3

dt
= v12 −

(

k9X3

K8
+ k13

)

X11.

Lee et al. [193] were able to predict (and subsequently experimentally verify)

that axin and APC promote the formation of degradation complexes in different

ways. Further, the role of axin degradation in amplifying and sharpening the Wnt

signal and the dependence of axin degradation on APC were better clarified. They

also performed control theoretic analysis to derive an explicit expression for tumor

suppression and oncogenicity. Mishra et al. [215] describe the simulation and analysis

of this system within their Simpathica / Valis framework.

3.4.3 Quorum Sensing

Vibrio fischeri is a single cell non-luminescent organism which often “chooses” to exist

as a colony of luminescent symbionts in some fish and squid. This decision is based

39

upon “quorum sensing”, i.e., the knowledge that there is a high density of similar

V. fischeri bacteria in its neighborhood [160]. The quorum sensing is achieved by

the interaction of the inter-cellular communication mediating autoinducer Ai (which

requires the LuxI protein), the luminescent protein luciferase, and the “lux operon”

(which contains the genes for LuxI, luciferase and the transcriptional control factor

LuxR). The binding of Ai to LuxR forms a complex that promotes transcription of

lux genes by binding to the lux box.

Alur et al. [6] proposed a hybrid automaton model of quorum sensing, with three

states corresponding to three levels of the luminescence / lux gene transcription: OFF

(Ai < A−
i), POS (A−

i ≤ Ai ≤ A+
i) and NEG (Ai > A+

i , and hence there is negative

growth). The model uses nine players: x1 ≡ mRNA transcribed from OL, x2 ≡

mRNA transcribed from OR, x3 ≡ protein LuxR, x4 ≡ protein LuxI, x5 ≡ protein

LuxA, x6 ≡ protein LuxB, x7 ≡ autoinducer inside the bacterium Ai, x8 ≡ LuxR:Ai

complex Co, and x9 ≡ autoinducer outside the bacterium Aiex . ṡ = f i(x) where

x = [x1, x2, · · · , x9]
T ∈ R

9, fi = [f i
1, f

i
2, · · · , f

i
9], and i ∈ {OFF, POS,NEG}. The

description of the dynamics is as follows:

40

fOFF
1 = η1(

1

2
c− x1)

fPOS
1 =

η1

4
(3c+

xν81
8

κν81
81 + xν81

8

− 4x1)

fNEG
1 = −η1x1

fNEG
2 = −η2x2

fPOS
2 = fNEG

2 = η2(
xν82

8

κν82
82 + xν82

8

− x2)

f i
3 = η3(x1 − x3)− r37,Ai

x3x7

f i
4 = η4(x2 − x4)− r4x4

f i
5 = η5(x2 − x5)

f i
6 = η6(x2 − x6)

f i
7 = −η7x7 + r4x4 − rmem(x7 − x9)− r37,Rx3x7

f i
8 = −η8x8 + r37,Ai

x3x7

f i
9 = −η7x9 + rmem(x7 − x9) + u

where, in the last seven equations f i
j is independent of the mode. ηi = T0/Hi

where T0 is the characteristic time constant of the system and Hi is the half-life of

molecule xi. νij is a cooperativity coefficient while κij describes the potency of the

regulation of the transcription of mRNA j by protein i. r denotes transformation and

transfer rates. Alur and colleagues [6] then used Charon to investigate its dynamical

properties and were able to verify that an increase in autoinducer concentration lead

to bioluminescence. Antoniotti et al. [30] analyzed the dynamics using Simpathica,

and suggested a procedure for breaking down each of the three states (of Alur’s

hybrid automaton) into a series of simpler states, by combining similar and adjacent

time-course simulation data points using concepts like bisimulation and collapsing.

41

3.4.4 Repressilator and Other Artificial Circuits

Elowitz and Leibler [115] introduced the artificial genetic network – the “repressi-

lator” by combining three repressors in a cyclic series. Their path-breaking exper-

iment involved LacI from E. coli, which inhibits the transcription of tetR from the

tetracycline-resistance transposon Tn10, whose protein product in turn inhibits cI

from l-phage, whose protein product CI inhibits lacI expression.

By factoring in the dependence of transcription rate on repressor concentration,

the translation rate, and the decay rates of the protein and messenger RNA, a reason-

ably accurate model of the system was obtained, where the system either converges

to a steady state or oscillates. The dynamics of the three repressor-protein concen-

trations, pi, and their corresponding mRNA concentrations, mi was described thus

[115]:

dmi

dt
= −mi +

α

(1 + pn
j)

+ α0

dpi

dt
= −β(pi −mi), (i = lacI, tetR, cI; j = cI, lacI, tetR),

where the number of protein copies per cell produced from a given promoter type

during continuous growth is α0 in the presence of saturating amounts of repressor,

and α+α0 in its absence; β denotes the ratio of the protein decay rate to the mRNA

decay rate; and n is a Hill coefficient.

Antoniotti et al. [32] present an S-System formulation of this system, and simulate

and analyze it using Simpathica (also see Sec. 9.4.2 for an attempt at symbolic analysis

of this system by Tolque). The repressilator system can be captured as an S-System

42

as follows:

Ẋ1 = α1X
g13

3 Xg14

4 − β1X
h11
1

Ẋ2 = α2X
g21

1 Xg25

5 − β2X
h22
2

Ẋ3 = α2X
g32

2 Xg36

6 − β3X
h33
3 .

Other Artificial Circuits

The repressilator idea [115] was rigorously extended and all combinations of four genes

were created using plasmids capable of transfecting Escherichia coli, and studied by

an expanded team including Guet, Elowitz, Hsing and Leibler [137]. Here, lac, λ

cI and tet were each made to activate or repress one of the other two genes, while

green fluorescence protein (gfp) was used to measure the outcome. IPTG and aTc

were used to inactivate lac and tet genes. 125 circuits become possible using the five

operons: two LAC-based: PL1, PL2; two λ CI-based: λP−, λP+; one TET-based:

PT.

If x denotes a gene and X its corresponding protein, the equation for x’s tran-

scription is:

[ẋ] = −[x] + α[ρ+ fx(Θ, [Y], [uy])],where

fx(Θ, [Y], [uy]) =
1 + Θ[Y]n + [uy]

k

1 + [Y]n + [uy]k
.

In this equation, the transcription is activated or repressed by a protein Y and Y itself

is modulated by a small molecule uy. Note that, for small values of [uy], fx shows a

sharp transition from a value of 1 (when [Y] = 0) to a value of Θ (when [Y] =∞), as

Y increases. However, for large values of [uy], fx remains at 1 (when [uy] =∞), thus

inactivating the effect of Y . Similarly, the equation for X’s (corresponding protein)

43

translation is:

[Ẋ] = −β([X]− [x]).

3.4.5 Yeast Cell Cycle

Tyson and Novak [282] formalized the hypothesized molecular mechanisms known

to be involved in the cell cycle control into a well-defined model with ordinary dif-

ferential equations. In their model, the key player is the protein kinase Cdk which

requires a cyclin subunit to bind to for activation. Cyclin-bound Cdk initiates the

cell cycle into the G1 phase from the quiescent G0 phase, and subsequently into the

S and G2 phases. The cell controls Cdk activity primarily using the proteolytic ac-

tivity of APC which destroys the Cdk-Cyclin binding and also the cyclin molecules.

Cdh1/APC, CKI (Cyclin dependent kinase inhibitor) and Cdc20 keep the levels of

active Cdk/CycB dimers low, while SK, CycB and Cdk counter the degradation of

CycB and inactivation of CycB/Cdk complex. Some of these interactions are: CKI

binds to CycB/Cdk to form inactive trimers; SK destroys CKI and inactivates Cdh1;

CycB / Cdk inactivates Cdh1 by phosphorylation.

The empirical time-lag between the rise in CycB/Cdk activity and the activation of

Cdc20 is accommodated in their model by assuming that a hypothetical intermediary

enzyme IEP partakes in the process. The dynamics of the system are then described

44

thus:

˙[CycB] = k1 − (k′2 + k′′2 [Cdh1])[CycB],

˙[CycBT] = k1 − (k′2 + k′′2 [Cdh1] + k′′′2 [cdc20A])[CycBT],

˙[CKIT] = k11 − (k′12 + k′′12[SK] + k′′′12m[CycB])[CKIT],

˙[Cdh1] =
k′3 + k′′3 [Cdc20A])(1− [Cdh1])

J3 + 1− [Cdh1]
−

(k′4[SK] + k4m[CycB])[Cdh1]

J4 + [Cdh1]
,

˙[Cdc20T] = k′5 + k′′5
([CycB]m/J5)

′′

1 + ([CycB]m/J5)′′
− k6[Cdc20T],

˙[Cdc20A] =
k7[IEP]([Cdc20T]− [Cdc20A])

J7 + [Cdc20T]− [Cdc20A]
−
k8[Mad][Cdc20A]

J8 + [Cdc20A]
− k6[Cdc20A],

˙[IEP] = k9m[CycB](1− [IEP])− k10[IEP],

˙[SK] = k13[TF]− k14[SK],

where [Cdc20A] is the concentration of “active” Cdc20, and [Cdc20T] is the total

concentration of both active and inactive forms; [CycB] and [Cdh1] are the average

concentrations of cyclin B/Cdk dimers and active Cdh1/APC complexes, respectively;

the ks are rate constants, the Js are Michaelis constants, m represents cell “mass”;

[CycBT] = [CycB] + [Trimer]; CKIT is the total CKI.

Antoniotti et al. [28] described a set of tools within their Simpathica system for

performing temporal analysis of the trajectories of bio-chemical pathways and to clas-

sify them into groups for further characterization. They demonstrated their technique

on the Yeast cell cycle example. Barbano et al. [45] use time-frequency analysis of

the time-series data of yeast cell cycle to test and validate interesting hypotheses.

3.4.6 Bacterial Chemotaxis

Escherichia coli has evolved an extremely effective strategy for responding to a chem-

ical gradient in its environment, by detecting the concentration of ligands through a

45

number of receptors, and then reacting to the input signal for driving its flagella mo-

tors to alter its path of motion[269, 62]. E. coli responds in one of two ways: either it

“runs” – moves in a straight line by moving its flagella counterclockwise (CCW), or it

“tumbles” – randomly changes its heading by moving its flagella clockwise (CW). An

E. coli cell performs a biased random walk by transiently decreasing its tumbling fre-

quency to move towards a region with greater ligand concentration. A second feature

of this control is its sensitivity to concentration gradients and its observed dynamic

range: rather than responding to absolute concentrations, the E. coli adapts quickly

as it compares its environment during the immediate past to what existed a little

earlier. Further, it does so over a wide range of input concentrations.

The response is mediated through the molecular concentration of CheY in a phos-

phorylated form (YP), which in turn is determined by the bound ligands at the re-

ceptors that appear in several forms (LT variables). The ratio of y = YP/Y0 (phos-

phorylated concentration of CheY to its concentration in the unphosphorylated form)

determines a bias with an associated probability that flagella will exert a CW rotation.

The more detailed pathway involves other molecules: CheB (either with phosphoryla-

tion or without, Bp and B0), CheZ (Z), bound receptors (LT) and unbound receptors

(T), while their continuous evolution is determined by a set of differential algebraic

equations derived through kinetic mass action formulation:

dT2

dt
= −Lk5T2 + k−5LT2 − k8T2 +Bpk−1T3 + kyT2p(Y0 − Yp)

+kbT2p(B0 − Bp)− Vmax
T2

KR + T2

dYp

dt
= kyP (Y0 − Yp)− k−yZYp

dBp

dt
= kbP (B0 −Bp)− k−bBp,

where P ≡ T2p +LT2p +T3p +LT3p +T4p +LT4p is the total amount of phosphorylated

46

receptor complex. In addition, the total amounts of T , Y , B, and R are conserved.

Casagrande et al. [75] model this system as an Indepdent Dynamics Automaton,

where the two possible directions of rotation of the flagella lead to two different states

in the hybrid automaton. There, the angular velocity w of the flagella takes discrete

values +1 for CW and −1 for CCW.

3.4.7 Other Examples

Ras / MAPK Pathway The MAPK enzymatic cascade is activated by EGF

through two interconnected pathways: the PLCγ − PKC and the Ras − Raf −

MAPK pathways [206]. The mutual activation leads to a feedback loop between PKC

and MAPK which results in the multimodal dynamics of the system: depending on

the duration and concentration of the EGF stimulation, the system follows different

evolution dynamics after the EGF stimulus is withdrawn. The underlying dynamics

may be expressed using equations of the form:

Ẋi = Σ1≤i,j,k≤naijk[Xi]
si[Xj]

sj [Xk]
sk 1 ≤ i ≤ n,

whose coefficients can be derived from in vitro data. The simulations of this system

were carried out by Bhalla and Iyengar in their seminal publication [63]. Barbano et

al. [45] also applied their time-frequency analysis approach to this EGF-modulated

RAS pathway as well.

Immune System Modeling In the immune system, B-cells and nonspecific anti-

gen presenting cells (APCs) internalize the antigens that have entered the system, and

present an MHC peptide complex that T-cells can recognize, bind to, get stimulated

and divide. Stimulated B cells produce plasma cells (which produce the antibod-

ies that remove the antigen) and memory B cells. Rather than using differential

47

equations, in IMMSIM [242], a modified cellular automaton is used to simulate the

effects of cell-cell and cell-molecule interactions in the lymphoid system. Based on the

number of components participating in the immune response, the simulator applies a

specific set of rules to determine the next state. Barbano et al. [45] use time-frequency

analysis to study the IMMSIM model and examine its adaptive dynamics in response

to primary and secondary infections.

Kam et al. [164] model T-Cell activation using Statecharts [139], an approach

which was made more rigorous by Efroni et al. [113]. Large data-sets about cell migra-

tion, cell differentiation, histology, electron microscopy, biochemistry and molecular

biology were integrated into a two-tier model of thymic maturation using Statecharts.

In addition to executing illuminatory simulations and analyzing them, a lucid repre-

sentation of the generated information is extracted by their tool.

Purine metabolism In purine biosynthesis [289], a linear cascade of reactions

converts 5-phosphoribosyl-α-1-pyrophosphate (PRPP) into inosine monophosphate

(IMP). IMP is transformed into AMP and GMP. Guanosine, adenosine and their

derivatives are recycled into hypoxanthine (HX) and xanthine (XA). XA is finally

oxidized into uric acid (UA). Further, adenine phosphoribosyltransferase (APRT)

and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) combine with PRPP

to form ribonucleotides. Antoniotti et al. [31] describe an XS-System based analysis

of this pathway using the Simpathica tool.

More Instances Lahav et al. [187] used fusion proteins and time-lapse fluores-

cence microscopy in a novel way to study the p53-Mdm2 feedback loop, and developed

a model suggesting a “digital clock” like behavior of the feedback loop in releasing

well-timed quanta of p53 in response to cell damage. Monk [219] constructed math-

48

ematical models that helped conclude that the oscillatory expression of Hes1, p53,

and NF-κB was most likely driven by transcriptional delays, with the time-period

being determined by the delay and the protein and mRNA half-lives. In addition to

the examples cited previously, we find: the work of Davidson et al. [99] on develop-

mental regulation, cellular signal transduction modeling [190, 42], Wiley et al. [297]’s

experiments with the Epidermal Growth Factor, Woolf and Linderman [299]’s study

of G-protein Coupled Receptors, general analysis of metabolism [132, 220, 258, 5],

and modeling general protein-protein interactions [283].

3.5 Analyzing Biochemical Models

One of the central problems in Systems Biology is: Given the mathematical repre-

sentation of the biochemical system and a description of its dynamics, how does one

prove or disprove statements about its temporal behavior? Clearly, the ability to query

the model of a biochemical system can hasten the discovery of emergent properties,

aid the hypothesizing of interesting inferences and intelligent predictions, help revise

the model, and possibly, suggest new wet-lab experiments that could help refine the

model. Several modeling tools, some with rigorous analytical capabilities, have been

developed, including Systems Biology Workbench [154], Virtual Cell [268], E-Cell

[275], Genomic Object Net [226], Simpathica[33] and BioMiner [267] (see Sec. 1.1 for

references to more tools, organizations and standards; also see Tables 3.1 and 3.2).

The lay-out of a typical biomodeler is depicted in Figure 3.1.

The temporal properties of a network of interacting biochemicals are typically

captured by relating two neighboring system-states at time instants t and t+ δ, and

the biochemical interactions (synthesis, degradation, multimerization, etc.) that oc-

cur in that short time interval δ. Nonetheless, a direct model of transitions and flows,

49

Figure 3.1: Layout of a typical Biomodeler

given through their symbolic description, can be computationally manipulated (ei-

ther numerically or symbolically) to derive logical conclusions about global temporal

properties, that may not have been obvious in the instantaneous description. The

exact structure of this approach depends on the complexity of the three underlying

frameworks: description of the dynamical system, the expressivity of the temporal

logic and the basic operations of the models of computation. We now describe the

different approaches to analyzing biochemical models.

Querying the Time-Trace

The simplest type of analysis involves numerically simulating the system for a finite

time-interval. In this conventional “numerical” approach, starting with an initial

50

system-state, successive states are chased by an integration scheme (e.g., Runge-

Kutta). Conclusions about the behavior of the network are then made by tracing

the trajectories over a suitable time-frame and verifying temporal properties (e.g.,

the Simpathica tool [33]). The numerical simulation-based approach is summarized

in Figure 3.2.

Kinetic Mass Action Laws

Numerical Simulation

Time-course Data (Traces)

Temporal Logic Analysis

Correct or
Enhance model

Biochemistry Literature

Biochemical Pathway Model

Ordinary Differential Equation

Description

Set of proofs and counter-examples
for various properties of the
biochemical pathway

Choose new temporal property
to be model-checked

Choose new wet-lab experiments
to be performed

Figure 3.2: Typical steps in analyzing a biochemical model using numerical simulation

51

Modeling and Simplifying the Time-Trace

Alternatively, one could first remove the redundancy in the time-log of the variables,

so queries can be answered faster. Depending on the assumptions that one is allowed

to make, one could resort to the correct Machine Learning technique to extract a

simpler model with as much mathematical sophistication as possible. It is to be

noted that to answer queries about a different starting state or parameter value, a

new simulation will most likely need to performed.

Without Calculating the Time-Trace

A more difficult approach is to perform the computations symbolically rather than

numerically. This would require the ability to arrive at an easy-to-query algebraic

representation from the given mathematical representation, without going through

the process of evaluating the time-trace at several initial states and parameter values.

This “symbolic” alternative to the numerical procedure would use algebraic methods

to characterize the transition of the system with time. In effect, the process of nu-

merically integrating the differential equations and extracting a simpler query-able

representation will be replaced by an algebraic procedure that can answer queries

about the symbolic state of the system.

3.6 Discussion

In summary, Systems Biology is an intriguing and challenging research area, with

a plethora of open problems awaiting rigorous mathematical treatment. Systems

Biology attempts to integrate several computational, mathematical and modeling ap-

proaches to capture the temporal behavior of biochemical dynamical systems. Once

52

the system and its evolution-rules have been specified through a formal description,

formal methods like model checking and theorem proving can be used to check if

certain states are ever reached, if some initial condition could cause a certain effect,

etc. Hybrid automata represent the broadest class of dynamical systems over which

many of these formal temporal reasoning algorithms have been developed. Hybrid

automata are likely to emerge as the universal formalism for modeling networks of

biochemical interactions, as they present an intuitive way of capturing the KMA-

based biochemical dynamics. In addition, the discrete states and transitions may be

used to capture mode changes and external events, and also serve as a convenient

means of approximation. Further, a hybrid automaton captures a network of bio-

chemical interactions intuitively and accurately, and requires minimal book-keeping

of the constructs of the formalism.

Compared to the numerical analysis of biochemical systems modeled as hybrid

automata, the symbolic approach can answer deeper questions. This is because the

query and its answer can be algebraic expressions describing the different variable

values and relationships under which the property of interest is guaranteed to hold.

Clearly, more general queries can be answered. Only symbolic algebraic analyses can

hope to yield deeper insights into the innate yet non-apparent principles governing

biology. On the computational side, simulations do not have to be redone when

the parameters or the initial states in the query numerically change, and only the

simulations necessary to answer the query are performed. The obvious disadvantage

however is that purely symbolic algebraic methods are rarely universally applicable,

and typically have very high computational complexity. In this thesis, we describe

different ideas and approaches that strive towards making such an analysis of hybrid

automata possible.

53

Chapter 4

Refining the Undecidability

Frontier

Having understood the underlying Biochemistry and the role of hybrid automata in

modeling such processes, we now strive to find a hybrid automaton subclass suitable

for modeling them. Ambitiously, we first peruse decidable classes for which very

efficient model checking approaches have been developed. We quickly realize their

insufficiency, and try to understand when and how decidable subclasses become un-

decidable. This leads us to the Hierarchical Piecewise Constant Derivative (HPCD)

class that lies in the “open” region between decidability and undecidability. We pro-

vide new constructions that dramatically improve our understanding of how “close”

HPCDs are to decidable and undecidable subclasses. Though no Systems Biology ap-

plications are conceivable, this chapter is very effective in bringing out the power and

expressivity of hybrid automata, and is a significant contribution from the theoretical

computer science perspective.

54

4.1 Introduction

Hybrid automaton (HA) is a formalism for capturing a broad range of dynamical sys-

tems with continuous and discrete properties. However, the more expressive freedom

a formalism is endowed, the more difficult it becomes to analyze the resulting system.

Thus, a crucial factor in choosing the appropriate modeling formalism for biochem-

ical systems is the ability to guarantee analyzability of the formalism. In the case

of hybrid automata, the question boils down to: “What are the restrictions on the

expressions that can appear in the hybrid system description, in order for analysis to

be always possible?”. The set of all hybrid automata that satisfy certain constraints

is referred to as the class defined by those constraints. Thus, the question can be

rephrased as: “What is the subclass of hybrid automata over which analyzability can

be guaranteed?”.

To address this problem, we first need to identify interesting biochemical questions

about the hybrid automaton model that we wish to eventually answer. Literature

helps us conclude that the question “Is a certain final state reachable from a certain

initial state?” is a very significant one, as it can be rephrased in several interesting

ways. Formally, this question corresponds to the well-studied property of reachability

– the problem of deciding whether a certain final state is reachable from a given initial

state.

Having clarified “analyzability”, the second issue is being able to guarantee it.

In other words, we would like to claim that we can always answer any reachability

question over any hybrid automaton that satisfies certain constraints (i.e., belonging

to a certain class). The formal term for this property is “decidability”. Thus, our

aim is to identify the hybrid automaton subclass for which the reachability problem

is decidable.

55

A problem can be proven to be decidable over a class, if an algorithm (procedure)

can be detailed for solving every instance of the problem in that class. Proving that

a class is undecidable requires that we identify at least one problem in that class for

which no solution can exist. This unwieldy notion of there being a problem which

is provably unsolvable was addressed by stalwarts like Gödel, Church and Turing.

The result most relevant to our attempt to identify a decidable hybrid automaton

subclass for biochemical systems is the “halting problem” of Turing. Turing defined

a computational model called the “Turing Machine” (TM), and showed that the

problem of deciding whether a given Turing Machine will halt on a given input is

undecidable over the class of all Turing Machines [281]. A very important corollary

of this stellar result is that any class of automata that can simulate a general Turing

Machine is also undecidable.

In practice however, it often becomes simpler to prove that a formalism called

the two-counter Minsky Machine (MM) can be simulated. Since the two-counter

Minsky Machine has been shown to be able to simulate a TM [211], reachability is

undecidable for an MM, and any dynamical system that can simulate an MM as

well. Thus, proving that a hybrid automaton subclass is decidable involves providing

the actual algorithm for solving the general reachability problem for that subclass,

while proving undecidability requires providing an algorithm for simulating a general

Minsky Machine in a hybrid automaton, without violating any of the constraints of

that particular HA subclass.

Hybrid automata, which can have arbitrary discrete transitions and continuous

flows, correspond to a class of immense computational power. HA very easily become

undecidable for the reachability query, with only extremely stringent restrictions lead-

ing to decidability. Timed automata [12], multirate automata [9], initialized rectan-

56

gular automata [241, 144], controllable linear systems [273], some families of linear

vector fields [186] and O-minimal HA [184] have been shown to be decidable for the

reachability query.

The fundamental question continues to be: “What is the simplest class of dynam-

ical systems for which reachability is undecidable?”. The conventional answers to

this question have involved proving that a certain decidable class becomes undecid-

able, when given some additional computational power. For instance, 2-dimensional

Piecewise Constant Derivative (PCD) systems [201] and Simple Planar Differential In-

clusions (SPDIs) [40] are decidable, while 3-dimensional PCDs are undecidable [38].

This chapter focuses on the 2-dim Hierarchical PCD (HPCD) class introduced by

Asarin and Schneider [39]. This intermediate class, between decidable 2-dim PCDs

and undecidable 3-dim PCDs, is not known to be provably decidable or undecidable.

Asarin and Schneider proved that 2-dim HPCDs are equivalent to 1-dim Piecewise

Affine Maps (PAM). Since the reachability problem for 1-dim PAMs is an open ques-

tion [177], 2-dim HPCD-reachability is also open. They went a step further, and

proved that the HPCD class, when endowed with a little additional computational

power, becomes undecidable. Thus, the HPCD 1 class (and equivalently the PAM

class) is clearly on the boundary between decidable and undecidable subclasses of

HA.

This chapter presents new developments in the analysis of the HPCD class, a

sequel to Asarin and Schneider’s work [39]. The three questions we seek to answer

are: (1) Is there a class, simpler than the HPCD class, which can be shown to be

equivalent to PAMs? In other words, is there a simpler “open” class? (2) Are there

1Henceforth, “HPCD” refers to 2-dim HPCD, “PAM” to 1-dim PAM, and “decidability” to

decidability of reachability, unless explicitly stated otherwise.

57

alternate extensions of the HPCD class which become undecidable? (3) Can we

develop an approximate reachability algorithm, and thus obtain some insight about

decidable HPCD subclasses?

We begin this analysis of the proximity to decidability and undecidability in Sec-

tion 4.2, with the definitions of the various subclasses of HA we will encounter in this

chapter (more subclasses are discussed in section 5.1.1). In Section 4.3.1, we present

our main result: 2-dim PCDs with translational resets can simulate a PAM. We then

construct several very interesting subclasses of HPCDs, which also simulate PAMs.

Since PAMs have been shown to be equivalent to HPCDs [39], it proves that surpris-

ingly, these subclasses are just as powerful as the HPCD class itself. This reveals the

redundancy in the expressive power of the HPCD, and shows how even closer HPCDs

are to decidable systems. In Section 4.4, we present some undecidable extensions of

HPCDs, different from Asarin and Schneider’s constructions. These constructions re-

veal new dimensions of the fineness of the line separating HPCDs from undecidability.

We present a simple algorithm for over-approximating reachability in PAMs in Sec-

tion 4.5.3, and show how decidable subclasses can be identified. We summarize our

contributions in Section 4.6 and discuss several open research questions. For brevity,

most proofs are provided in Section A of the Appendix.

4.2 Background: Hybrid Automata and Subclasses

We quickly review some terms frequently used to describe different restrictions. Let

a, b, c, d stand for numerical constants, and p, q stand for the hybrid system variables.

A rectangular guard refers to an expression of the form a < p < b, while a non-

rectangular or comparative guard is of the form ap + bq + c < 0. A rectangular

invariant is of the form a < p < b
∧

c < q < d, i.e., the state represents a rectangular

58

region in the p − q plane. State invariants are said to be non-overlapping if the

regions they represent in their variable-space do not intersect. A constant reset refers

to p′ = c, a translational reset refers to p′ = p + c and an affine reset to p′ = ap + b.

An “initialized” automaton is one where all variables, whose flow changes after a

discrete state transition, are reset to a constant. An automaton is “timed” if all

flow-derivatives are 1.

4.2.1 Timed and Rectangular Automata

Timed Automata are the most restricted subclass of hybrid systems, and also the most

well studied. Here, all variables are assumed to be clocks, i.e., all flow derivatives are

+1. This apparently over-constrained system has actually found to be extremely

useful in analyzing VLSI circuits, where transistors naturally possess only the two

Boolean states “on” and “off”. The timed constraint has been relaxed by letting

variables have dynamics described by a flow inclusion (range). In rectangular hybrid

automata, a crucial constraint is imposed on the reset relations: if the dynamics of

a variable change as a result of a transition, then the variable has to be reset to a

constant value.

Definition 4.2.1 2-Dimensional Timed Automaton [144] A 2-dim timed au-

tomaton is a hybrid automaton in two continuous variables where:

1. All flow-derivatives are 1, i.e., both variables are clocks.

2. All resets are constant.

3. The guards are interval checks and do not involve comparison of the 2 clocks.

4. Invariants are constant intervals for each variable. 2

59

If clock comparisons are allowed for a larger number of clocks, the system becomes

undecidable.

Definition 4.2.2 2-Dimensional Initialized Rectangular Automaton [144]

A 2-dim initialized rectangular automaton is a hybrid automaton in two continuous

variables where:

1. All flow-derivatives are bounded by constant intervals.

2. Whenever a variable’s flow changes, it is reset to a constant (initialization).

3. The guards are interval checks and do not involve comparison of the 2 variables

(rectangularity).

4. Invariants are constant intervals for each variable. 2

In other words, the real plane is divided into (possibly overlapping) rectangles corre-

sponding to the different states and the two variables evolve within each state with

derivatives in a constant range. When the bounds on a variable’s flow-derivative

changes, it jumps to a different rectangular zone where it restarts from a fixed point

(reset to a constant).

4.2.2 PCDs and HPCDs

Among the several formalizations that simplify the reachability problem by curbing

the computational power of the HA, we dwell on the PCD construct.

Definition 4.2.3 2-dim PCD [201] A 2-dimensional Piecewise Constant Deriva-

tive system is an HA in two continuous variables, where:

1. All flow derivatives are constants.

60

2. The guards are rectangular, i.e., p ∈ I, where I is a numerical interval.

3. No variable can be reset during transitions, i.e., p′ = p ∧ q′ = q.

4. The discrete states (invariants) correspond to non-overlapping rectangles in the

real plane with non-empty interiors. 2

The trajectories of a 2-dim PCD are restricted to be broken straight lines, with slopes

changing only when a different polygonal region (new discrete state) is entered. The

PCD restriction is motivated by the fundamental property of planar systems. It states

that the evolution of a (2-dim) point in a plane with fixed slopes (flow) at each point,

can only trace out a contracting or expanding spiral (if not a simple finite cycle).

Maler and Pnueli [201] used the property of planar systems to prove that reachability

is decidable for 2-dim PCDs. 3-dim PCDs are the natural extension of 2-dim PCDs

with a third dynamic variable (dimension).

Definition 4.2.4 3-Dimensional Piecewise Constant Derivative System [38]

A 3-dim PCD is an HA in three continuous variables with non-overlapping state-

invariants of the form x ∈ Ix∧ y ∈ Ty ∧ z ∈ Iz, where x, y and z are the 3 dimensions

and Ix, Iy and Iz are numerical intervals. Further, the flows are constant and no

resets are allowed. 2

Asarin, Maler and Pnueli [38] proved that 3-dim PCDs are undecidable.

Subsequently, Asarin and Schneider set out to discover an “open” class in between

2-dim and 3-dim PCDs. They proceeded by studying HA that could simulate a

known open problem - the 1-dim PAM. To understand their equivalence result, we

first introduce PAMs, where computation is modeled as iterative function evaluation.

61

Definition 4.2.5 Piecewise Affine Map [177] A PAM [177] is of the form

f(x) = aix + bi , x ∈ Ii , i = 1, 2, · · · , n, where all ai, bi and the ends of the non-

overlapping intervals Ii are rational. f is closed, i.e., ∀x, i (x ∈ Ii)⇒ (∃j, f(x) ∈ Ij).

Further, the intervals are in ascending order. 2

In other words, there are n non-overlapping partitions of the real line (which may

not cover it entirely). The current value of the variable x decides which interval Ii it

falls in, and hence its next value f(x) is uniquely defined. The reachability problem

is also defined in the natural way: “Is the point xf reachable from the point x0 by

repeated application of the piece-wise affine maps?”. Note that unlike HA, there is

no non-determinism or choice – the starting point defines a unique trajectory.

Recall that a class A simulates a class B if every computational trajectory of B

has a unique counterpart in A. Two classes are equivalent if they simulate each other:

thus if the reachability problem is (un)decidable for one class, so it is for the other.

Asarin and Schneider characterized the PCD extensions necessary to simulate a PAM,

keeping in mind that the resulting HA subclass in turn needed to be expressible

as a PAM. The result was the HPCD class which augmented a PCD, by allowing

comparative guards and affine resets in overlapping regions of the plane.

Definition 4.2.6 2-Dimensional Hierarchical Piecewise Constant Deriva-

tive System [39] A 2-dim HPCD [39] is an HA in 2 continuous variables where:

1. All flow-derivatives are constants.

2. The guards are of the form (ax+ by+ c = 0∧ x ∈ I ∧ y ∈ J) where I and J are

intervals and a, b, c and the extremities of I and J are rational-valued.

3. The reset functions are affine functions: x′ = ax+ b.

62

4. The state invariant, which could overlap with other state invariants, is the nega-

tion of the union of the guards. 2

The term hierarchical was used originally, to indicate that an HPCD could also be

thought of as a PCD with overlapping state invariants, where each state was actually

a PCD.

q̇ = 1

ṗ = 0

0 ≤ p, q ≤ 1

q = 1 ∧ 0 ≤ p < 1/2
V

q′ = 0 ∧ p′ = 2p q = 1 ∧ 1/2 ≤ p ≤ 1
V

q′ = 0 ∧ p′ = 2 − 2p

Figure 4.1: One-State Tent Map HPCD

Example 4.2.1 Consider the PAM describing the Tent Map [277]:

f(x) = 2x+ 0, x ∈ [0, 1/2)(≡ I1)

f(x) = −2x+ 2, x ∈ [1/2, 1](≡ I2)

The HPCD simulating this PAM is shown in Figure 4.1. 2

Theorem 4.2.1 Summary of HPCD Results [39] The main results concern-

ing HPCD decidability are:

1. The HPCD class is equivalent to the PAM class.

2. The restricted class HPCDiso, with translational instead of affine resets, is also

equivalent to the PAM class.

3. The extended classes HPCD1c (with an additional counter), HPCD∞ (with

infinite partitions) and HPCDx (origin-dependent rates) are undecidable, as

they can simulate a TM. 2

63

4.3 Open HPCD Subclasses

The HPCD class, unlike the PCD class, does not require that the different discrete

states correspond to non-overlapping rectangles of R × R. Further, it extends the

PCD class by allowing comparative guards and affine resets. Asarin and Schneider’s

results thus have two implications: (1) a PAM can capture an HPCD; (2) an HPCD

can capture a PAM. Their first result is clearly the more significant one, also involv-

ing a non-trivial construction. It demonstrates that a 2-dim HPCD, which seems

dramatically more complex than a 1-dim PAM, actually has no additional computa-

tional power. Their second result seems simple in comparison, as HPCDs seem to

have more expressivity than necessary, to capture a PAM. This becomes evident in

their proof, where a PAM can be trivially captured by a PCD with just 1 state, with

all computations done only using affine resets along self-loops (see for example, the

Tent Map HPCD in Figure 4.1). In particular,

f(x) = aix+ bi, x ∈ Ii is captured as :

flow : ṗ = 0, guard : p ∈ Ii, reset : p′ = aip+ bi

flow : q̇ = 1, guard : q = 1, reset : q′ = 0.

Note that comparative guards and overlapping state invariants are not used at all.

Further, the second variable q is used as a dummy stop-watch, only serving to make

the system non-zeno. Schneider has proved [259] that these affine resets can be made

translational (HPCDiso). However, that construction uses all the other enhance-

ments. To summarize, PCDs with just affine resets can simulate a PAM. However,

multiple states with overlapping invariants and comparative guards seem necessary,

when only translational resets are allowed. The question that we now ask is: “What is

the minimal set of enhancements required by 2-dim PCDs to simulate 1-dim PAMs?”.

64

4.3.1 PCD with Translational Resets

In this section, we first prove our main result: a 1-dim PAM can be simulated using

a 2-dim PCD, with just translational resets of the form x′ = x + ci. Comparative

guards and affine resets can be done away with by making the two PCD variables

(p and q) take turns simulating the PAM variable (x), while non-overlapping state

invariants become sufficient because the PCD variables are guaranteed to lie in a

bounded region. We then show how 1-dim PAMs can be simulated by other simple

subclasses of HPCDs, each revealing proximity to a different decidable HA subclass.

The following lemma simplify the proof:

Lemma 4.3.1 A 1-dim PAM is bounded. 2

Lemma 4.3.2 Every 1-dim PAM is equivalent to a 1-dim “positive” PAM where all

intervals are positive. 2

Now we are ready to prove our main result:

Theorem 4.3.1 A 1-dim PAM can be simulated by a 2-dim PCD with translational

resets.

Proof 4.3.1 Consider an equivalent 1-dim positive PAM f(x) = aix + bi , x ∈

Ii(≡ [li, ri)) , i = 1, 2, · · · , n. Let L be a number such that L > rn ∧ ∀i, L > bi.

Corresponding to the i-th function of the PAM, we will have two states Pi and Qi.

In Pi, p flows from p0 = bi to xn+1(≡ bi + aixn) at the rate ṗ = ai. q drops from

q0 = xn to 0 at the rate q̇ = −1. The guard q = 0 thus ensures that the system spends

t = q0 time in this state. This allows the affine term aixn to be computed, without

using comparative guards or affine resets. In the “Q” states, the roles of p and q are

65

reversed, i.e., q uses p’s value to grow to the next iterate, while p just drops to 0,

effectively keeping track of time.

From Pi, there are transitions to each possible state Qj. p retains the value it just

computed, while q is reset to the constant portion (bj) of the next iterate of x. In Qj,

q will accumulate the rest of its target value (aj × x) by flowing for time x (stored in

p) at the rate aj. Similarly, from Qi, there are transitions to each possible state Pj,

while there are no transitions within P -states or within Q-states.

The above expressions are adjusted, now assuming that each state is associated

with a different large constant “base”. In a state, all numbers are represented with

respect to this base. Thus, x becomes LSi
+ x in state Si, where LSi

is the base. Even

if x increases or decreases to its maximum / minimum possible value, p and q will

not cross over to an adjoining state. This is because the different base constants are

themselves very far apart. This base-adjustment creates the translational resets, when

the current iterate needs to be remembered and passed on to a new state. It is to be

noted that just constant resets suffice if the state invariants are allowed to overlap.

We now construct the PCD with translational resets and 2n states:

• Corresponding to the i-th function of the PAM, we have two states Pi and Qi

associated with the constants LPi
= 4iL− 3L and LQi

= 4iL− L.

• In Pi, p grows at rate ṗ = ai from LPi
+p0(= bi) to aiq0(= xn)+bi +LPi

, while q

drops from q0 + LPi
to LPi

at the rate q̇ = −1. q0 denotes the unscaled previous

iterate xn, using which xn+1 is being computed by spending exactly t = q0 time

in this state.

• Qi behaves exactly as above with p and q swapped, i.e., this corresponds to the

case where q grows to the next iterate, while p just drops to LQi
.

66

• In Pi and Qi, the values of p and q are both bounded by {(LPi/Qi
−L,LPi/Qi

+L)},

which is equal to {(4iL − 4L, 4iL − 2L)} in Pi and {(4iL − 2L, 4iL)} in Qi.

Clearly, none of rectangular regions can overlap.

• From Pi, there are transitions to each possible state Qj with guard q = LPi
∧p ∈

Ij, i.e., “p has reached the next iterate of x” and “p is in the interval corre-

sponding to the j-th PAM function”. The reset (note: constant or translational)

is p′ = p− LPi
+ LQj

∧ q′ = LQj
+ bj, i.e., “p, which holds the current value of

x, is translated to the range of the destination state (to prevent overlap)” and

“q is reset to the constant portion (bj) of the next iterate of x”. The portion

proportional to xn (aj × xn) will be gained by flowing for time xn (stored in p)

with slope aj.

• Similarly, from Qi, there are transitions to each possible state Pj. There are no

transitions within P -states or within Q-states.

This PCD with translational resets simulates the PAM, as p and q take turns simu-

lating x. It can be seen that xf is reachable from x0: (i) if (p = xf + LPi
, q = LPi

)

and (p = xf + LQj
, q = LQj

+ bj) are reachable; or (ii) if (p = LQi
, q = xf + LQi

)

and (p = LPj
, q = xf + LPj

) are reachable. This needs to hold for some i and j, such

that xf ∈ Ij and one of the pre-images of xf lies in Ii. The “and” terms are neces-

sary to eliminate intermediate points during continuous evolution from satisfying the

query. The “or” term is necessary because p reaches only even iterates and q reaches

only the odd iterates of x0. The starting state is (p = x0 + LQk
, q = LQk

+ bk) (or

(p = LPk
+ bk, q = LQk

+ x0)), where x0 ∈ Ik. 2

Example 4.3.1 We will now construct a PCD with translational resets that simulates

the Tent Map, in two variables p and q and 2 × 2 = 4 states. Setting L = 3(>

67

max(rn, bi) = 2), we get LP1 = 3, LQ1 = 9, LP2 = 15, LQ2 = 21. Thus:

P1: flows ṗ = a1 = 2 and q̇ = −1, with transitions:

→ Q1: guard q = 3∧ p ∈ [3 + 0, 3 + 1/2), reset p′ = p− 3 + 9 = p+ 6∧ q′ = 9 + 0 = 9

→ Q2: guard q = 3∧p ∈ [3+1/2, 3+1], reset p′ = p −3+21 = p+18∧q′ = 21+2 = 23

P2: flows ṗ = a2 = −2 and q̇ = −1, with transitions:

→ Q1: guard q = 15∧p ∈ [15+0, 15+1/2), reset p′ = p−15+9 = p−6∧q′ = 9+0 = 9

→ Q2: guard q = 15 ∧ p ∈ [15 + 1/2, 15 + 1], reset p′ = p − 15 + 21 = p + 6 ∧ q′ =

21 + 2 = 23

Q1: flows q̇ = a1 = 2 and ṗ = −1, with transitions:

→ P1: guard p = 9∧ q ∈ [9 + 0, 9 + 1/2), reset q′ = q− 9 + 3 = q− 6∧ p′ = 3 + 0 = 3

→ P2: guard p = 9∧q ∈ [9+1/2, 9+1], reset q′ = q−9+15 = q+6∧p′ = 15+2 = 17

Q2: flows q̇ = a2 = −2 and ṗ = −1, with transitions:

→ P1: guard p = 21∧q ∈ [21+0, 21+1/2), reset q′ = q−21+3 = q−18∧p′ = 3+0 = 3

→ P2: guard p = 21 ∧ q ∈ [21 + 1/2, 21 + 1], reset q′ = q − 21 + 15 = q − 6 ∧ p′ =

15 + 2 = 17

The result is presented in Figure 4.2. 2

4.3.2 Other Open Subclasses

Various other intermediates – subclasses of HPCDs, simulate a 1-dim PAM. We now

present some of the interesting cases, which extend known decidable systems.

Theorem 4.3.2 A 1-dim PAM can be simulated by:

1. an HPCD with comparative guards, 3 different flows +1,−1, 0 and no resets;

2. an initialized PCD, with comparative guards;

68

P2
Q2

ṗ = 2

q̇ = −1

P1 Q1

ṗ = −1

q̇ = 2

q̇ = −1

ṗ = −2

q̇ = −2

ṗ = −1

q = 15 ∧ 15.5 ≤ p ≤ 16
V

q′ = 23 ∧ p′ = p + 6

q = 3 ∧ 3 ≤ p < 3.5
V

q′ = 9 ∧ p′ = p + 6

p = 9 ∧ 9 ≤ q < 9.5
V

p′ = 3 ∧ q′ = q − 6

p = 21 ∧ 21.5 ≤ q ≤ 22
V

p′ = 17 ∧ q′ = q − 6

q
=

15
∧

15
≤

p
<

15
.5
V

p
=

9
∧

9.
5
≤

q
<

10
V

0 < p, q < 6

12 < p, q < 18 18 < p, q < 24

6 < p, q < 12
p
=

21
∧

21
≤

q
<

21.5 V

p ′

=
3
∧

q ′

=
q
−

18q
=

3
∧

3.5
≤

p
≤

4 V

q ′

=
23

∧
p ′

=
p
+

18

q
′ =

9
∧

p
′ =

p
−

6

p
′ =

17
∧

q
′ =

q
+

6

Figure 4.2: PCD with Translational Resets simulating the Tent Map

3. an HPCD with rectangular guards, i.e., p = 0 ∧ q ∈ Ii, when simple constant

resets of the form q′ = aj ∧ p′ = p are allowed;

4. a PCD with just clocks, when translational resets and comparative guards are

allowed; and

5. an HPCD with just clocks, when simple constant resets (p′, q′) = (0, q) or (p, 0)

and comparative guards are allowed.

Proof 4.3.2 All the proofs are based on the techniques demonstrated in the proof of

Theorem 4.3.1. So, for brevity, we only give a flavor of results (1) and (4).

69

For result (1), we will construct an HPCD with 4n states of the form P±
j and Q±

j

that simulates this PAM. We will now have p evolving from xn−1 to xn+1, while q

remains stationary at xn. The affine guard condition p = aiq+ bi makes the HA jump

to the next state at the correct time. Since xn+1 could be greater or less than xn−1,

the flow will need to be +1 or −1 respectively. Hence, each P (and Q) state now

corresponds to two states: P+ and P−. In the state P+
j , q flows from q0(∈ some Ii)

to q′ = ajp0 + bj, with flow is q̇ = +1. In P−
j , q′ > q0 and q̇ = −1. ṗ = 0 to ensure

that q flows to the correct amount. The transitions are of the form P+
j → Q±

k , with

the guard being q = ajp + bj ∧ q ∈ Ik ∧ p < (bk + akbj)/(1 − ajak). The last term

will be p ≥ if we are jumping to Q−
k . The Q±

j states are defined exactly as above,

with p and q interchanged. Clearly, the above HPCD without resets simulates the

given PAM. In particular, the reachability query “ Is xf reachable from x0” is true iff

(p = xf , q = xf−1) or (p = xf−1, q = xf) is reachable from (p = x0, q = x1), where

xf−1 is some pre-image of xf and x1 is the successor of x0.

For result (4), an HPCD with 2n states of the form Pj and Qj can simulate the

equivalent positive PAM. In state Pj, p flows from p0 to p0 + ajp0 + bj with ṗ = +1,

while q flows from 0 to ajp0 + bj with q̇ = +1. The discrete transitions will be of the

form Pj → Qk with guard ajp− (1 + aj)q + bj = 0 ∧ q ∈ Ik and reset p′ = 0 ∧ q′ = q.

2

HPCDs as HPCDs without Resets

We continue to focus on resets in an attempt to bring HPCDs closer to PCDs. Here

we try to understand the simplest HPCD subclass that can simulate a PAM without

using resets at all. Unfortunately, the best construction still seems to need overlapping

invariants in addition to comparative guards.

70

Theorem 4.3.3 A 1-dim PAM can be simulated by a 2-dim HPCD with comparative

guards, 3 different flows +1,−1, 0 and no resets. 2

Extensions of Initialized Rectangular Automata

In a similar vein, we prove here that decidable initialized rectangular automata

[241, 144] can simulate a PAM, when extended with comparative guards or when

uninitialized.

Theorem 4.3.4 A 1-dim PAM can be simulated by an initialized PCD, with com-

parative guards. 2

Theorem 4.3.5 A 1-dim PAM can be simulated by an HPCD with rectangular guards,

i.e., p = 0∧q ∈ Ii, when simple constant resets of the form q′ = aj∧p′ = p are allowed.

2

Timed Automata HPCDs

Since the literature on timed automata [12, 9] is the largest, it makes sense to char-

acterize their minimal extension that can simulate a PAM. Our construction below

shows that we need comparative guards and resets.

Theorem 4.3.6 A 1-dim bounded PAM can be simulated by a PCD with just clocks,

when translational resets and comparative guards are allowed. 2

Theorem 4.3.7 A 1-dim PAM can be simulated by an HPCD with just clocks, when

simple constant resets (p′, q′) = (0, q) or (p, 0) and comparative guards are allowed.

2

71

1-dim HPCD with Zeno Executions

While a 2-dim HPCDzeno is undecidable, a 1-dim HPCDzeno can trivially capture a

1-dim PAM almost by definition. The guards will be of the form x ∈ Ii and the resets

of the form x′ = aix+ bi where the 1-dim PAM is of the form f(x) = aix+ bi , x ∈

Ii , i = 1, 2, · · · , n. The flows are not used at all.

Theorem 4.3.8 A 1-dim PAM can be simulated by a 1-state 1-dim HPCD with rect-

angular guards, affine resets and zeno-executions, without using the flows. 2

Origin-Dependent HPCDs without Resets or Comparative Guards

We find that we can do without resets or comparative guards, if we use origin-

dependent rates and overlapping state-invariants.

Theorem 4.3.9 A 1-dim PAM can be simulated by a 2-dim HPCD without compar-

ative guards or affine resets using origin dependent flows. 2

4.4 Undecidable HPCD Extensions

True to its “open” nature, the HPCD class does not present any direct mechanism

to simulate a TM / MM. Asarin and Schneider [39] have shown that the HPCD class

becomes undecidable when extended with one additional counter (HPCD1c), with

infinite partition (HPCD∞) and with origin-dependent rates (HPCDx).

Using the flow to simulate the counters of an MM is problematic, because we

have no way of measuring one time unit. Both the variables are busy keeping track

of the two independent counters, so one cannot be used as a temporary variable to

increment / decrement the other. The other option is to store at least one of the

counters in both the variables (or both counters in both variables). Finding such a

72

mapping corresponds almost directly to the original PAM problem: Can we encode 2

unbounded positive integers (counters) and 1 bounded integer (the next instruction

to be executed) in one real valued number, and still allow incrementing, decrementing

and checking for equality to zero?

In this section, we present a new set of extensions of HPCDs that manage to be

undecidable. We proceed by simulating the MM with the least possible additional

work. Recall that an MM uses two (positive) integer counters m and n. Increment-

ing and decrementing a counter, and branching based on equality to zero are the

operations that need to be supported.

Review of Minsky Machines

For the sake of completeness, we present the definitions of the Minsky Machine (MM)

which we use in our undecidability proofs.

Definition 4.4.1 2-Counter Minsky Machine[211] A two counter Minsky Ma-

chine is a model of computation over two (positive) integer counters m and n, which

support the following operations:

• Increment / Decrement a counter (m+ +, m−−, n + +, n−−)

• Branching based on equality to zero (if m = 0/n = 0 go to line li else go to line

lj) 2

Theorem 4.4.1 Undecidability Of MM [211] A two-counter Minsky Machine is

undecidable as it can simulate a Turing Machine.

73

4.4.1 HPCDs with Zeno Executions

Any program over a 2-counter MM can be almost trivially captured as an HPCD,

using just the discrete transitions without using the flows. Recall that a “zeno”

system is one where one cannot bound the number of discrete transitions that can

occur in a finite time window, i.e., potentially, all the computations could be done in

the resets, in zero time. Thus:

Theorem 4.4.2 Reachability over HPCDs with zeno-paths (HPCDzeno) is undecid-

able. 2

Each statement of the program will correspond to one discrete state, with the tran-

sitions leading to the next state (line of code of an MM program) to be executed.

Unfortunately, this “theorem” does not translate into “PAMs are also undecidable”.

This is because, the construction for simulating a HPCD using a PAM[39] is not ap-

plicable to states with no continuous flow (i.e., the “non-empty interior” criterion is

invalid).

4.4.2 HPCDs with Integer-Checks

Alternatively, we can capture the value of both the counters m and n using just one

continuous variable x as:

x = pm
1 p

n
2 ,

where p1 and p2 are two prime numbers. Clearly, given the integer product x, there is

exactly one way of factoring it and hence m and n can be extracted. The second vari-

able y is now free to be used as a temporary variable for computations and to make

the system non-zeno. Incrementing and decrementing the counter correspond respec-

tively, to multiplying and dividing by the appropriate prime factor. The problem of

74

simulating a 2-counter MM over a HPCD now reduces to the problem of checking if

m > 0 given the numerical value of x = pm
1 p

n
2 , and being able to recover the original

value of x at the end of the procedure. One approach is to divide x by the prime

number corresponding to the counter we wish to check for zero, and then check if

the result of the division is an integer. The problem of simulating a 2-counter MM

over an HPCD thus reduces to the problem of checking whether a given number is an

integer using the 2-dim HPCD infrastructure, and being able to recover the original

number at the end of the procedure. Surprisingly, there is no known way of doing this.

Theorem 4.4.3 Reachability over the following HPCD-extensions are undecidable:

1. HPCDfn−int, where the guard can include a function integer(x) that returns

true if the parameter x is an integer.

2. HPCDzeno−int, where the integer-check function is now simulated by a zeno ex-

ecution of repeatedly subtracting 1 and checking if the number equals 0. 2

Unlike the HPCDzeno class, the entire MM simulation is not a zeno-execution in

HPCDzeno−int. This system does spend 1 unit of time in each discrete state, except

when this zeno integer-check “oracle” is consulted.

4.5 Understanding PAMs

Having refined the decidable and undecidable frontiers of the HPCD class, we explore

one last avenue – treating HPCDs as PAMs, and subjecting them to a similar extend-

restrain analysis.

75

4.5.1 PAM’s Proximity to Undecidability

Just like we enhanced a 2-dim HPCD to make it undecidable, we present the flavor

of a similar effort for PAMs.

Theorem 4.5.1 1-dim PAMs that can check if a given number x can be expressed

as p−i (the class “PAMpow”), where p is a given prime number and i is an unknown

positive integer, can simulate an MM. 2

We stop with this contrived extension, and move on to restricted subclasses.

4.5.2 PAM’s Proximity to Decidability

The simplest PAM is one where every interval maps exactly on to another interval.

Thus the mapping unwinds to a cyclical application of functions, possibly preceded

by a linear sequence.

Definition 4.5.1 1-dim oPAM A 1-dimensional Onto PAM (oPAM) is a 1-dim

PAM where, for every interval Ii in the PAM definition, there is an interval Ij also

in the definition such that {aix+ bi|x ∈ Ii} = {x|x ∈ Ij}. 2

Next we prove a crucial lemma:

Lemma 4.5.1 In a 1-dim oPAM with k intervals, every point has at most 2k unique

successors.

Proof 4.5.1 If interval Ii maps on to Ij, the end points (li, ri) have to map on to

(lj , rj) or to (rj, lj). No other mapping is possible because of our restriction, that the

affine post-image of Ii has to exactly and completely overlap with Ij. Hence, there are

only two possible equations linking xj with xi:

1. Direct (li → lj, ri → rj): xj = lj + xi−li
ri−li

(rj − lj)

76

2. Flipped (li → rj, ri → lj): xj = lj + ri−xi

ri−li
(rj − lj)

In other words, if we define d =
x0−lx0

rx0−lx0
, only the points that are lj + d(rj − lj) or

lj + (1 − d)(rj − lj) are ever reachable. Thus, every interval has only two possible

reachable points from a given x0. Since there are k intervals, after 2k iterations all

possible successors would have been explored, and there will be a cycle of period ≤ 2k

in the path. 2

Using this observation about exactly onto affine maps over linear intervals, we can

prove that:

Theorem 4.5.2 Reachability is decidable for 1-dim oPAMs. 2

Remark 4.5.1 We can quickly conclude that xf is unreachable if
xf−xlf

xrf
−xlf

is not equal

to
x0−xl0

xr0−xl0
or

xr0−x0

xrf
−xlf

, where [xlf , xrf
] and [xl0 , xr0] are the interval partitions containing

xf and x0 respectively.

Example 4.5.1 f(x) = 2x + 1/3, x ∈ [0, 1/3)(≡ I1) and f(x) = 1/2 − x/2, x ∈

[1/3, 1](≡ I2) is a oPAM as f([0, 1/3]) = [1/3, 1] and f([1/3, 1]) = [0, 1/3]. Thus, all

points reachable from x0 = 1/4 are given by x1 = 2/4+1/3 = 5/6, x2 = 1/2− 5/12 =

1/12, x3 = 2/12 + 1/3 = 1/2, x4 = 1/2− 1/4 = 1/4 = x0 as expected. 2

4.5.3 An Approximate Reachability Algorithm

Reachability is easily semidecidable for PAMs: we just keep iterating x0, f(x0),

f(f(x0)), · · · until xf is reached. If xf is not reachable, this algorithm will never

converge. We now present a simple algorithm for over-approximating the reachable

points (see Alg. 1 below). The idea is to repeatedly partition the intervals Ii of the

PAM, until all the successors (post-images) of points in one interval map on to exactly

77

one complete interval, i.e., domain and range are fully covered (an extension of this

idea is presented in Sec. 7.2.1).

Algorithm 1 Over-Approximation of PAM Reachability

1. Let the initial set of partitions P be the set of PAM intervals {Ii}

2. Pick an interval Pi in P and calculate its post-image P ′
i . Let P ′

i span the intervals

Pl, Pl+1, · · · , Pr−1, Pr.

3. P ′
i induces r− l+1 partitions of Pi: Pi1 · · ·Pir−l+1

such that Pij maps on to Pl+j−1. It

could also partition Pl and Pr in case it maps on to a sub-interval rather than covering

the whole of Pl or Pr. In all, the total number of partitions can increase by 0 to n+1.

4. Update P so it now holds the newly induced partitions as well.

5. Repeat steps 2− 4 until every interval Pi maps on to exactly one interval Pj already

in P

By treating each interval as a node and connecting Pi and Pj if the post image of Pi is Pj ,

we get a graph representation of the PAM. Thus, xf is reachable from x0, if there is a path

from Px0 to Pxf
in this graph (where xi ∈ Pxi). 2

Clearly, Algorithm 1 is not guaranteed to converge. However, we can terminate

after a reasonable number of steps and still use the resultant graph to approximately

decide reachability. Also note that the graph needs to be constructed only once

no matter how many different reachability queries we need to answer. A rewarding

observation is that a 1-dim oPAM is obtained, if the above partitioning algorithm

converges; this concurs with the fact that oPAMs are decidable.

78

4.6 Discussion

In this chapter, we refined the decidability frontier by exploiting the expressive redun-

dancy of the HPCD class definition. We introduced the “taking-turns” idea where

the two PCD variables alternately compute PAM iterations. A similar idea was used

by Berard and Duford to prove that the emptiness query is undecidable for timed

automata with four clocks and additive clock constraints [61]. We also showed how

we could exploit the finite range of the PAM to construct non-overlapping state in-

variants. These ideas helped show that a 1-dim PAM can be simulated by a 2-dim

PCD with translational resets. Further, resets can be disposed, if we allow overlap-

ping invariants and comparative guards. We also demonstrated how decidable classes,

like timed and initialized rectangular automata, can be extended into open problems.

On the undecidability front, we showed that zeno HPCD executions can naturally

capture MMs. More interestingly, the ability to check if a number is an integer was

seen to be the computational ability separating an HPCD from universal Turing com-

putability. A simple algorithm for over-approximating reachability was presented. It

revealed that the problem is decidable, for those PAMs that converge during this

iteration (oPAMs). The current understanding of this undecidability frontier of HA

is summarized in Figure 4.3 (results not marked with a “*” are contributions of this

chapter).

There are many related questions that need to be explored. Using the reductions

of an HPCD to a PCD or initialized rectangular automaton with extensions, can

we identify more interesting decidable subclasses and approximate reachability algo-

rithms? One suggestion we offer is to construct the “PCD-graph” of a 1-dim PAM,

and then show how planarity can correspond to decidability. Using the construction

in Theorem 4.3.1, we can build a graph with a set of nodes capturing each state.

79

1−dim oPAM

+overlapping invariants
+overlapping invariants

+translational resets

2−dim PAM*

2−dim PCD*
2−dim TA*

3−dim TA +comparative guards*,
linear resets*
or stop−watches*

3−dim uninitialized* or non−rectangular*

2−dim initialized
rectangular automata*

1−dim PAM* +comparative guards +constant resets
+comparative guards +linear resets

+comparative guards

3−dim PCD*

+non−overlapping invariants

automata

+comparative guards
+non−overlapping invariants

+uninitialized
+overlapping invariants

2-dim HPCDzeno

HPCDfn/zeno−int

HPCD1c*, HPCD∞*, HPCDx*

1-dim PAMpow

2-dim HPCD*

DECIDABLE

UNDECIDABLE

OPEN

Figure 4.3: Decidable, Open and Undecidable subclasses of HA

Different nodes can correspond to the different intervals, with an edge corresponding

to each reset. We can then check whether it is possible to rearrange the given PCD-

graph into a planar graph, by using the standard graph drawing literature. Thus, we

can prove that:

Theorem 4.6.1 A 1-dim PAM is decidable if its PCD-Graph is planar. 2

Other important questions inviting research are: What is the least constrained 2-

dim HPCD that is decidable? Can we sharper the decidability frontier currently

defined by initialized rectangular HPCDs and SPDIs? In the process of showing

that every known undecidable HA can simulate a 1-dim PAM, can we identify any

direct undecidability construction? Can we equate a 1-dim PAM to one-stopwatch

automata, which are apparently “open”? Another perspective to be explored is the

influence of discrete chaotic dynamical systems (like the Tent Map) on the decidability

of the PAM class. Alternatively, we could understand this problem in other models of

computation. For example, Blum et al. [66] proposed the more general “real” Turing

machine that has exact rational operations and comparison of real numbers built-in

as atomic operations. Similarly, Saito and Kaneko [251] suggest a characterization of

undecidability in terms of the inaccessibility to the ideal decision procedure and its

80

invariance against fractal code transformations.

It is hoped that the ideas presented in this chapter will aid the eventual “deciding”

of the 1-dim PAM / 2-dim HPCD reachability problem. From the Systems Biology

perspective, it is clear that decidable hybrid automaton subclasses cannot hope to

capture interesting biochemistry because of the low dimensionality requirement for

decidability. Though many of the constructions for generating undecidable queries

may seem artificial and unnatural, it nevertheless goes to prove that the solution is

not generalizable. As our main goal was to provide general powerful methods rather

than restricted efficient approaches, we continue our quest in the semi-decidable realm

of hybrid automata in the next chapter.

81

Chapter 5

Semi-Algebraic Hybrid Systems

Decidable PCD-like hybrid automaton subclasses are not apt for Systems Biology ap-

plications, given the ease with which decidable subclasses become undecidable even

in very low dimensional cases. We continue our inspection of hybrid automaton

subclasses, this time focusing on subclasses for which at least a semi-decidable al-

gorithm is known to exist. Once again, we find that most well-studied subclasses

like timed and linear hybrid automata cannot approximate general biochemical sys-

tems reasonably. We find O-Minimal and Polynomial hybrid systems very attractive.

O-minimal systems allow more complex continuous dynamics but do not allow inter-

esting discrete behavior, while polynomial systems seem more than suitable. In this

chapter, we extend this subclass to define the new subclass Semi-Algebraic Hybrid

Automata. We discuss quantifier elimination and related algorithms in computa-

tional real algebraic geometry, which motivate the definition of this class. We present

its syntax and semantics, and demonstrate the solution of the reachability problem.

The semi-decidable algorithm becomes decidable if the physical hybrid system is non-

zeno, and if the property we are interested can be verified by inspecting the system

evolution up to a bounded time. Since both these assumptions are reasonable for

82

biochemical networks, we have effectively identified a decidable bounded symbolic 1

reachability algorithm for biochemical networks modeled as semi-algebraic hybrid au-

tomata. We also show that semi-algebraic hybrid automata are undecidable even in

the Blum-Shub-Smale model of real computation. This tangential result is significant

because semi-algebraic sets appear naturally in the real Turing machine formalism.

We conclude by comparing our approach with other approaches that use quantifier

elimination for verification.

5.1 Background

5.1.1 Hybrid Automaton Subclasses

We first briefly go over the well-studied hybrid system subclasses in increasing order

of system complexity:

• Timed Automaton - a discrete transition system where the only continuous vari-

able allowed is the clock has been proved to be decidable for the reachability

query [12].

• Multirate Automaton - a discrete transition system where there can be many

continuous variables with a constant flow was also proved decidable by Alur et

al. [9].

• Rectangular Automaton is a discrete transition system where the flows are al-

lowed to vary within a range. Puri and Varaiya [241] and Henzinger et al. [144]

proved that rectangular automata were amenable to reachability analysis.

1The ability to handle symbolic / algebraic parameters in our approach is not to be confused with

traditional symbolic model-checking, where we refer to the use of binary decision diagrams (BDDs)

as opposed to explicit enumeration of states as being symbolic.

83

• Linear Systems The reachability problem for sub-classes of linear hybrid systems

was proved by Lafferriere et al. [185]. Tabuada and Pappas proved that model

checking LTL over controllable linear systems is decidable [273, 274]. Tiwari

et al. [279, 125] present techniques for over-approximating reachability sets for

linear systems. The work of Alur et al. [10] also assume linear predicates and

linear dynamics for the hybrid system. The abstraction is then built during the

reachability analysis procedure using a numerical algorithm that checks poly-

hedral inclusions and memberships [35, 71]. The “linearity” assumption yields

an efficient implementation of the reachability analysis procedure, while grossly

approximating the reachable set computed.

• Time-Invariant Systems Tiwari et al. [278] have proposed a fully symbolic ap-

proach to the construction of the abstracted discrete system from a concrete hy-

brid system and have recently extended their work to non-linear systems [280].

However, they assume that the flow equations, guards and state invariants are

all independent of time. These restrictions are fundamental to this approach

and allow symbolic computations with the integrals of the system.

• O-Minimal Systems are another class of algebraic hybrid systems which have

been shown to be amenable to reachability analysis [185]. While the other cases

of hybrid automata modeling restrict continuous dynamics to derive a bisimu-

lation, here the discrete dynamics are restricted. Indeed, as per the restricted

jump condition the new continuous state cannot depend on the old state. Also,

the system is assumed to be time-invariant so that the trajectories cannot self-

intersect. These restrictions effectively decouple the discrete and continuous

dynamics allowing bisimulations to be performed on each state separately. O-

minimal theories which describe finite unions of points and open intervals, gen-

84

eralize the notion of semi-algebraic sets. They have nice topological properties,

but not complete quantifier elimination. Instead they have a weaker property

known as model completeness.

• Polynomial Systems [121, 122] extend linear hybrid automata by allowing poly-

nomial (instead of only linear) activities and polynomial (instead of linear) pred-

icates for state invariants, transition guards, and transition effects. Every state

and transition is described by just one polynomial predicate, formalized through

the first-order logic over the real-closed field, denoted FOL(R,+, .). Formally,

a (polynomial) hybrid automaton of dimensionality d(d ∈ N) is a five-tuple:

(Σ, x, (actσ)σ∈Σ, (transσ→σ′)σ,σ′∈Σ, (initialσ)σ∈Σ) , where Σ is a finite set, rep-

resenting the discrete states, and x = (x1, · · · , xd) is a vector of length d of

variable names, the continuous variables of the hybrid system. (actσ)σ∈Σ is a

Σ-indexed family of formulae from FOL(R,+, .) representing the continuous ac-

tivities and corresponding state constraints, and (transσ→σ′)σ,σ′∈Σ is a doubly

Σ-indexed family of formulae from FOL(R,+, .) representing the discrete tran-

sitions and their guarding conditions. Finally, the initial states of the automaton

are given by the Σ-indexed family (initialσ)σ∈Σ of formulae from FOL(R,+, .).

The free variables of the initialσ predicates are from x, while the free variables

of the actσ and the transσ∈σ′ predicates are from x̄ and x, as these predicates

relate pre-states, which are denoted by the x̄, to post-states, which are denoted

by undecorated variables x. The decidability of FOL(R,+, .) [276] is used to

prove semi-decidability of reachability, recurrence and path-boundedness, and

undecidability of several dynamic properties and robustness.

Since biochemical system dynamics are described by ordinary differential equa-

tions often involving quadratic or higher degree terms, timed, multirate, rectangu-

85

lar and linear systems get immediately eliminated from consideration as they offer

only linear approximation based schemes for handling complex dynamics. Clearly,

O-minimal systems afford the maximum freedom in terms of continuous dynamics

as they allow exponential terms as well. However, all their transitions involve con-

stant resets, which is an unnatural requirement for biochemical networks. Polynomial

systems on the other hand definitely offer the ideal mix of discrete and continuous

dynamics, restricting all expressions to be polynomials. In this chapter, we extend

this class to create the new class “semi-algebraic hybrid systems”, where all expres-

sions are restricted to be semi-algebraic sets. Further, we handle more complex flow

expressions and show how symbolic integration can be used to handle ordinary differ-

ential equations as well. We first survey the fundamentals of real algebraic geometry

relevant to our discussion in the following section, and then define the syntax and

semantics more formally.

5.1.2 Computational Real Algebraic Geometry

The symbolic manipulation of the variables of the hybrid system requires mathemat-

ical infrastructure that deals with variables (algebra) as opposed to numbers (arith-

metic). Polynomials naturally appear in the Systems Biology domain in the kinetic

mass action equations described earlier. They are equally prevalent in most engi-

neering domains as well. The algorithmic manipulation of the Boolean combination

of polynomial equations and inequalities is the goal of computational real algebraic

geometry.

86

Semi-Algebraic Sets

The conventional algebraic sets correspond to equations of polynomials (see Sec.

8.4.1 for an introduction to Gröbner bases, used for simplifying algebraic sets). Their

generalization is the semi-algebraic concept.

Definition 5.1.1 Semi-Algebraic Set[214] Every quantifier-free Boolean formula

composed of polynomial equations and inequalities defines a semi-algebraic set (i.e.,

unquantified first-order formulæ over the reals - (R,+,×,=, <)). Formally, a set S

is semi-algebraic if:

S = {〈ξ1, · · · , ξn〉 ∈ R
n|ψ(ξ1, · · · , ξn) = True}, or

S =
I

⋃

i=1

Ji
⋂

j=1

{〈ξ1, · · · , ξn〉 ∈ R
n|sign(fi,j(ξ1, · · · , ξn)) = si,j}

where ψ(ξ1, · · · , ξn) is a quantifier-free formula involving n algebraic variables, fi,js

are multivariate polynomials over R and the si,js are corresponding sets of signs in

{−1, 0,+1}. 2

Quantifier Elimination

Quantifier elimination is one of the most powerful algorithms over semi-algebraic sets.

Their generality effectively translates to its all-encompassing trait, allowing diverse

and deep questions to be encoded as quantifier elimination problems. Tarski[276]

proved that a semi-algebraic set results from the existential (∃x) or universal (∀x)

quantification over any variable (x ∈ X) of a given semi-algebraic set S(X), by pro-

viding a computable procedure for performing this quantifier elimination. In other

words, the decision problem for the first order theory of reals was shown to be decid-

able, though the algorithm itself was almost impractical.

87

Cylindrical Algebraic Decomposition Let F be a set of real multivariate polyno-

mials in n variables. Collins [90] discovered the cylindrical algebraic decomposition

(CAD) technique, which partitions the state space R
n into “cells” within which the

signs of all the polynomials in F are invariant. Effectively, a set of points guaranteed

to be characteristic of all possible sign behaviors of the given set of polynomials can

be obtained. Thus, existential quantification translates to the semi-algebraic formula

evaluating to true, at least at one point in the set, while universal quantification is

equivalent to the formula being true at all points in the set. Collins’ doctoral stu-

dent Hong developed the first quantifier elimination software Qepcad [151], which has

subsequently been extended and maintained by a larger team.

For the convenience of the interested reader, we now summarize the mathematical

details of this technique from [214]. (This section may also be skipped2, and the

reader may choose to proceed to the Beyond CAD section.)

Definition 5.1.2 Sign Assignment and Class [214] Any point p equal to

〈η1, · · · , ηn〉 ∈ Rn has a sign assignment with respect to F as follows:

sgnF(p) =

〈

sgn(f(η1, · · · , ηn))|f ∈ F

〉

.

A sign assignment induces an equivalence relation: given two points p, q ∈ Rn,

p ∼F q, if and only if sgnF(p) = sgnF(q). The sign class of F is an equivalence class

in the partition of Rn defined by the equivalence relation ∼F . 2

2The mathematical details provided here are not essential for the appreciation of this thesis, as

we just use quantifier elimination as a black-box tool in our methodology. However, one of the lines

of future research is developing efficient approximate quantifier elimination strategies that exploit

the inherent structure of the problems we are likely to encounter in the algebraic model checking of

biochemical systems.

88

Definition 5.1.3 Semi-Algebraic Decomposition [214] A finite collection of

disjoint connected semi-algebraic subsets Ci such that each Ci is contained in some

semi-algebraic sign class of F . That is, the sign of each f ∈ F is invariant in each

Ci. The collection of connected components of the sign-invariant sets for F forms a

semi-algebraic decomposition for F . 2

Definition 5.1.4 Cell Decomposition [214] is a semi-algebraic decomposition

for F into finitely many disjoint semi-algebraic subsets Ci called cells, such that each

cell Ci is homeomorphic to Rδ(i), 0 ≤ δ(i) ≤ n. δ(i) is called the dimension of the cell

Ci, and Ci is called a δ(i)-cell. 2

Definition 5.1.5 Cylindrical Algebraic Decomposition [214] is a recursively

defined cell decomposition of R
n for F . Every (n − 1)-dimensional CAD cell C ′ has

the property that the distinct real roots of F over C ′ vary continuously as a function

of the points of C ′.

Let φ(F) be a set of at most O((md)2) polynomials of degree no more than d2 in

n−1 variables. By considering principal subresultant coefficients, it is so defined as to

ensure that the polynomials of F do not intersect or “fold” in a cylinder over an (n−

1)-dimensional cell. Further, the following quantities need to remain invariant over

an (n− 1)-dimensional cell: (1) the total number of complex roots of each polynomial

of F ; (2) the number of distinct complex roots of each polynomial of F ; and (3) the

total number of common complex roots of every distinct pair of polynomials of F .

An F-sign-invariant cylindrical algebraic decomposition of R
n is:

• Base Case: n = 1. A univariate cellular decomposition of R1.

• Inductive Case: n > 1. Let K′ be a φ(F)-sign-invariant CAD of Rn−1. For each

cell c′ ∈ K′, define an auxiliary polynomial gC′(x1, · · · , xn−1, xn) as the product

89

of those polynomials of F that do not vanish over the (n − 1)-dimensional cell

C ′. The real roots of the auxiliary polynomial g′C over C ′ give rise to a finite

number (perhaps zero) of semi-algebraic continuous functions, which partition

the cylinder C ′ × (R ∪ ±∞) into finitely many F-sign-invariant “slices”. The

auxiliary polynomials are of degree no larger than md.

Assume that the polynomial g′C(p′, xn) has l distinct real roots for each p′ ∈ C ′ :

r1(p
′), r2(p

′), · · · , rl(p
′), each ri being a continuous function of p′. The following

sectors and sections are cylindrical over C ′:

C∗
0 = {〈p′, xn〉|p

′ ∈ C ′ ∧ xn ∈ [−∞, r1(p
′))}

C1 = {〈p′, xn〉|p
′ ∈ C ′ ∧ xn ∈ [r1(p

′), r1(p
′)]}

C∗
1 = {〈p′, xn〉|p

′ ∈ C ′ ∧ xn ∈ (r1(p
′), r2(p

′)]}

...

C∗
l = {〈p′, xn〉|p

′ ∈ C ′ ∧ xn ∈ (rl(p
′),+∞]}

The n-dimensional CAD is the union of all the sections and sectors computed over

the cells of the (n − 1)-dimensional CAD. The algorithm is polynomial in m = |F|

and d = deg(F), and doubly-exponential in n, as the number of polynomials produced

at the lowest dimension is (md)2O(n)
, each of degree no larger than d2O(n)

. The number

of cells produced is also doubly-exponential. 2

Beyond CAD The real limitation of quantifier elimination is its doubly-exponential

complexity lower bound [98], and is manifest in Collins’ CAD algorithm which has

a double-exponential dependence on the number of variables [90]. Alternative CAD-

based methods have been proposed by Grigoriev [136], Renegar [245] and Heintz et

90

al. [141] that are doubly exponential in the number of quantifier alternations rather

than the number of variables. Weispfenning’s work on cubic quantified variables

[294, 295] has been implemented on the computer logic system Reduce as “Redlog”

[109] and “Risa/Asir 1” by Sturm [272]. It has been shown to solve problems that

CAD-based methods could not, as its complexity is independent of the number of

free variables. New quantifier elimination approaches such as those of Basu, Pollack

and Roy [50, 51, 49] are yet to be implemented. Another source of speed-up is

paralellization of the underlying algorithms, which is also being actively investigated

[254, 107, 207].

5.2 Semi-Algebraic Hybrid Automata

The notion of hybrid automata was first introduced as a model and specification

language for systems with both continuous and discrete dynamics, i.e., for systems

consisting of a discrete program within a continuously changing environment. A useful

restriction is through the notion of semi-algebraic hybrid automata whose defining

conditions are built out of polynomials over the reals, and reflect the algebraic nature

of the differential algebraic equations appearing in kinetic mass-action models of

regulatory, metabolic and signal transduction processes.

Definition 5.2.1 Semi-Algebraic Hybrid Automata A k-dimensional hybrid

automaton is a 7-tuple, H = (Z, V , E, Init, Inv, Flow, Jump), consisting of the

following components:

• Z = {Z1, . . . , Zk} and Z ′ = {Z ′
1, . . . , Z

′
k} are two finite sets of variables ranging

over the reals R

• (V,E) is a directed graph of discrete states and transitions

91

• Each discrete state v ∈ V is labeled by “Init”(initial), “Inv”(invariant) and

“Flow” labels of the form Initv[Z], Invv[Z], and Flowv[Z,Z
′, t, h]

• Each edge e ∈ E is labeled by a “Jump” condition of the form Jumpe[Z,Z
′] ≡

Guard e(Z) ∧ Resete(Z,Z
′)

• Init, Inv, Flow, and Jump are semi-algebraic. 2

We say that H is semi-algebraic if the constraints in Init, Inv, Flow, and Jump are

unquantified first-order formulæ over the reals (i.e., over (R,+,×,=, <)). 2

Definition 5.2.2 Semantics of Hybrid Automata Let H = (Z, V , E, Init,

Inv, Flow, Jump) be a hybrid automaton of dimension k.

• A location ℓ of H is a pair 〈v, R〉, where v ∈ V is a discrete state and R ∈ Rk

is an assignment of values to the variables of Z. A location 〈v, R〉 is said to be

admissible, if Invv(R) is satisfied.

• The continuous reachability transition relation
h
−→
C

forces the discrete state in-

variant to hold at every location except the end-location, along the evolution

curve determined by the flow equations during the h(> 0) time units from the

current time t0:

〈v, R〉
h
−→
C
〈v, S〉 iff

(

Flowv(R, S, t0, h) ∧ ∀Z ′, h′ ∈ [0, h) Flowv(R,Z
′, t0, h

′)⇒ Invv(Z
′)

)

,

where Flowv(Z,Z
′, T, h) is the flow label of v.

• The discrete reachability transition relation
0
−→
D

ensures that both parts of the

zero-time jump – the guard condition which needs to be satisfied just before the

92

transition is taken, and the reset condition which determines the values after the

transition, are satisfied. By definition, discrete state transitions take zero time.

Thus:

〈v, R〉
0
−→
D
〈u, S〉 iff 〈v, u〉 ∈ E ∧ Jumpv,u(R, S).

• The transition relation T of H connects the possible values of the system vari-

ables before and after one step - a discrete step for a time h = 0 or a continuous

evolution for any time period h > 0:

T (ℓ
h
−→ ℓ′) = {h = 0 ∧ ℓ

0
−→
D
ℓ′} ∨ {h > 0 ∧ ℓ

h
−→
C
ℓ′}.

• A trace of H is a sequence ℓ0,ℓ1, . . ., ℓn, . . . of admissible locations such that

∀i ≥ 0, ∃hi ≥ 0, T (ℓi
hi−→ ℓi+1). 2

The trace of a hybrid automaton is visualized in Figure 5.1

C

〈s1, Z1〉

C

〈s1, Z0〉 〈s2, W0〉
D

D
C

D

D

C

D
〈s3, U0〉

D
C

〈s4, V0〉

C

〈s1, Z2〉

〈s2, W1〉
C

〈s2, W2〉

C

〈s2, W3〉

〈s3, U1〉
C

〈s3, U2〉

C
〈s3, U3〉 〈s4, V2〉

〈s4, V1〉

Figure 5.1: Trace of a Hybrid Automaton

93

Remark 5.2.1 Few remarks about this definition of trace are in order: It admits two

continuous transitions to occur consecutively, which is necessary for compositionality

of traces. Further, two consecutive continuous transitions of time-steps h1 and h2 are

not necessarily equivalent to one continuous transition of time-step h1+h2 in the case

of non-linear approximation errors in
h
−→
C

.

Flowv(R, S, t, h) is a relation between the continuous state R at time t and the

continuous state S after h time units in the discrete state v. It is “well-defined” in

the sense that ∀R, S, t, h Flowv(R, S, t, h)⇒ {∀h′ ∈ [0, h) ∃S ′ Flowv(R, S
′, t, h′)}.

When a semi-algebraic relation Flowv(R, S, t, h) is used between the continuous

states R at time t and S at time t + h in a discrete state v, it may have been “de-

rived” in two ways: (1) Solution Is A Polynomial: The equation describing the con-

tinuous evolution of the variables in a discrete state is a polynomial, say Y (t), and

Flowv(Z,Z
′, t, h) ≡ { Z = Y (t) ∧ Z ′ = Y (t + h) }. Or, (2) Differential Equation

Is A Polynomial: Differential equations describing the continuous evolution are ap-

proximated in Flowv using one of the symbolic integration schemes (e.g., the Taylor

series in [239] or based on a direct integration scheme such as the linear Euler or the

higher degree Runge-Kutta). The error is controlled by an upper bound (say ∆) on

the time spent in one continuous step, as we aim for over- or under-approximating

the flow equations. In particular, if at each step the derivatives of order j + 1 of the

involved flows are bounded on the set of points satisfying the invariant conditions, the

Lagrange Remainder Theorem can be exploited to estimate error (see [189]).

Example 5.2.1 Euler Forward Method The first order Taylor polynomial cor-

responds to the Euler forward method which approximates the local flow curve as a

straight line with slope equal to the first derivative. Thus, if R represents the vector of

variables of the hybrid system at time t and Ṙ the vector of first derivatives expressed

94

as a polynomial in R and t, the approximate value S of R(t+h) can be obtained with

an O(h2) error as Flowv(R, S, t, h) ≡ {S = R + h.Ṙ}.

Note 5.2.1 We say we are discretizing time only if we are going to observe the

system every ∆ time units (and not any intermediate points) and use those samples

alone to make temporal inferences. More often than not, discretization also leads

to several intermediate discrete transitions becoming impossible. Thus, enforcing an

upper-bound is not equivalent to discretizing time as all possible intermediate points

and discrete transitions are considered.

Example 5.2.2 Consider a biochemical system where initially (state Q1) the bio-

chemicals A, B, C and D are quiescent, i.e., their time derivatives are zero. In

response to an external event that raises their concentrations instantaneously (by

amounts eA, eB, eC and eD respectively), the system moves to state Q2 if sufficient

A exists (A ≥ lA) in the system. In Q2, the conversion of A to its active trimer form

B occurs as per 3A → B. When enough B accumulates (B ≥ lB), the biochemical

reaction B + C → 2D is triggered as the system transitions to state Q3, if enough C

exists (C ≥ lC). Alternatively, the external addition of A, B, C and D could have

directly caused a transition to state Q3 from Q1. A semi-algebraic hybrid automaton

that captures the dynamics of these 4 biochemicals is presented in Figure 5.2. For

clarity, the discrete state transitions in the reverse direction are not shown. The flow

expressions have been derived by applying the Euler forward scheme to the ODEs that

result from the kinetic mass action laws.

95

flow(D, D′, t, h) ≡ D′ = D

inv ≡ A ≥ lA ∧ B < lB

inv ≡ A ≥ lA
re

s
e
t
≡

A
′
=

A
+

e
A

∧
B

′
=

B
+

e
B

g
u
a
rd

≡
tr

u
e

guard ≡ true
reset ≡ A′ = A + eA ∧ B′ = B + eB

∧C′ = C + eC ∧ D′ = D + eD

guard ≡ A ≥ lA ∧ B = lB
reset ≡ A′ = A ∧ B′ = B

∧C′ = C ∧ D′ = D

flow(D, D′, t, h) ≡ D′ = D

flow(C, C′, t, h) ≡ C′ = C

flow(B, B′, t, h) ≡ B′ = B

flow(A, A′, t, h) ≡ A′ = A

inv ≡ A < lA ∧ B < lB

flow(C, C′, t, h) ≡ C′ = C

flow(A, A′, t, h) ≡

flow(B, B′, t, h) ≡

flow(D, D′, t, h) ≡

flow(C, C′, t, h) ≡

flow(B, B′, t, h) ≡

flow(A, A′, t, h) ≡

∧B ≥ lB ∧ C ≥ lC

A′ = A − 3k1A3h

B′ = B + k1A3h

A′ = A − 3k1A3h

B′ = B + k1A3h − k2BCh

C′ = C − k2BCh

D′ = D + 2k2BC

∧
C

′
=

C
+

e
C

∧
D

′
=

D
+

e
D

Q1

Q2

Q3

Figure 5.2: A 3-State Semi-Algebraic Hybrid Automaton

5.3 Reachability

Reachability is the problem of deciding if the hybrid automaton can reach the sym-

bolic “final” state B from the “start” state S. In the bounded version of the problem,

the question is whether B can be reached within a given time bound end. In this

section, we explore solutions to the bounded-reachability problem through symbolic

computation methods, applied to the descriptions of the traces of the hybrid automa-

ton. Semi-algebraic decision procedures provide a succinct description of algebraic

constraints over the initial values and parameters for which proper behavior of the

system can be expected. In addition, by keeping track of conservation principles (e.g.,

of mass and energy) in terms of constraint or invariant manifolds on which the system

must evolve, we avoid many of the obvious pitfalls of numerical approaches.

Note also that the “Algorithmic Algebraic Model Checking” approach proposed

96

here naturally generalizes many of the basic ideas inherent to BDD-based symbolic

model checking or even the more recent SAT-based approaches. As the AAMC pro-

cedure involves proceeding along the traces using a time step δ, the answer to the

reachability query is relative to this limited time interval. However, by existentially

quantifying over every possible intermediate time-point (∃δ′, 0 ≤ δ′ ≤ δ), the prob-

lem of inadvertent discretization is overcome. As with numerical-simulation based

ODE analysis, when the solutions of the differential equations cannot be computed,

approximate is resorted to; hence the error accumulated also depends on δ.

Algorithmic Algebraic Bounded Reachability Approach

The first-order formula

F[v, S](Z0, Z) ≡ {S(Z0) ∧ ∃δ
′,

(

(0 ≤ δ′ ≤ δ) ∧ 〈v, Z0〉
δ′
−→
C
〈v, Z〉

)

characterizes the points reached within time δ in the discrete state v from the initial

state S, under the approximation implied by the use of Flowv(Z,Z
′, T, h), the flow

equations of v. Thus, the formula

∃Z0(F[v, S](Z0, Z)) ∧ B(Z)

is satisfiable if and only if the set B can be reached from S without leaving discrete

state v within the time step δ. In this case, the points of S which reach B are

characterized by ∃Z(F[v, S](Z0, Z) ∧ B(Z)). If the preceding formula is not satisfiable,

we have to consider all possible alternative situations: that is, either we continue to

evolve within the discrete state v or we discretely jump to another discrete state,

u ∈ V . We define the formula Svu
δ

S
vu
δ (Z) ≡

∃Z0(〈v, Z0〉
δ
−→
C
〈v, Z〉), if u = v;

∃Z0, Z1(〈v, Z0〉
δ
−→
C
〈v, Z1〉 ∧ 〈v, Z1〉

0
−→
D
〈u, Z〉), otherwise.

97

representing the states reached within time δ in the discrete state u. In this way, in

the worst case we generate |E| satisfiable formulæ on which we have to iterate the

method, treating them as we treated S(Z) in the first step. In practice, many of these

formulæ would be unsatisfiable, and hence at each iteration, the number of formulæ

we have to consider will remain considerably low. We may also use an optimized

traversal over the graph to reduce the number of generated formulæ.

Let end be the total amount of time during which we examine the hybrid system’s

evolution in terms of at most m = ⌈end/δ⌉ time steps: the number m ∈ N is such

that (m − 1)δ < end ≤ mδ. Since at each iteration the jumps can occur before δ

instants of time have passed, just iterating the method for m steps does not ensure

that we have indeed covered the entire time interval [0, end]. In particular, if there

are Zeno paths starting from S, i.e., paths in which the time does not pass since only

the jumps are used, our method will fail to converge in a finite number of steps. For

these reasons, at each step, we must check the minimum elapsed time before a jump

can be taken3. Let M(Z) ≡ S
v,u...,w(Z) be one of the formulæ obtained after some

number of iterations. Suppose now that we intend to jump from this discrete state

w to the next discrete state z. We will then need to check whether the minimum

amount of time has passed before the jump can be taken. Consider the formula:

T(w, z,M)(T) ≡ ∃Z0, Z1, Z

(

M(Z0) ∧ 〈v, Z0〉
T
−→
C
〈v, Z1〉 ∧ 〈v, Z1〉

0
−→
D
〈w,Z〉

)

.

The minimum amount of time can now be computed as a solution of the formula

Min(w, z,M)(T) ≡ T(w, z,M)(T) ∧ ∀T ′

(

T ′ < T → ¬T(w, z,M)(T ′)

)

.

To avoid Zeno paths, we could eliminate the paths in which the minimum is 0. Along

3Approaches based on time discretization and bounding the number of discrete transitions are

discussed in Sec. 7.5

98

each generated path we have to iterate until the sum of the minimum amounts reaches

end. If all the paths accumulate a total amount of time greater than end and B is

never reached we can be sure that B cannot be reached from S in the time interval

[0, end]. If B is reached, i.e., one of the formulæ involving B is satisfiable before m

iterations, then we can be sure that B is reachable from S in the time interval [0, end].

If B is reached after the first m iterations, then B is reachable from S but we are not

sure about the elapsed time, since we keep together flows of different length. It is

possible that some paths do not accumulate a total time greater than end, e.g., the

sequence of the minimum times converges rapidly to 0. In this case our method could

not converge. Notice that even in this general case, we can extend the method to

rational flows.

In order to provide a time-complexity, assume the special situation where no path

accrues more than M discrete jumps (i.e., our method has converged). When we

terminate, we are left with deciding the satisfiability of a quantified semi-algebraic

formula with O(M) alternations and involving n = k ·[⌈end/δ⌉+O(M)]+N(S)+N(B)

variables in degree d = max[j + deg(Init , Inv , Jump), deg(S), deg(B)], where N and

deg denote the number of variables and total degree, respectively as before. Assume

that the coefficients of the polynomials can be stored with at most L bits. Then the

total time complexity (bit-complexity) [212, 214, 298] of the decision procedure is

(L logL log logL)d2O(n)
, i.e., double-exponential in the number of variables.

99

5.4 General Undecidability of Reachability

5.4.1 Real Turing Machines

The major problem with current approaches that analyze continuous dynamical sys-

tems is that the classical theory of computation and complexity analysis centered

around the “binary” Turing machine is not sufficient to fully characterize problems

involving real-valued mathematics. Blum et al. [66] proposed the more general “real”

Turing machine that has exact rational operations and comparison of real numbers

built-in as atomic operations. This allows the algebraic complexity analysis of algo-

rithms on reals.

Definition 5.4.1 Finite-Dimensional Machine Over R: [66]. A finite dimen-

sional machine M over R consists of a finite directed connected graph with four types

of nodes: input, computation, branch and output. The unique input node has no

incoming edges and only one outgoing edge. All other nodes have possibly several in-

coming edges. Computation nodes have only one outgoing edge, branch nodes exactly

two, Yes and No, and output nodes none. In addition the machine has three spaces:

input space IM , state space SM and output space OM of the form Rn,Rm,Rl, re-

spectively, where n,m and l are positive integers. Associated with each node of the

graph are maps of these spaces and next node assignments.

1. Associated with the input node is a linear map I : IM → SM and a unique next

node β1.

2. Each computation node η has an associated computation map, a polynomial

(or rational) map gη : SM → SM given by m polynomials (or rational functions)

gj : Rm → R, j = 1, · · · , m, and a unique next node βη. If R is a field, gη can

100

be a rational map. If g is a rational map associated with a computation node (in

the case R is a field), we assume each gj is given by a fixed pair of polynomials

(pj , qj), where gj(x) = (pj(x))/(qj(x)).

3. Each branch node η has an associated branching function, a nonzero polynomial

function hη : SM → R. The next node along the Yes outgoing edge, β+
η , is

associated with the condition hη ≥ 0 and the next node along the No outgoing

edge, β−
η , with hη(z) < 0.

4. Each output node η has an associated linear map Oη : SM → OM and no next

node. 2

Theorem 5.4.1 Path Decomposition Theorem: [66]. For any machine M

over R the following properties hold.

1. For any T > 0, the time-T halting set ofM: ΩT (=
⋃

γ∈ΓT
νγ) is a finite disjoint

union of basic semi-algebraic sets (respectively, basic quasi-algebraic sets, in the

unordered case), where ΓT is the set of time-T halting paths and νγ is the initial

path set.

2. The halting set of M: ΩM (=
⋃

γ∈ΓM′
νγ) is a countable disjoint union of basic

semi-algebraic (respectively, basic quasi-algebraic) sets, where ΓM ′ is the set of

minimal halting paths.

3. For γ ∈ ΓM (the set of halting paths ofM), the input-output map ΦM restricted

to νγ – ΦM |νγ is a polynomial map, or a rational map if R is a field. 2

Definition 5.4.2 The Mandelbrot Set [202],M is the subset of the set of complex

numbers C that remains bounded when subject to the following iterative procedure:

101

f0(C) = C , fn+1(C) = fn(C)2 +C. Formally, the complementM′ of the Mandelbrot

set is defined as

M′ = {C ∈ C|fn(C)→∞ as n→∞}. 2

It is to be noted that fi(C) ≥ 2 implies that eventually fn(C)→∞.

In what follows, when we refer to the Mandelbrot set we mean the 2-dimensional

set of real numbers corresponding to the Mandelbrot set, i.e., the set of pairs of the

form 〈Cr, Ci〉 such that C = Cr + iCi is in the Mandelbrot set.

Remark 5.4.1 Though defined using complex numbers, the Mandelbrot set corre-

sponds to a 2-dimensional set of real numbers (⊂ R × R) as per the straightforward

mapping fn(c) ↔ (xn, yn), where fn(c) = xn + ı.yn and (xn+1, yn+1) = (x2
n − y2

n +

xn, 2xnyn + yn).

Theorem 5.4.2 Undecidability Of The Mandelbrot Set: [66]. The Mandel-

brot set cannot be expressed as the countable union of semi-algebraic sets over R, and

hence not decidable over R. 2

5.4.2 General Undecidability Of Reachability

The undecidability result we will prove is based on the model of finite-dimensional

machines over a field R, which in our case will be R, and on the undecidability of

the Mandelbrot set over these machines. (We only introduce these “real” Turing

Machines here, and refer the interested reader to [66].)

Reachability has been one of the major properties of hybrid systems which has

been under investigation. System-state (or equivalently, “location”) reachability is

undecidable for hybrid automata with just two clocks [144], as the Turing machine

halting-problem can be encoded as a reachability query. It becomes pertinent to ask

102

if this undecidability result holds for the more powerful “real” computing machines

of Blum et al.[66], where semi-algebraic sets appear naturally in the computability

definition (see Path Decomposition Theorem [66]). We now prove that reachability

for semi-algebraic hybrid systems is indeed undecidable even in this more general

sense of computation. In the following construction, we present a semi-algebraic

hybrid system and encode the Mandelbrot set as a reachability query. Since Blum

and Smale have proved that the Mandelbrot set is undecidable [66], this proves that

reachability over semi-algebraic hybrid systems is also undecidable, even under the

“real” Turing Machine model.

We first provide the specifications of a hybrid system that we claim encodes the

procedure for deciding if a complex number C belongs to the Mandelbrot set or not.

We then prove this claim, also showing the corresponding reachability query.

Definition 5.4.3 The Mandelbrot Hybrid Automaton Let C = 〈Cr, Ci〉 be a

pair of real numbers. The Mandelbrot Hybrid Automaton MC consists of

• One discrete state s0 with invariant False and two continuous variables Z1 and

Z2.

• Flow1 : { Z ′
1 = Z1 ∧ Z ′

2 = Z2 } (no continuous evolution).

• One Discrete State Transition: 1→ 1 with Jump1 : (Z ′
1 = Z2

1−Z
2
2 +Cr)∧ (Z ′

2 =

2Z1Z2 + Ci). 2

Notice that in MC the only possible trace is the infinite zeno path of self-loops. The

Mandelbrot hybrid automaton is depicted in Figure 5.3

Theorem 5.4.3 General Undecidability Of Reachability For semi-algebraic

hybrid systems, reachability is undecidable even in Blum et al.’s “real” Turing ma-

chine formalism.

103

D

Figure 5.3: Mandelbrot Hybrid Automaton

Proof 5.4.1 Let S(t) = (Z1(t), Z2(t)) be the point reached after t discrete transitions

from the initial location 〈s0, (0, 0)〉 of the Mandelbrot hybrid automaton MC defined

above. After one more discrete transition (self-loop), we get

S(t+ 1) = S ′(t) = {Z1(t)
2 − Z2(t)

2 + Cr}+ ı.{2Z1(t)Z2(t) + Ci}

= {Z1(t) + ı.Z2(t)}2 + {Cr + ı.Ci}

In other words, if we consider the pairs of real numbers as complex numbers, we have

S ′(t) = S2(t)+C which is the defining equation of the Mandelbrot Set. Clearly, there

exists an evolution where |S(t)| ≥ 2 if and only if C = Cr + iCi does not belong to

the Mandelbrot set, i.e., the decidability of the reachability query (Z2
1 +Z2

2 ≥ 4) would

imply the decidability of the Mandelbrot set, thus resulting in a contradiction. 2

5.5 Discussion

In the AAMC approach for the symbolic reachability problem: (1) The only approx-

imation introduced is in the Flow expressions, which might have involved symbolic

integration; (2) Only used existential quantified formulæare used; (3) The degree of

104

the Flow polynomials and the degrees of the expressions in the hybrid automaton de-

scription influence the complexity of the first-order formulæ created and the number

of steps needed to get sufficient precision. The Lagrange Remainder Theorem can be

used to both under and over approximate the set of reachable points within the time

interval [0, end]. To place the results described here in the context of a large existing

and continually growing literature, we mention a few related results (also see Sec.

6.4).

In [17] symbolic computation over (R,+, <,=) is used to compute preconditions

on automata with linear flow conditions. Avoiding multiplication ensures good per-

formance, but the class of automata on which the result can be applied is quite

restricted, and of limited descriptive power.

In the d/dt tool (see [37]), a method involving several successive time steps is

applied. Since the flow conditions (differential equations) are linear, the exact solution

after a time step dt is used to compute the set of points that can be reached in that

time. In another similar tool CheckMate (see [82]), a more sophisticated method

involving time steps is introduced for the case of regions defined by polyhedra and

solvable flow differential equations.

In a much closer related result of [278], predicate abstraction was introduced to

map a hybrid automaton into a discrete one. The states of the discrete automaton

represent sets of values which are indistinguishable with respect to a fixed set of

predicates over the reals. Symbolic computation is used to determine the edges of

the discrete automaton. In [125], the method was applied on piecewise linear hybrid

automata to study the Delta-Notch signaling process.

In [10], predicate abstraction is combined with symbolic computations over the

reals and with the use of time steps. The symbolic computation is used to determine

105

the transitions between the abstract states, but the differential equations are kept

linear so that the exact solutions are used in the symbolic computation. In particular,

abstract states are forced to evolve at a given time step and symbolic computation is

used to draw transitions by determining if intersections between (abstract) states are

non empty. The main differences with respect to the AAMC methods are as follows:

(1) We do not use predicate abstraction; (2) We can apply our method in the case

of non-linear differential equations as well, through the use of Taylor polynomials or

other symbolic integration schemes.

In a related computational analysis, Ghosh et al. [125] proposed a piecewise linear

approximation to the continuous time model to generate a hybrid automaton. On this

automaton, they conducted a symbolic reachability analysis using SAL - a heuristic

symbolic decision procedure, to characterize the reachable region by numerical con-

straints, further sharpening the observations of Collier et al. [89]. We analyzed this

system using the theory described in the next chapter. The preliminary results can

be found in the chapter describing our tool Tolque.

SACoRe and IDA

During the development of this thesis, Casagrande et al. [74, 75] have developed

alternative constructions of decidable subclasses that exploit Tarski’s decidability re-

sult. In [74], they introduced the Semi-Algebraic Constant Reset Hybrid Automata

(SACoRe), which extended O-minimal automata over the reals, in the case of flows

obtained from non-autonomous systems of differential inclusions. SACoRe automata

were shown to admit decision procedures for reachability and model checking for a

limited fragment of CTL, by combining Tarski’s decidability result over the reals and

Michael’s selection theorem. However, this formalism was found to be quite restric-

106

tive to the biochemical domain, as the constant reset requirement has no physical

counterpart. This is because, when a biochemical system changes its “discrete” state,

it is very unnatural for the concentrations to be reset to constant values. In fact,

the most common result of a state change is no change, because of the continuous

nature of chemical concentrations and other biochemical variables. In other words,

identity resets are necessary to capture this fundamental aspect of most biological

state transitions.

In [75], they introduced a new class of hybrid automata – Independent Dynamics

Hybrid Automata (IDA), whose characterizing conditions are based upon a decidable

first-order theory over the reals (e.g., (R, 0, 1, +, ∗, =, <)). In particular, a hybrid

automaton of dimension k can be defined only using formulæ over k dimensional

vectors of reals. The dynamics are solutions of autonomous systems of differential

equations. The reset conditions can be either constants as in the case of O-minimal

hybrid automata [184] or the identity function. They distinguish independent vari-

ables, whose resets are the identity function, from dependent variables whose resets

are constant functions. The flows and the reset functions of the dependent variables

can depend on the independent ones, but not vice-versa.

Their motivation for defining this new subclass had two sources: (1) Extend O-

minimal automata to make them suitable for Systems Biology applications; (2) Re-

strain semi-algebraic hybrid automata and make them more amenable to analysis.

They exploit the decidability of the first-order theory over which an IDA is defined,

both to bound the time interval they need to consider to solve a reachability problem,

and to prove the decidability of reachability. The bounds on the time interval do not

always exist on IDA, but they prove that they are always defined on an interesting

subclass of IDA called ∞IDA. As a consequence, reachability is always decidable on

107

∞IDA. It is important to observe that they do not explicitly compute these time

bounds, but check their existence, again, by solving a satisfiability problem.

Conclusions

The Algorithmic Algebraic Model Checking approach outlined here provides a general

framework, but still lacks the needed degree of applicability, especially in the context

of biological questions. We enumerate these issues: (1) Can one deal with unbounded

time interval? (2) Can one deal with different and adaptively chosen time steps?

This is particularly important if one is dealing with slow reactions as well as reac-

tions that are relatively fast. (3) Can one conclude about the limiting situations when

the time step sizes approach zero in the limit? (4) Is there a purely differential alge-

braic approach (e.g., Ritt algebra) for studying reachability? In the other directions,

one can ask similar questions about how to extend these constructs for reachabil-

ity to cases involving various modal operators (e.g., next). Beyond these questions,

the other remaining problems are of algorithmic nature dealing with approximability,

complexity and probabilistic computations. These are of enormous interest, if our

approach is to be applicable for large biological systems that can be modeled mod-

ularly and hierarchically. Furthermore, to study decidability, we introduced the use

of Blum et al.’s “real” Turing machine (or equivalently, finite-dimensional machine

over a field) formalism [66] – a more apt approach to analyzing problems involving

real computations. We found that reachability is undecidable even in this more pow-

erful computational model. What are the extensions of this result? Many of these

questions are addressed in the next chapter, where we show how this method can be

extended to model check TCTL [7, 143]. Approximations are the topic of the chapter

that follow the next one.

108

Chapter 6

Decidability of TCTL Model

Checking

The real motivation for extending Fränzle’s polynomial hybrid systems into semi-

algebraic hybrid systems was to go beyond bounded reachability and to document

the full power of quantifier elimination. This leads us to this chapter where we show

that we can perform dense-time TCTL model-checking with parameters over semi-

algebraic hybrid automata. Further, we can expand the repertoire of possible queries

by allowing semi-algebraic relations connecting the current and the next state in

the temporal logic queries. Once again, semi-decidability reduces to decidability in

time-bounded non-zeno systems.

6.1 Introduction

The subject Algorithmic Algebraic Model Checking examines connections between

systems biology, dynamical systems, modal logic and computability, and how they

can be useful in the biological context. Towards this aim, we began by addressing the

109

symbolic bounded reachability problem for a new class of hybrid models arising in

systems biology – semi-algebraic hybrid systems, introduced in the previous chapter

(based on the first and second papers in the “AAMC” series [239, 222]). There, we

aimed to characterize the widest range of automata that admit sound albeit expensive

mathematical techniques, as opposed to focusing on a very narrow class of systems

that often prematurely sacrifice generalizability for the sake of efficiency. It was shown

that the bounded reachability problem can be solved using real algebraic techniques

like Taylor series approximation and quantifier elimination. It was expected that,

building upon this algebraic bounded reachability algorithm [239] and other recent

techniques (e.g. some of Fränzle’s ideas [122]), we can address the algebraic model-

checking problem over the dense time logic TCTL [7]. The current chapter deals with

this subject.

We build upon and integrate many existing ideas: we use Henzinger et al. [143]’s

characterization of the Until operator as a fixpoint expression involving the one-step

until operator. Exploiting the power of a symbolic approach, we retain all parameters

as variables thus obtaining an algebraic expression representing the possible solutions

to the temporal logic query. The ability to perform an entirely symbolic analysis

of semi-algebraic hybrid systems (with polynomials of arbitrary degree) over a full

temporal logic, limited only by computational power, distinguishes our approach from

the other methods in literature. The appropriate frameworks for this setting consist

of the following: semi-algebraic hybrid automata which allow polynomial expressions,

TCTL logic to capture the continuous changes, and the “real” Turing machine model

(discussed in Sec. 5.4.1) that computes a semi-algebraic operation in one unit step.

110

6.2 Background: TCTL

We now report the basic definitions1 of the temporal logics TCTL and Tµ-Calculus

which we use to study properties of our semi-algebraic hybrid automata.

Definition 6.2.1 TCTL[7] It has the following syntactic structure:

φ ::= p | ¬φ | φ1 ∨ φ2 | φ1∃Uφ2 | φ1∀Uφ2 | z.φ.

Its associated semantics are described below:

• z.: The freeze quantification “z.” binds the associated variable z to the current

time. Thus the formula z.φ(z) holds at time t iff φ(t) does.

• φ1∀Uφ2 and φ1 ∃U φ2: universal (on all paths) and existential (on at least one

path) “until” operators. For φ1 U φ2 to be true on a path, φ2 is required to be

true somewhere along the path, and φ1 is required to be true all along the path

up to (but not necessarily at) that location. 2

Remark 6.2.1 The basic notations are often extended by the following syntactic ab-

breviations [7].

1. p ∃U≤max q ≡ p ∃U (q ∧ z.(z ≤ max)) and p ∀U≤max q ≡ p ∀U (q ∧ z.(z ≤

max)): “subscripted” Until operators (max is the time-bound).

2. ∀F ≡ true ∀U p and ∃F ≡ true ∃U p: “eventuality” operators.

3. ∀G ≡ ¬∃F¬p and ∃G ≡ ¬∀F¬p: “invariance” operators.

4. ∀X and ∃X : universal and existential “next time” operators are typically omit-

ted since they are not well-defined in dense-time systems.

1The symbols used in this thesis are defined in Table .2 in Sec. C of the Appendix

111

Example 6.2.1 TCTL Queries

• p ∀U q asks whether on every path leading off the state where the modal formula

is being considered, p is true everywhere until the state where q is true.

• ∃F q asks whether on some path leading off the state where the modal formula

is being considered, there exists a state where q is true.

• ∃G q asks whether q will be true forever on at least one path leading off the state

where the modal formula is being considered.

Definition 6.2.2 Single-Step Until Operator, ⊲, [143]. The formula p ⊲ q

holds if p∨ q is true all along “one step” of the hybrid system and q is true at the end

of the transition. 2

Remark 6.2.2 While in discrete time model-checking, the F , G and U operators are

interpreted as fixpoints of the “next” state operator X , the continuous-mode fixpoints

rely on the “single-step until” operator ⊲, which is the continuous-time next-state

operator in this extended sense.

Definition 6.2.3 Tµ-Calculus Syntax: [143]. While µ-calculus works for dis-

crete time systems, we have Tµ-calculus for capturing the continuous time properties

of hybrid systems: φ ::= X | p | ¬φ | φ1 ∨ φ2 | φ1 ⊲ φ2 | z.φ | µX.φ , where µ is the

least-fixpoint operator. Thus,

• The greatest-fixpoint ν can be expressed as ¬µX.(¬φ[X := ¬X]).

• Existential Until: operator can be expressed as the least fixpoint of a Tµ-calculus

formula as p ∃U q = µX.(q ∨ (p ⊲ X)).

• Universal Until: p∀Uq = ¬(¬q ∃U (¬p ∧ ¬q)) 2

112

Notice that the translation of the universal until is valid only when q is “finitely

variable” over all premodels [143].

Note 6.2.1 Henzinger et al. [143] proved that the “possibility” operator ∃U is de-

finable as a fixpoint over all premodels, while the “inevitability” operator ∀U is not

definable as a fixpoint over all real-time systems. However in divergence-safe systems,

testing for a property up to a certain finite fixed amount of time is sufficient to infer

about its overall properties. Thus:

s1∀Us2 = s2 ∨ (s1∀U≤c(s1∀Us2))

where,

s1∀U≤cs2 = z.(s1∀U(s2 ∧ (z ≤ c))).

Combining this with the fact that s1∀Us2 = ¬((¬s2) ∃U (¬s1 ∧ ¬s2)), they derive

the fixpoint expression for ∀U as:

s1∀Us2 = µX.(s2 ∨ ¬z.((¬X)∃U(¬(s1 ∨X) ∨ z > c))), where c > 0.

Definition 6.2.4 Least Fixpoint Computation The standard algorithm for the

evaluation of the least fixpoint µX.φ is given by

1. ψ := false

2. repeat

(a) φ := ψ

(b) ψ := φ[X := φ]

(c) until [φ] = [ψ]

3. return φ

113

6.3 Symbolic Algebraic Model Checking

In the last chapter, we proved the decidability of bounded model-checking and the

undecidability of reachability in Blum et al.’s “real” Turing machine formalism. Our

main results for semi-algebraic hybrid systems in this chapter may be summarized

thus: (1) The “existential” segment of TCTL (including reachability) and the nega-

tion of the “universal” segment are semi-decidable. Further, all subscripted operators

become decidable in the absence of zeno-paths; (2) Finally, a quantifier elimination

tool (e.g. Qepcad [151],Redlog [109]) may be used to perform the fixpoint iterations

of a TCTL query. The technical details are presented below.

To demonstrate our approach, we picked Timed Computation Tree Logic (TCTL)

as it is a popular member of the class of dense-time temporal logics (see Sec. 2.2 for

a list). It is to be noted that we neither restrict the temporal formulæ to be linear

nor insist that the hybrid system be a timed automaton. While the non-symbolic

approach to model-checking TCTL-specifications of real-time programs relies on the

explicit construction of the region graph [8], we take the symbolic route.

The symbolic route to model-checking TCTL-specifications of hybrid systems is

via the fixpoint expression for the until operator, which uses the standard single-step

until operator ⊲ [143] (also, see [239, 122]). The exact expression for the ⊲ operator

for semi-algebraic hybrid systems proves the basis of our approach: ⊲ corresponds to

a semi-algebraic expression and is hence decidable.

Since the p ⊲ q operator is defined as p∨ q holding all along one step of the hybrid

system and q being true at the end of the one-step evolution, it may be written

out for the the semi-algebraic hybrid system in terms of the continuous and discrete

transition relations
t
−→
C

and
0
−→
D

.

114

Definition 6.3.1 ⊲ for Semi-Algebraic Hybrid Systems. The expression p ⊲ q

is True at the current continuous state R if q is true now, or

• For one of the possible current discrete states v, there exists at least one discrete

state u to which a transition can be taken such that q holds at the end, or

• For one of the possible current discrete states v, there exists a continuous tran-

sition (of at most ∆ time units when we need to upper-bound the flow approxi-

mation error) all along which p ∨ q holds, with q being true at the end2.

p ⊲ q = q(R)
∨

∀v
(

{∃S
∨

∀u〈v, R〉
0
−→
D
〈u, S〉 ∧ q(S)}

∨

{∃S, h (0 < h ≤ ∆) ∧ 〈v, R〉
h
−→
C
〈v, S〉 ∧ q(S) ∧

∀S ′, h′ ((0 ≤ h′ < h) ∧ 〈v, R〉
h′

−→
C
〈u, S ′〉)⇒ (p(S ′) ∨ q(S ′))}

)

2

The one-step until operator of a hybrid automaton is visualized in Figure 6.1

C

D

S

S
R

Figure 6.1: One-Step Until Operator

2The last term in the formula, p(S′) ∨ q(S′), can be replaced with just p(S′) for evaluating ∃U

over semi-algebraic hybrid systems.

115

Remark 6.3.1 The upperbound ∆ on h should be omitted if there is no error in

the Flowv expression. Also, since the discrete jump is instantaneous, p(R) does not

appear in the discrete-jump expression (second line).

Theorem 6.3.1 The one-step-until operator ⊲ is decidable for semi-algebraic hybrid

systems if p and q are also semi-algebraic.

Proof 6.3.1 Semi-algebraic sets are closed under Boolean operations and quantifier

elimination. Since Jump, Inv and Flow are semi-algebraic, so are the expressions
t
−→
C

and
0
−→
D

. Thus p ⊲ q is semi-algebraic since p and q are also semi-algebraic. Since

quantifier elimination over semi-algebraic sets is decidable [276], p ⊲ q is decidable.

2

Unlike Bounded Model Checking (BMC)[64], it is not possible to calculate the

maximum bound on the number of future/past iterations that the formula should be

checked in order to guarantee that the property holds. Such a completeness threshold3

cannot be obtained for semi-algebraic hybrid systems as it would effectively imply de-

cidability again. However, the well-established trick of incorporating the time variable

into the temporal logic query can handle this, i.e., we ask if a property holds until we

are no longer in the time-frame of interest, as opposed to asking if the property holds

forever. In the bounded version of the model-checking task, we are only interested

in the system evolution over a bounded time horizon or a bounded number of steps.

Many practical problems are of this nature as is also evident from the burgeoning

BMC field.
3For every finite state system M , a property p, and a given translation scheme, there exists a

number CT , such that the absence of errors up to cycle CT proves that M | = p. CT is called the

Completeness Threshold of M with respect to p and the translation scheme.

116

Corollary 6.3.1 For semi-algebraic hybrid systems:

1. ∃U , ∃F , ∃G and their subscripted versions ∃U≤z, ∃F≤z and ∃G≤z are semi-

decidable.

2. The negations of ∀U , ∀F , ∀G and their subscripted versions ∀U≤z, ∀F≤z and

∀G≤z are semi-decidable.

3. All subscripted operators become decidable in the absence of zeno paths.

Proof 6.3.2 The conclusions can be drawn as follows:

• The ∃U operator can be evaluated by iterating (indefinitely) over the decid-

able “one-step-until” operator ⊲ as per the fixpoint characterization p ∃U q ≡

µX.(q ∨ (p ⊲ X)). Hence it is semi-decidable, i.e., the computation procedure is

guaranteed to converge if the query is True.

• Since p∀Uq ≡ ¬(¬q ∃U (¬p∧¬q)), it can be guaranteed to converge only when

it is False. Thus the negation of ∀U is semi-decidable by our procedure.

• Since ∃Fp ≡ true ∃U p, reachability is semi-decidable.

• ∀Fp ≡ true ∀U p and is not semi-decidable since ∀U is not.

• Since ∃Gp ≡ ¬∀F¬p, we can guarantee that it will converge if it is True since

∀F is guaranteed to converge if it is False. Thus it is semi-decidable.

• Since ∀Gp ≡ ¬∃F¬p, it is guaranteed to converge only when it is False.

• A new variable time is introduced, with initial value 0, flow 1 in all discrete

states and identity resets. This allows the interpretation of freeze (z.X) and

subscripted until (U≤a) operators.

117

• Subscripts, being upper-bounds on the time-frame of interest, effectively bound

the number of continuous steps while the absence of zeno-paths bounds the num-

ber of discrete jumps. In non-zeno systems, every path of a specified time-length

can be explored fully. Hence all subscripted operators are decidable. 2

Remark 6.3.2 Purely symbolic reachability cannot be convergent as many sets (in-

cluding the Mandelbrot set) cannot be expressed as the finite union of semi-algebraic

sets [66]. Similarly, the solution of many coupled, non-linear differential equations

and simple discrete difference equations are inexpressible even using exponential and

trigonometric terms [246], let alone as a finite union of polynomial inequalities. How-

ever, the conventional semi-decidability notion only applies to cases where the query

can be answered as True or False. It was under this default assumption (also used

by Fränzle while discussing “polynomial” hybrid systems [122]) that the above results

were derived.

Queries About Nature Of Change During A Time-Step

The repertoire of possible queries has naturally expanded, since polynomial terms can

appear in the Boolean constructs part of the query. Temporal logic queries typically

talk about the state of the system at a certain time in a certain path. However,

with our representation we can allow the queries that connect the state of the system

before (Z−) and after (Z) a time-step as well, i.e., the nature of the change (and

not just the changed state) can be queried. This does not affect the computational

complexity substantially, as no new variable is introduced: Z and Z ′ were always part

of the transition relation, and correspond to Z− and Z in the temporal logic query.

Sample queries include:

1. Is there a possible system evolution where y monotonously increases? EG(y >

118

y−).

2. When y overshoots a threshold value ythr, is it brought back under control within

a time step? AG(y− > ythr)⇒ (y ≤ ythr).

3. Is a spike possible in the evolution of y? EF (y > 100y−).

6.4 Discussion

Literature Review

Simulating and analyzing hybrid systems has become a field with tremendous import

in various regimes of science and technology. However, no overwhelmingly superior

mathematical approach has emerged, and several tools for addressing some aspects

of restricted hybrid systems have been developed (see Sec. 9.2 for a survey of compu-

tational tools). In this section, we first review some of the restricted hybrid systems

that are amenable to reachability analysis. We then peruse some techniques for ap-

proximate analysis. Having surveyed the two avenues of compromise, we discuss the

developments in algebraic model checking and finally help put our semi-algebraic

hybrid systems in perspective.

Simplifying The Problem

The most natural compromise to make is to see if less complex systems are amenable

to analysis. Timed automata [12] , multirate automata [9] ,initialized rectangular

automata [241, 144] , controllable linear systems [273] , some families of linear vector

fields [186] and O-minimal hybrid automata [184] have been shown to be decidable for

the reachability query. The problem easily becomes undecidable, for example in timed

automata with linear expressions as guards or stop-watches, in multi-rate automata

119

with clock-comparisons or without resets and in rectangular automata without the

initialization requirement.

While semi-algebraic hybrid systems have been suggested in one form on another

before [162, 21, 122, 186], the full potential of this formalization is only beginning to

be appreciated [239]. Beyond timed, multirate and initialized rectangular automata

[9, 241], the linearity of continuous dynamics is another extensively studied restriction

[10, 37]. Controllable linear systems [273], some families of linear vector fields [186]

and O-minimal hybrid automata [184] have also been shown to be decidable for the

reachability query. In the case of O-minimal hybrid automata, the decidability is

guaranteed by the decidability of the underlying theory and by the fact that the

resets are constant. In semi-algebraic hybrid automata, we do not have any restriction

on the resets. However, O-minimal systems admit more complex functions (beyond

polynomials) in the flows, invariants and guards. As per the restricted jump condition

the new continuous state cannot depend on the old state. Also, the system is assumed

to be time-invariant so that the trajectories cannot self-intersect. These restrictions

effectively decouple the discrete and continuous dynamics allowing bisimulations to be

performed on each state separately. O-minimal theories which describe finite unions

of points and open intervals, generalize the notion of semi-algebraic sets. They have

nice topological properties, but not complete quantifier elimination. Instead they

have a weaker property known as model completeness.

Simplifying The Analysis

In addition to making simplifying assumptions about the dynamics of the hybrid sys-

tem, one could investigate incomplete approaches that work in many but not all cases,

and approaches that operate not on the hybrid system but on its “simplified” abstrac-

120

tion. One such approach is over- or under-approximation, where the reachable region

is assumed to have a (mathematically) convenient geometric shape such as a polyhe-

dron, a level set or an ellipsoid [71, 82, 37, 180, 181, 183]. Some of these geometric

entities are closed under some but not all operations like union and intersection.

Bisimulation on the other hand is an intelligent partitioning of the concrete system-

state space of the hybrid system into fewer abstract discrete-states such that the

properties of interest continue to hold in the simpler smaller model [138]. These

“quotient” systems are typically obtained by refining an initial partition until it be-

comes compatible with the system dynamics and the property to be preserved. Thus

it becomes sufficient to perform the model checking over this conservative abstraction

of the continuous system. Predicate abstraction has also been frequently used to map

a hybrid automaton into a discrete one [278, 10], with a good application-example

being the analysis of the Delta-Notch signaling process [125].

Algebraic Model Checking

The translation of problems from the Boolean to the algebraic domain has been

studied indirectly in control theory for a long time [25] and more thoroughly in the

context of temporal logic for about a decade. While the algebraic model checking

of discrete systems [43, 249] has also been explored, it is the more complex case of

hybrid dynamics replete with open problems that is of more practical interest. Though

the reachability problem is undecidable for general hybrid systems [144], algorithmic

modeling and verification tools using quantifier elimination, SAT-solvers and Boolean

methods for systems exhibiting simple continuous dynamics have been successfully

developed in the last couple of years.

On the algebraic side, Jirstrand [162] demonstrated the use of Qepcad for problems

121

of stationarizable sets, range of controllable output, following a curve and reachability

in the context of non-linear control system design. Anai [21] and Fränzle [122] inde-

pendently suggested the use of quantifier elimination for the verification of polynomial

(semi-algebraic) hybrid systems. Anai and Weispfenning subsequently expounded

the use of quantifier elimination for the reachability analysis of continuous systems

with parametric inhomogeneous linear differential equations [22]. Fränzle went on to

prove that progress, safety, state recurrence and reachability are semi-decidable using

quantifier elimination of semi-algebraic formulæ[122] and develop proof engines for

bounded model checking [123]. Lafferriere et al. [186] have described a quantifier-

elimination-centric method for symbolic reachability computation of linear vector

fields.

Ratschan and She [243] have recently suggested a new constraint propagation

based abstraction refinement for the safety verification of hybrid systems. Carbonell

and Tiwari [247] and Sankaranarayanan et al. [252] have devised schemes for generat-

ing invariants for hybrid systems. Other recent developments include Becker et al.’s

integration of bounded model checking and inductive verification [57] and Lanotte

and Schettini’s new categorization - monotonic hybrid systems [188]. Lanotte and

Tini [189] have recently proved that the semi-algebraic hybrid automaton obtained

by approximating each formula in any (non-polynomial) hybrid system definition with

its Taylor polynomial (of some degree k) is an over-approximation. From the perspec-

tive of parametric analysis, some of the hybrid system model-checkers can perform

purely symbolic model checking to a small extent [16, 26, 27] and naturally, do not

guarantee termination. In [292], a double exponential bound on the time complexity

of parametric analysis of upper bound parametric timed automata is proved.

122

In Perspective

As the literature survey revealed, assumptions about the continuous and/or discrete

dynamics have been central to the development of symbolic algebraic model checking

techniques for hybrid systems. The “semi-algebraic” assumption is a constraint on

both the continuous and discrete dynamics, essentially limiting the types of functions

that can appear in the flow, guard and jump expressions.

While the approaches of Alur et al. [10] and Tiwari and Khanna [278] also have

strong similarities to our approach, Lafferriere et al.[184]’s O-minimal system is the

only model that allows more complex continuous dynamics.

However, the semi-algebraic scheme does not need time-invariance, linearity or any

other assumption as it is ensured that we always remain in the semi-algebraic domain.

This is because semi-algebraic sets are closed under union (or), intersection (and),

complement (not), projection, and most importantly, quantifier elimination. Indeed,

the geometric objects such as ellipsoids and grids are subclasses of semi-algebraic

hybrid systems, where their specific shape simplifies numerical computation (i.e., less

computationally complex than quantifier elimination over the reals) but disallows

generalization and fully algebraic manipulation. The symbolic integration that we

use effectively avoids explicit numerical integration, restricting our computation only

to those aspects of the system relevant to the query.

Conclusion

In this chapter (based on [222]), the compromise we explored was bounded verifica-

tion and model-checking, i.e., assuming there is a finite upper-bound on time beyond

which we either do not care about the system or assume it works. Another course of

compromise is space abstraction, where we depart from the continuous infinite space

123

discretizing both space and time. Approximation with rectangular grids, ellipsoids

and convex polyhedra is the key intelligence behind this approach. Alternatively, the

polynomial inequalities and equations in the hybrid system specification and in the

formula to be model-checked could be used to first identify connected components of

the space relevant to the query. Rectangular grid abstraction could then be applied

to each of these components which can be handled separately. The analysis of reach-

ability results for perturbed and robust systems [122, 34, 182] is also being pursued.

Techniques for converting non-polynomial specifications into polynomials [248, 196],

such as the recent Taylor series method of Lanotte and Tini [189] could potentially

increase applicability.

To summarize, the “semi-algebraic” method outlined here enables sophisticated

symbolic algebraic model checking of a large class of hybrid automata, well beyond

the capabilities of current applications of symbolic methods in this area. Based on the

results of this chapter, we can focus on complexity improvement through meaningful

approximations. The next chapter of the thesis (based on the third paper in the

AAMC series [221]) focuses on approximate methods like bisimulation-partitioning,

space discretization (using grids and polyhedra) and time discretization.

124

Chapter 7

Approximate Methods

We have established semi-algebraic hybrid automata as a broad subclass amenable

to rigorous analysis. We now address the gargantuan computational complexity of

the procedure. Since algebraists are working on improving the quantifier elimination

procedure, we focus on the application side: How can we create smaller simpler

problems by being willing to get an approximate answer? In this section, we extend

four popular approaches, namely bisimulation partitioning, grid-based approximation,

polyhedral approximation and time-discretization, to the semi-algebraic domain. We

identify well-behaved subclasses and understand their biochemical relevance, if any.

We provide new optimizations and improvements to the existing techniques, and

discuss when and where these techniques might be applicable.

7.1 Introduction

A semi-algebraic hybrid automaton [239, 222] is a hybrid automaton, whose expres-

sions corresponding to the initial values, state invariants, continuous flows, and the

guards and resets of the discrete transitions are all semi-algebraic, i.e., Boolean combi-

125

nations of polynomial equations and inequalities. They are often used to approximate

more general systems, whose flow equations are not polynomial, since truncated Tay-

lor series, polynomial splines and other symbolic integration schemes provide good

semi-algebraic local approximations for flows, etc. A location of a semi-algebraic

hybrid automaton H is a pair 〈v,X〉, where v ∈ V is a state and X ∈ Rk is an assign-

ment of values to the k system variables. The transition relation 〈u,X〉
h
−→
T
〈v,X ′〉

of H connects all possible values of the system variables before and after one step;

namely, it is either a discrete step 〈u,X〉
0
−→
D
〈v,X ′〉 for a time h = 0 or a continuous

evolution 〈u,X〉
h
−→
C
〈v(= u), X ′〉 for a time period h > 0.

Earlier, in Chapter 5, we introduced this class and demonstrated the use of real

algebraic methods for solving the bounded reachability problem. In Chapter 6, we

examined the single-step until operator p ⊲ q of the dense-time logic Timed Compu-

tation Tree Logic (TCTL) [7] , which is defined as p ∨ q holding all along “one step”

of the hybrid system and q being true at the end of the transition. Since quantifier

elimination over semi-algebraic sets is decidable [276], p ⊲ q was shown [222] to be

decidable for semi-algebraic hybrid systems if p and q were also semi-algebraic. It was

further proved [222] that the “existential” segment of TCTL (including reachability)

and the negation of the “universal” segment are semi-decidable over semi-algebraic

hybrid automata. Further, all subscripted TCTL operators become decidable in the

absence of zeno-paths.

Effectively, the symbolic algebraic model checking problem was reduced to a series

of quantifier elimination problems which could be solved by a software tool such as

Qepcad [151]. The only source of error (if any) arose in approximating non-polynomial

systems. However, the computational complexity (double exponential) of the cylin-

drical algebraic decomposition severely limited the applicability of the method. In

126

this chapter, we discuss the applicability of the different approximation approaches

involving space-discretization to semi-algebraic hybrid automata. Approximate meth-

ods have been very successful in timed automata and linear hybrid systems, yielding

efficient decidable algorithms in many cases [82, 127, 71, 37]. However, these meth-

ods rely on computational techniques that exploit the low dimensionality and other

restrictions, of the dynamics of these subclasses of hybrid systems. In other words,

the techniques are seldom applicable to more complex systems. Our first goal in this

chapter is to show that many existing ideas can be made applicable to semi-algebraic

hybrid systems, by using quantifier elimination in place of the original efficient-but-

restrictive computational method. The second goal is to develop these ideas to ob-

tain new optimizations and techniques. Further, we seek to identify well-behaved

subclasses that are more general than timed or linear automata.

By suitably relaxing accuracy requirements, we aim to model-check the vast semi-

algebraic class, without being severely computationally hindered. Quantifier elimi-

nation will still remain our engine of computation, though it will be used differently;

namely, it will be invoked to solve many simple problems instead of a few complex

problems. In this chapter, we will present the modified versions of existing techniques

and understand their behavior over the semi-algebraic class. Clearly, different tech-

niques will prove to be effective in different scenarios. In this chapter, we do not

delve into this aspect, but instead focus on generalizing and optimizing existing tech-

niques. In this sense, it is the first effort to catalogue the algorithms for approximate

verification (reachability) for the general semi-algebraic class.

In this chapter, we develop new approximation methods applicable to the semi-

algebraic class, based on the existing literature for much simpler subclasses of hybrid

automata. For brevity, all proofs are provided in Section B of the Appendix.

127

7.2 Bisimulation Partitioning

The bisimulation idea is to convert the given hybrid automaton into a simpler one,

which only preserves the properties of interest to us (in the query). The conventional

bisimulation partitioning algorithm [127] involves splitting the discrete states based

on the out-going discrete transitions. The source state of a transition is split so

that, each new state (its partitions) has the minimal number of out-going transitions

(ideally, each new partition will have only one possible successor discrete state). The

rationale is that one expects only some of the guards (of the different out-going

transitions) to be satisfiable, from different parts of the continuous space representing

the discrete state (its state invariant).

For instance, Chutinan and Krogh [82] demonstrated how an approximate simula-

tion, where only query-relevant states are partitioned, can be used to verify temporal

properties of polyhedral-invariant hybrid automata. A more recent example is Ghosh

and Tomlin’s iterative refinement algorithm for computing symbolic discrete abstrac-

tions of the Delta-Notch hybrid automaton [127]. Their system, implemented using

MATLAB and Qepcad, divides the state into several subsets with at most one exit

transition each. Depending on the sign of the boundary polynomial inside the par-

tition and the sign of its Lie derivative, the direction of the flow from the interior

to the boundary is determined. The partitioning of the destination states is a new

concept introduced in Alg. 4.5.3, in the analysis of 1-dimensional Piecewise Affine

Maps (PAMs) [223].

7.2.1 Extended Bisimulation Partitioning

We first prove that these partitions are computable for semi-algebraic hybrid systems

by expressing the task as a quantifier elimination problem.

128

Theorem 7.2.1 For semi-algebraic hybrid automata, the standard bisimulation par-

titions are computable. 2

Having proved that the existing idea becomes applicable via quantifier elimination,

we now suggest an improvement of the technique. This approach is founded on the

observation that only a portion of the destination state may ever be accessed, after a

specific discrete transition. Thus, by splitting the destination state as well, based on

what fraction of it is accessible from the source state, we can refine the partitions. This

simple extension was not necessary in linear systems, as the destination state space

was typically entirely reachable from the reset region (after a discrete transition).

Since semi-algebraic sets have innate complexity, it is very unlikely that continu-

ous evolution from different reset regions will all envelope the entire state invariant.

Clearly, since we chop off the region of the state invariant that is not reachable, the

state invariants represent smaller sets. Hence, the extended-bisimulation-partitioning

is likely to be a sharper one than the standard approach. The second advantage to this

extended algorithm is that well-behaved subclasses can be characterized (see Conver-

gent Deterministic Automata in Sec. 7.2.2). The complete series of computations are

enumerated in Algorithm 2.

It is to be recalled that convergence of the partitioning does not imply decidability

of reachability for general hybrid automata. As in the standard bisimulation case, the

over-approximated set of points reachable from 〈s0, X0〉 in the original hybrid system

is given by the union of the invariants of all the states along all the trajectories

starting at the state d0 of the partitioned system corresponding to the partition of s0

containing X0. Even in the non-convergent case, this procedure yields an estimate of

the reachable set if we roll-out H for a reasonable number of steps. Similarly, we can

check if a specific Xf is reachable from a specific X0. We iteratively partition until the

129

Algorithm 2 Extended Partitioning For Semi-Algebraic Automata

1. Pick a state s (source) with a discrete transition to state d (destination);

2. Split s into two states sd and sd̄ thus: Inv sd
(X) ≡ ∃h,X ′ 〈s,X〉

h
−→
C
〈s,X ′〉 ∧

Guard s,d(X
′) and Invsd̄

(X) ≡ Inv s(X) ∧ ¬Invsd
(X);

3. Split d is into ds and ds̄ thus: Invds(X) ≡ ∃X ′′,X ′ Inv s(X
′′) ∧ 〈s,X ′′〉

0
−→
D
〈d,X ′〉 ∧

{∃h 〈d,X ′〉
h
−→
C
〈d,X〉} and Invds̄(X) ≡ Invd(X) ∧ ¬Invds(X);

4. The states sd, sd̄, ds, ds̄ replace s and d. The transition from s to d is replaced by the

one from sd to ds. All other transitions to (or from) s (d) are each replaced by two

transitions to (or from) sd and sd̄ (ds and ds̄);

5. Repeat steps (i)− (iv) until no transition from any state s to any state d can be found

which splits s or d. 2

partition containing Xf is not in any trajectory starting from the partition containing

X0. We can then conclude guaranteed unreachability, or approximate reachability

otherwise (counterexample-guided abstraction refinement, CEGAR [86]).

Example 7.2.1 The approach is summarized in Figure 7.1. In standard bisimula-

tion, region X would have yielded 2 new partitions X1 and X2 corresponding to the

regions which satisfy the guard for the transitions to Z and Y respectively. In the

extended partitioning, Zi ∪ ZC
1 and Y1 ∪ Y C

1 are two additional states that are cre-

ated because of the two transitions. Here, ZC
1 is the region reachable via continuous

evolution from Z1, which is itself the region reachable after a discrete reset from X1;

similarly for Y1 and Y C
1 .

Having generalized and extended an existing technique, we now characterize the

broadest subclasses of hybrid systems where this new technique is well-behaved.

130

X

X1

X1
Y1 Y C

1

Y

Z

Z1

ZC
1

Figure 7.1: Standard Bisimulation Partitioning and its Extended Version

7.2.2 Convergent Deterministic Automata

In the most restrictive case of 1-dimensional PAMs, we proved[221] that affine 1-to-1

maps (f(x) = aix + bi, x ∈ Ii) over 1-dimensional intervals guarantee finite cycle of

successors (see Lemma 4.5.1). This section is an elaboration of that observation over

semi-algebraic hybrid automata.

In deterministic hybrid automata, a discrete transition is taken the moment its

guard is satisfied (with no two guards ever holding simultaneously). Hence there

is a unique future trajectory for every initial system state. In this case, the source

state s can be split such that being in partition si will guarantee that the guard

corresponding to the transition to state di will be reached (and hence taken). If the

extended partitioning procedure converges for a deterministic hybrid automaton, the

original automaton will now correspond to a set of disconnected trajectories. Each of

131

these will be a cycle of discrete states, with each state possibly preceded by a linear

path of unique discrete states (all other topologies get excluded because there is no

“future-branching” in deterministic automata). The extended partitioning unlike the

standard bisimulation partitioning, produces exactly onto maps between successive

states when convergent. We now show how many of their mathematical properties

can be fruitfully exploited to address the reachability problem, for broad subclasses

of convergent deterministic semi-algebraic hybrid automata.

In this section, we assimilate these ideas to prove decidability of linear maps in

higher dimensions and bounded-error decidability of monotonic maps for hybrid au-

tomata that converge for our bisimulation partitioning procedure. Chaotic behavior

because of discrete transitions is ruled out when we assume that the partitioning con-

verges, while chaotic continuous dynamics are excluded because of the monotonicity

requirement. In this section, we prove that for convergent systems:

1. If the flows and resets are monotonic, then the procedure can converge to an

arbitrary degree of accuracy.

2. Further, if the resets and flows are linear, then a point has only a finite num-

ber of unique successors before it begins to cycle, unless the sets have infinite

axes of symmetry (e.g., circle and sphere). Hence we can accurately conclude

(un)reachability.

1-to-1 Linear Maps

Linearity is in general a friendly domain that admits many decidable algorithms and

good bisimulations. In linear convergent deterministic semi-algebraic automata, all

flows and reset maps are linear. Thus, infinite cycles are ruled out, since there are

only a finite number of exactly onto maps possible (except when the sets have infinite

132

axes of symmetry as does a circle). The types of linear maps and their geometrical

correlations are elaborated below to explain this observation:

1. Linear Shift If the resets are of the form x′i = xi + ci, S1 and S2 have to

be identical but for a linear shift (ci > 0 implies shifting right, ci < 0 implies

shifting left). Hence each point in S1 can have only 1 possible post-image in S2.

Further, that point has to map back on to the source. Hence, if we have n such

states forming a cycle, the length of the longest cycle of successors will also be

n.

2. Affine Shift If the resets are of the form x′i = aixi + bi, S1 and S2 have

to be identical but for a linear shift and stretch. (|ai| > 1 implies stretching,

ai < 0 implies flipping). Each coordinate xi of a point in S1 can have one

such post-image in S2 and a second “inverted” one if there is an axis of linear

symmetry in the i-th dimension. Thus the total number of possible post-images

is 2sl where sl is the number of dimensions with an axis of linear symmetry.

There are 2sl post-images possible in S1 for each of these points. However, these

have to overlap. If not, we can create a new map from S1 to S2 by following

the sequence of back-and-forth maps fnew = fi(gj(fk(x0))). In other words, the

maximum length of the cycle is 2× 2sl = 2sl+1.

Example 7.2.2 In a mapping between rectangles, each point has 4 possible

post-images and 8 possible unique successors. Between cubes, each point has

8 possible post-images and 16 possible unique successors. The effect of re-

peated alternate application of two linear functions in one dimension that ex-

actly span each others’ domain is demonstrated in Figure 7.2. The only two

maps possible in each direction are f1(y), f2(y) and g1(x), g2(x): some subcycle

133

of x0 → y1 → x1 → y0 → x0 is inevitable.

3. Coupled Affine Shift When the resets are of the form x′i = Σajxj , rotations

become possible in addition to shifting, stretching and flipping.

f2(y0) = x1 = f1(y1)

f1(y0) = x0 = f2(y1)

g1(x0) = g2(x1) = y0

g1(x1) = g2(x0) = y1

Figure 7.2: Typical result of cycling over two linear functions

These observations may be formalized thus:

Theorem 7.2.2 There are only a finite number of 1-to-1 linear maps f(X) = ΣAX+

B, Ai, Bi ∈ Rd possible, between two d-dimensional sets with finite axes of symmetry.

2

Corollary 7.2.1 Given a cycle S1, · · · , Sn, S1 of n d-dimensional sets with sl axes of

linear symmetry and sr axes of rotational symmetry each, where each set maps exactly

onto its successor (Si+1 = f(Si)), the number of unique successors of any point is at

most nsr2
sl. 2

Thus, we get:

Theorem 7.2.3 Reachability over a deterministic semi-algebraic hybrid system with

linear resets Resetu,v(X,X
′) ≡ (X ′ = ΣAX + B), Ai, Bi ∈ Rd and linear flows

134

Flowu(X,X
′) ≡ (X ′ = ΣAX + B), Ai, Bi ∈ Rd is decidable, if the extended parti-

tioning algorithm converges into states with finite axes of symmetry. 2

1-to-1 Monotonic Maps

The more general notion of monotonicity has recently been identified as a useful re-

striction in characterizing hybrid systems [188]. A function is said to be monotonic

(with respect to its arguments), if it is always increasing or always decreasing or con-

stant in the specified interval. For monotonic convergent deterministic semi-algebraic

automata, monotonic flow and reset maps guarantee that the system has to eventually

converge to a fixed point or a limit cycle (chaotic behavior can be ruled out). We

now show that, unlike linearity which ensures decidability of reachability, monotonic-

ity only guarantees that approximate reachability can be decided upto any specified

accuracy:

Theorem 7.2.4 If there exist 1-to-1 monotonic maps between two sets, all points

converge to one of a finite number of fixed points or limit cycles. 2

Thus, we get:

Theorem 7.2.5 Reachability over a deterministic semi-algebraic hybrid system with

resets and flows monotonic (with respect to all system variables), that converges upon

extended partitioning, is decidable up to an arbitrary degree of accuracy. 2

Example 7.2.3 The effect of repeated alternate application of two monotonic func-

tions f(x) and g(x) in one dimension that exactly span each others’ domain is demon-

strated in Figure 7.3.

135

x1 = g(y0)

y1 = f(x1)

xn, yn → 0

x2 = g(y1)

y0

x3 = g(y2) y2 = f(x2)

Figure 7.3: Typical result of cycling over two monotonic functions

7.3 Approximating as a Polytope

The bisimulation approach produced a new hybrid system more amenable to ap-

proximate temporal analysis. A completely different approach, very popular for the

reachability problem, is to approximate from the first step. This involves assuming a

mathematically convenient geometrical shape for the initial set—the simplest being

a polytope (bounded polyhedron), which can be written as a Boolean combination

of linear inequalities [82]. At each iteration, we compute the successor polyhedron

by expanding it using the (one-step) transition relation of the hybrid system. Also,

we need to ensure that the successor is also a polyhedron. At each iteration, the

mathematics involves keeping track of the movement of the vertices and computing

their new convex hull, or keeping track of the faces and moving them based on their

maximum outward growth along the normal.

Clearly, a polyhedron can serve as a complexity restricting approximation of a

semi-algebraic set as well. However, the conventional computational techniques are

136

not applicable for two reasons. First, the convex hull of the successors of vertices of

a polyhedron cannot be guaranteed to over-approximate the successor of the poly-

hedron. This is because, unlike linear systems, the flows cannot be assumed to be

convexity preserving in semi-algebraic systems. Secondly, the face-lifting approach is

not applicable in its basic from. This difficulty arises because, there is no straight-

forward way of calculating the maximum outward component of the flow along the

normal to each face, of a polyhedron evolving with arbitrary polynomial dynamics.

In this section, we develop two new approaches that circumvent this problem.

7.3.1 Hyper-Rectangular Approximation

Instead of directly computing the approximated successor, we calculate the accurate

complex successor (of the polyhedron), and then approximate it with a new polyhe-

dron. Though the accurate successor computation slows us down, it is still better

than the entirely exact computation. This is because the quantified semi-algebraic

expression for the successor is relatively simple (polyhedron). We first describe a

very coarse over-approximation which merely keeps track of the extremities along

each dimension. This simple over-approximation can be obtained by calculating the

maximum and minimum value along each dimension and bounding by one hyper rect-

angle. The complete series of computations are enumerated in Algorithm 3, where

we denote the value of the i-th dimension of X by Xi.

Example 7.3.1 The approach is summarized in Figure 7.4. The dark blue region

R(x, y) is over-approximated by the light blue rectangle marked 2 defined using its

extremities as (xR
min ≤ x ≤ xR

max)∧(yR
min ≤ y ≤ yR

max). Its accurate successor is region

S(x, y). Its extremities define its over-approximation (xS
min ≤ x ≤ xS

max) ∧ (yS
min ≤

y ≤ yS
max).

137

Algorithm 3 Over-Approximating as One Hyper-Rectangle

1. Initialize the current over-approximation of the reachable set R with the starting

hyper-rectangle
∧

i(imin ≤ Xi ≤ imax);

2. Calculate the exact successor of R thus:

RE(〈s,X〉) ≡ ∃s′,X ′, h R(〈s,X ′〉) ∧ 〈s′,X ′〉
h
−→
T
〈s,X〉;

3. Calculate the maximum value of each dimension Xi in RE thus:

{∃s,X (Xi = i′max) ∧RE(〈s,X〉)}
∧

{∀s,X RE(〈s,X〉)⇒ Xi ≤ i′max};

4. Calculate the minimum value of each dimension Xi in RE thus:

{∃s,X (Xi = i′min) ∧RE(〈s,X〉)}
∧

{∀s,X RE(〈s,X〉) ⇒ Xi ≥ i′min};

5. For each dimension, i′min ≡ min(imin, i′min), i′max ≡ max(imax, i′max);

6. If j′max 6= jmax or j′min 6= jmin for some dimension Xj, repeat the steps (ii)− (v) with

R ≡
∧

i(i
′
min ≤ Xi ≤ i′max); else, the procedure has converged. 2

While the utility of such a gross over-approximation is questionable, it is nev-

ertheless a technique one can resort to when the complexity of the problem is very

high.

7.3.2 Hyper-Polygonal Approximation

If we want to approximate with a general polyhedron (more than just a hyper-

rectangle), we have to resort to the convex-hull or face-lifting approaches. As arbi-

trary face-lifting is not known to be amenable to computational analysis, we suggest

a convex-hull-based approach. Since the new positions of the vertices cannot capture

the new convex-hull, we move them by the maximum possible increments and decre-

ments in one step of the hybrid system. In other words, we compute the maximum

138

R(x, y)

(xR
max, yR

max)

(xR
min, yR

min)

S(x, y)

(xS
min, yS

min)

(xS
max, yS

max)

Figure 7.4: Over-Approximating as 1 Hyper-Rectangle

(and minimum) displacement (along each dimension) of any point in the polyhedron;

and then assume that all the vertices could have moved by these amounts. The con-

vex hull of the vertices, moved by these maximal amounts, is clearly guaranteed to be

an over-approximation of the original polyhedron. The algorithm that results from

this approach is detailed in Algorithm 4.

Example 7.3.2 The approach is summarized in Figure 7.5. Region 1 is over ap-

proximated using its maximal convex hull CH(0). Its accurate successor 3 defines the

maximum possible increase and decrease possible in each dimension, defining the red

rectangle. By superimposing this rectangle at the 6 vertices of CH(0), we get 24 new

points. Their convex hull CH(1), now with 9 vertices, is guaranteed to be an over

approximation.

139

Algorithm 4 Over-Approximating as One Hyper-Polygon

1. Initialize the current over-approximation of the reachable set R with the starting

hyper-polygon, composed of the initial set of n vertices v1, · · · , vn;

2. Calculate the exact successor of R thus:

RE(〈s,X〉) ≡ ∃s′,X ′, h R(〈s′,X ′〉) ∧ 〈s′, x′〉
h
−→
T
〈s,X〉;

3. Calculate the maximum increment δinc in each dimension Xi thus:

{∃s,X, s′,X ′ R(〈s,X〉) ∧RE(〈s′,X ′〉) ∧ (X ′
i −Xi = δinc)}

∧

{∀s,X, s′,X ′ (R(〈s,X〉) ∧RE(〈s′,X ′〉))⇒ (X ′
i −Xi ≤ δinc)};

4. Calculate the maximum decrement δdec in each dimension Xi thus:

{∃s,X, s′,X ′ R(〈s,X〉) ∧RE(〈s′,X ′〉) ∧ (Xi −X ′
i = δdec)}

∧

{∀s,X, s′,X ′ (R(〈s,X〉) ∧RE(〈s′,X ′〉))⇒ (Xi −X ′
i ≤ δdec)};

5. Each vertex contributes 2d new points, with each dimension being increased or de-

creased by the maximum amounts. R is assigned the convex hull of these n2d points;

6. Iterate (ii) − (vii) until δinc = δdec = 0. 2

7.4 Rectangular Grid Abstraction

Instead of using one large polytope, the grid abstraction approach relies on keeping

track of a number of small simple hyper-rectangles. Rectangular grids admit canonical

representations and the number of faces grows linearly with the dimension, as opposed

to convex polyhedra which become intractable in higher dimensions [71]. Two com-

mon simplifying strategies are restricting the vertices to be integers (“griddy”) and

the edges to be axis-parallel (“isothetic”) [37].

Clearly, a griddy polyhedron that can be decomposed into few large rectangles can

140

CH(1)

CH(0)

Figure 7.5: Over-Approximating as 1 Hyper-Polygon

be represented as a succinct isothetic polyhedron. Further, since edges can be arbi-

trary real numbers, we can push only as much as needed and not always by multiples

of 1. Thus face lifting can cause a refinement of the grid. Both methods are not very

space efficient. As pointed out by Bournez et al. [71], the representation of intermedi-

ate polyhedra (non-convex in general), identifying their faces, decomposing them into

convex subsets, and performing face lifting as well as other set-theoretic operations

is a complex computational problem. They discuss several canonical representation

schemes for non-convex orthogonal polyhedra in any dimension. For piecewise-linear

dynamical systems, the d/dt tool of Asarin et al. [37] integrates the above ideas by

discretizing time and restricting the sets to be griddy polyhedra. The errors accu-

mulated in the process of moving from the actual set to its bloated convex hull and

from there to the griddy polyhedron, do not propagate to the next step as the original

accurate set is also maintained. The calculated forward step is intersected with the

141

guard to obtain the next state, similar to Kronos [100, 303] (for timed automata)

and HyTech [16, 142, 146] (for hybrid automata with constant derivatives).

Over vs Under Approximation The idea is to abstract the space into rectangular

regions such that all points in a grid unit behave identically. This behavior can

correspond to the best-case or worst-case and thus corresponds to an under or over

approximation. A grid unit [xl, xr] can reach the grid unit [yl, yr] iff

• Over-Approximation:

∃x x ∈ [xl, xr] ∧ {∃h, x
′ x→h

C x′ ∧ x′ ∈ [yl, yr]}

• Under-Approximation:

∀x x ∈ [xl, xr]⇒ {∃h, x
′ x→h

C x′ ∧ x′ ∈ [yl, yr]}

7.4.1 Union of “Griddy” Hyper-Cubes

We first show that the extension to semi-algebraic hybrid automata of the standard

procedure is possible, because quantifier elimination can be used to compute the

transitions between hyper-rectangles. One can partition the entire space into Nd

hyper-rectangles, where N is the number of the A-sized partitions 1 of each of the

d dimensions. We use B(X) to denote the k-dimensional grid unit
∧

i(Bi ≤ Xi <

(Bi + A)) of size Ad. States will be connected to some of their 3d − 1 immediate

neighbors, which differ by +A,−A or 0 units in each dimension (with the identity-case

alone excluded), and to some farther ones resulting from discrete resets. Algorithm

5 summarizes the series of computations necessary to calculate the reachable region

starting from a specific grid unit.

1A should be fixed in relation to the error in the
h
−→
C

.

142

Algorithm 5 Reachability Over Numerical Grids

1. Given one hyper-rectangle F (X) corresponding to the source;

2. Initialize “frontier” set F with {F (X)}, and “reachable set” R with null ;

3. For each new hyper-rectangle P (X) ∈ F

(a) Compile the set of neighbors:

N ≡ {Q(X)|(|Qi − Pi| = A ∨ 0) ∧
∨

i(|Qi − Pi| 6= 0)};

(b) For each neighbor Q(X) of P (X) not already in the reachable set, test if it is

reachable, i.e., ∃X, P (X)∧
∨

∀v{∃Y
∨

∀u〈v,X〉
0
−→
D
〈u, Y 〉∧Q(Y)}

∨

{∃Y, h (0 <

h ≤ A) ∧ 〈v,X〉
h
−→
C
〈v, Y 〉 ∧Q(Y);

(c) All candidate non-adjoint cells Q(X) that can be reached by discrete state tran-

sitions can be tested thus:

∃X, P (X) ∧
∨

∀v{∃Y
∨

∀u〈v,X〉
0
−→
D
〈u, Y 〉 ∧Q(Y)}.

(d) Add all reachable cells to both the reachable set R and the frontier set F and

remove P (X) from F ;

4. Iterate until there are no more new-hyper-rectangles. 2

Example 7.4.1 The approach is summarized in Figure 7.6. Region 1 is over approx-

imated by RG(0), the union of all the cells of the rectangular grid with at least one

point in 1. Region 3 is the accurate successor of RG(0), which is over-approximated

as RG(1).

Algorithmic Enhancements Instead of estimating every transition possibility sep-

arately, one could use symbolic queries to get a general expression in a for all states

of the form [a, a + 1) that allow a transition to [a + 1, a + 2). Simplification of the

143

RG(0)

RG(1)

Figure 7.6: Over-Approximating using a Rectangular Grid

set of hyper-rectangles can lead to fewer bigger hyper-rectangles. While a quanti-

fier elimination tool can do this, one needs to ensure the result continues to be a

union of hyper-rectangles. We could over- (respectively, under-) approximate further

by including extra (respectively, omitting some) hyper-rectangles to allow for sim-

pler representation using fewer hyper-rectangles. The sides will now be of the form

nA, n = 1, 2, 3, · · · . [pl, pr] is reachable [pl − a, pr], [pl − a, pr − a] and [pl, pr + a] are

reachable, where a is a change in only 1 dimension. We can have similar rules for the

other 3 quadrants of a square.

7.4.2 Union of “Isothetic” Hyper-Rectangles

Having shown that the standard procedure is applicable, we now develop a new

approach for computing a sharper over-approximation (successor set of small hyper-

rectangles) of the given hyper-rectangle. The idea is to compute the exact successor

144

of a hyper-rectangle, and then over-approximate the region outside the initial hyper-

rectangle (the “spill”) by hyper-rectangles. In the previous case, we considered each

of the 3d−1 non-overlapping neighboring zones, and tested the transition to each. To

simplify the expressions further, we suggest considering fewer overlapping neighbors;

in particular, the zones with exactly one of the d dimensions increased or decreased

i.e., 2d in all. To summarize, the standard method (previous case) accumulates the

hyper-rectangles reachable from the given hyper-rectangle by testing transition to

each of the 3d − 1 non-overlapping neighbors. The size of each neighbor is fixed

(“griddy”) forcing the approximation error to be at least that big. In the new tech-

nique, the hyper-rectangles continue to be axis-parallel (“isothetic”), but their vertices

are not fixed. As a result, the approximation is guaranteed to be much better than

the “griddy” case. The additional trick of considering fewer overlapping rectangles

cannot be applied to the standard method, as the approximation will become too

coarse.

Algorithm 6 presents the details of the method. We estimate the spill in each

neighboring zone by calculating the extremities in that zone, along the lines of the

scheme for over-approximating the entire set as a single-hyper-rectangle. We use

B(X) to denote the k-dimensional grid unit
∧

i(B
l
i ≤ Xi < Br

i) (side of the hyper-

rectangles are no longer fixed at A). Further, B¬j,k(X) denotes
∧

i6=j∨k(B
l
i ≤ Xi <

Br
i).

Example 7.4.2 The approach is summarized in Figure 7.7. The rectangle R0
0 is the

initial over-approximation of region 1. Four new overlapping rectangles R0
1, R

1
1, R

2
1

and R3
1 are added to over-approximate the “spill” outside region R0

0. The procedure

then iterates over each of them in the general case.

145

Algorithm 6 Approximating with Many Hyper-Rectangles

1. As before, maintain the set of reachable hyper-rectangles R and the set of new hyper-

rectangles F just added to the reachable set, representing the expanding frontier;

2. For each P (X) ∈ F , compute the exact successor set of R thus:

RE ≡
∨

∀v{∃Y
∨

∀u〈v,X〉
0
−→
D
〈u, Y 〉 ∧ P (Y)

∨

{∃Y, h (0 < h ≤ A) ∧ 〈v,X〉
h
−→
C

〈v, Y 〉 ∧ P (Y);

3. For each dimension Xi:

(a) For the neighbor Q(X) where Ql
i = N r

i , calculate Qr
i : {∃X (P¬i(X) ∧ Xi =

Qr
i) ∧ RE(X)}

∧

{∀X (P¬i(X) ∧ Xi > Qr
i) ⇒ ¬RE(X)}. If Qr

i < P r
i , skip the

next two steps;

(b) We now need to calculate the extremities li+j , ri+
j in each of the other di-

mensions Xj where j 6= i: {∃X (P¬i,j(X) ∧ Xi > P r
i ∧ Xi < Qr

i ∧ Xj =

li+j)∧RE(X)}
∧

{∀X (P¬i,j(X)∧Xi > P r
i ∧Xi < Qr

i ∧Xj < li+j)⇒ ¬RE(x)} and

{∃X (P¬i,j(X)∧Xi > P r
i ∧Xi < Qr

i ∧Xj = ri+
j)∧RE(X)}

∧

∀X (P¬i,j(X)∧Xi >

P r
i ∧Xi < Qr

i ∧Xj > ri+
j)⇒ ¬RE(X).

(c) The hyper-rectangle defined by Ql
i < Xi < Qr

i

∧

j 6=i l
i+
j < Xj < ri+

j is added to

the list of new hypercubes and also to the reachable set R;

(d) Repeat the above three steps for the neighbor where Qr
i = P l

i and Ql
i, l

i−
j (<

Xj), (Xj <)ri−
j need to be calculated;

4. Repeat (ii) − (iii) until the procedure converges. 2

7.4.3 Battleship Strategy

In the “griddy” case, we inspect every possible neighbor and test transition. Al-

ternately, we could have computed the exact successor of the entire set, and then

146

R0

0

R0

1

R1

1

R2

1

R3

1

Figure 7.7: Over-Approximating using many Hyper-Rectangles

extracted the component hyper-rectangles. Such an approach would require a proce-

dure for converting a semi-algebraic set (the exact successor) into an over- (or under-)

approximating union of hyper-rectangles of fixed dimension.

In the “isothetic” case, we over approximated the “spill” outside the hyper-

rectangle with a hyper-rectangle in each neighboring zone (with substantial overlap).

Alternatively, we could compute the best non-overlapping but non-griddy hyper-

rectangles that cover the newly reachable points, without having to compute the

maximum and minimum values of each dimension in each neighboring zone. This

approach again requires a general procedure for converting the exact successor into a

union of hyper-rectangles of arbitrary dimension.

We solve this problem by actually testing if potential vertices (from a griddy or

isothetic grid) are included in the exact reachable set (just as one uses the pictorial

grid of hits and misses to guess where the opponent’s fleet is located in the game

“Battleship”)2. We then use the resulting set of present and absent points to pick

2In this chapter, we will not go into the heuristics for picking the sample points that can be

147

candidate hyper-rectangles. Quantifier elimination is still necessary, since we may

wish to guarantee that the hyper-rectangles we have picked are wholly inside (under-

approximation) or that the hyper-rectangles we have omitted are wholly outside (over-

approximation). Hence the approach we have suggested addresses the problem of

minimizing the number of quantifier-elimination queries. We now provide the details

of this new technique, which can be used in conjunction with both the algorithms

presented before.

Our approach, detailed in Algorithm 7, follows from the following simple observa-

tions:

1. A given numerical point can be trivially tested for inclusion in a semi-algebraic

set: just substitute in the expression and see if it simplifies to True.

2. By choosing various grid points and testing for set membership, we can get a

rough idea of the shape of the real set.

In the under-approximation case, hyper-rectangles with at least one vertex not in

R can be safely omitted. The hyper-rectangles with all vertices in R are the con-

tenders for quantifier elimination. In both cases, one could use a “proof-by-example”

approach, where one verifies the feasibility at some randomly selected points (center

being the first choice) to see if quantifier elimination can be avoided. By random-

izing or biasing the grid points, one can obtain non-griddy vertices. If, in addition,

high-dimensional convex hull algorithms are used, one could build upon this method

to derive general polyhedral representations as well.

Example 7.4.3 The approach is summarized in Figure 7.8. Every vertex of the rect-

angular grid is numerically evaluated for its presence in the dark blue set. The red

developed given the hybrid system specification.

148

Algorithm 7 Battleship Strategy

1. Calculate imax and imin, the maximum and minimum values of Xi in the given set

R: {∃X (Xi = imax) ∧ R(X)}
∧

{∀X R(X) ⇒ Xi ≤ imax} and {∃X (Xi = imin) ∧

R(X)}
∧

{∀X R(X)⇒ Xi ≥ imin};

2. Split each dimension into equidistant points of the desired resolution;

3. Evaluate membership in R for each grid point g by substitution: R(g);

4. The small hyper-rectangles created by the grid points which contain at least one vertex

in R are immediately included in the over-approximation;

5. Hyper-rectangles where none of the vertices are in R are included only if ∃x ∈ G R(x)

returns true. 2

points were found to be “inside” the set. The points could then be used to guess an

under / over approximate union of cells, or to suggest a polygonal approximation. In

order to guarantee that the approximation suggested is strictly over or under, quanti-

fier elimination will be necessary.

7.5 Time Discretization

Time discretization can be employed (in conjunction with most techniques) to ap-

proximate the hybrid system dynamics. Conventionally, the most restricted transition

relation enforces continuous evolution for a fixed time-step ∆ followed by one optional

discrete transition. The typical “improvement” over the previous case could be allow-

ing the discrete jump anywhere during the continuous evolution, as opposed to only

at the end of it. This model could be made even more realistic by allowing N jumps

149

Figure 7.8: Battleship strategy for identifying candidate vertices

anywhere during the continuous evolution. Clearly, the only paths that get excluded

here are those that involve more than N jumps in ∆ time. All the restrictions de-

scribed above are “fixed step”, i.e., the system progresses in time-steps of ∆. Each of

them could be relaxed by allowing the time-step to be in the range [0,∆] to capture

many other behaviors. Such restrictive transition relations greatly simplify fixpoint

evaluations of temporal logic operators.

A completely different time-discretization-based under-approximating approach

would be to ignore the behavior of the system during the continuous evolution. We

simply use the end-points to verify the temporal query. Another simplifying over-

approximation would be to assume that the state invariant needs to be true only

at the beginning of (and not all along) the ∆ time units of continuous evolution.

This heuristic could prove particularly useful if we combine time discretization with

the partitioning algorithm discussed earlier (which will accumulate complex state-

150

invariants).

We present the simplifications that result from applying these concepts in this

section.

7.5.1 Background: CTL

We now report the basic definitions3 discrete-time temporal logic CTL and µ-Calculus,

which is used to express the fix-point characterizations.

Definition 7.5.1 CTL[72] It has the following syntactic structure:

φ ::= p | ¬φ | φ1 ∨ φ2 | φ1∃Xφ2 | φ1∀Xφ2 | φ1∃Uφ2 | φ1∀Uφ2.

Its associated semantics are described below:

• ∀Xφ and ∃Xφ: universal and existential “next time” operators describe what

must be true at the next time step of the system.

• φ1∀Uφ2 and φ1 ∃U φ2: universal (on all paths) and existential (on at least one

path) “until” operators. For φ1 U φ2 to be true on a path, φ2 is required to be

true somewhere along the path, and φ1 is required to be true all along the path

up to (but not necessarily at) that location. 2

Remark 7.5.1 The basic notations are often extended by the following syntactic ab-

breviations [72].

1. ∀F p ≡ true ∀U p and ∃F ≡ true ∃U p: “eventuality” operators.

2. ∀G p ≡ ¬∃F¬p and ∃G ≡ ¬∀F¬p: “invariance” operators.

Example 7.5.1 CTL Queries

3Table .2 in Sec. C of the Appendix lists symbols used in the thesis

151

• p ∀U q asks whether on every path leading off the state where the modal formula

is being considered, p is true at all time steps until the state where q is true.

• ∃F q asks whether on some path leading off the state where the modal formula

is being considered, there exists a time step when q is true.

• ∃G q asks whether q will be true at all time steps on at least one path leading

off the state where the modal formula is being considered.

Recall that unlike TCTL, no special “one-step until” operator needs to be defined.

This is because the notion of a “next state” is well-defined in the discrete-time inter-

pretation, and hence the F , G and U operators can be interpreted as fixpoints of the

“next” state operator X .

Definition 7.5.2 µ-Calculus Syntax µ-calculus captures the discrete time prop-

erties of dynamical systems: φ ::= X | p | ¬φ | φ1 ∨ φ2 | ∃Xφ| ∀Xφ | µX.φ , where

µ is the least-fixpoint operator. Thus,

• The greatest-fixpoint ν can be expressed as ¬µX.(¬φ[X := ¬X]).

• Existential Until: operator can be expressed as the least fixpoint of a Tµ-calculus

formulæ as p ∃U q = µZ.(q ∨ (p ∧ ∃XZ)).

• Universal Until: p∀Uq = ¬(¬q ∃U (¬p ∧ ¬q)) 2

7.5.2 Discrete-Time Model-Checking

We wish to use CTL for model-checking semi-algebraic hybrid automata. Since CTL

model-checking involves iterations of the next-state operator, we must first understand

its relation to the transition relation. We then document the different assumptions

152

that can be made to simplify the transition relation. Another motivation for dis-

cretizing the transition relation is to be able to guarantee progress of time with the

iterative procedure. This problem is encountered while model-checking dynamical

systems that have zeno executions which can be ignored.

Recalling Continuous Mode Definitions The transition relation T of a hybrid

system H connects the possible values of the system variables before and after one

step - a discrete step for a time h = 0 or a continuous evolution for any time period

h > 0:

T (ℓ
h
−→ ℓ′) = {h = 0 ∧ ℓ

0
−→
D
ℓ′} ∨ {h > 0 ∧ ℓ

h
−→
C
ℓ′},

where the continuous reachability transition relation 〈v, R〉
h
−→
C
〈v, S〉 iff

(

Flowv(R, S, t0, h) ∧ ∀Z ′, h′ ∈ [0, h) Flowv(R,Z
′, t0, h

′)⇒ Invv(Z
′)

)

,

and the discrete reachability transition relation 〈v, R〉
0
−→
D
〈u, S〉 iff 〈v, u〉 ∈

E ∧ Jumpv,u(R, S).

Using CTL for Dense Time Systems The crux of TCTL model-checking was ex-

pressing the one-step until operator as a quantified semi-algebraic set, thus proving

its decidability via real quantifier elimination. Similarly, we now have to show how

the next state operator can be expressed in a decidable form. The next state operator

is directly expressible in terms of the transition relation of the system as:

Definition 7.5.3 Next Operator XD

AXD P(ℓ) = ∀ℓ′ {T (ℓ
h
−→ ℓ′)⇒ P(ℓ′)} (7.1)

EXD P(ℓ) = ∃ℓ′ {T (ℓ
h
−→ ℓ′) & P(ℓ′)} 2 (7.2)

153

Note 7.5.1 The notion of the next-state being h time later is not innate to the orig-

inal CTL definition, but is a property of the transition relation. We have indicated it

for clarity, and to reiterate the fact that we are interpreting a continuous system in

discrete time.

Discrete-time CTL model-checking can thus be performed algebraically on semi-

algebraic hybrid systems, using an appropriate h (time-step) value. h could also be

treated as a symbolic variable, thus yielding a symbolic expression in h representing

possible evolutions and solutions to the temporal query. 4

The Accurate Model With Variable Time-Step

The discrete-time transition relation that corresponds to the continuous time tran-

sition relation allows the system to take steps less than h in cases where a discrete

state transition is being made. In other words, the system dynamics after the first

jump is captured only in the “next” time-step. The system is allowed to evolve con-

tinuously for the full-time h in the current state, or to evolve to an intermediate point

(≤ h) and then take a transition. Thus the effective length of each time step h varies.

The 2 possible evolutions are:

• 1. Evolve continuously in the current discrete state s for the entire h time

units,

OR

• 1. Evolve continuously in the current discrete state s for h1 time units, where

0 ≤ h1 ≤ h
4By specifying the nesting degree / time-bound of the iteration, unusual queries like “Is there

a value of time-step h, 0.25 < h < 0.5, for which a certain property holds for 5 steps?” could be

answered.

154

2. 2. Then make a discrete state transition to state s′

The semi-algebraic expression capturing this model can be expressed thus:

T (ℓ
h
−→ ℓ′) = {∃ℓ′′, h1 0 < h1 < h ∧ ℓ′′

h1−→
C
ℓ′ ∧ ℓ

0
−→
D
ℓ′′}

∨

{ℓ
h
−→
C
ℓ′}.

The total number of quantified variables in the accurate model above is nD +1, where

nD variables represent the state of the system just before the discrete transition(ℓ′′),

and h1 stands for the time spent before the transition. This “continuous” model

cannot guarantee the time for which the model has been verified, as the number of

iterations does not correlate with the time elapsed. This is because many of the

iterations could have corresponded to just a discrete transition, and many of the

continuous steps could have been for time-lengths less than h. Further, zeno-paths

are not excluded in the continuous-time formulation. A natural refinement of this

transition relation is imposing a minimum on the time spent in each step. In other

words, we can assume that if the hybrid system makes a discrete transition to a state,

it spends at least hmin time in the new discrete state. This can guarantee that n

iterations of the model-checking process would have covered at least nhmin amount

of time.

For computational simplicity (in terms of number of quantified variables) and for

ensuring time-progress, we are forced to explore transition relations which bound the

number of discrete state changes inside one step of integration. We refer to such

systems as “restricted discretized hybrid systems”. In this section, we suggest three

“discrete” interpretations of the continuous transition relation for semi-algebraic hy-

brid automata. We start with the Timed-Jump-Model that allows only one state

transition at the beginning of the time-step, thus using one less quantified variable

(no h1 to represent the intermediate time). A simple extension - the One-Jump-

Anywhere-Model allows the transition to occur anywhere during the h time, at the

155

cost of reintroducing the quantified variable h1 (∃h1, 0 < h1 < h, · · ·). The advantage

however is that the verification always progresses by h time units after each iteration.

The k-Jumps-Model allows at most k transitions anywhere during the h time units.

This definition is provided for theoretical completeness. The total number of quan-

tified variables in this case is 2 ∗ k ∗ nD + k, as the k jumps involve k system states

after continuous evolution, k system states after resets and k time-lengths for which

they evolved continuously. All three models have the advantage that n iterations of

the transition relation guarantee that the system has been model-checked for exactly

time nh.

Model 1: Timed-Jump Model

The assumption that the hybrid system can make only one discrete state transition

in the time step h is made. Further, this privilege to jump is provided only at the

beginning of the time-step. Thus:

• 1. Evolve continuously in the current discrete state s for the entire h time

units

OR

• 1. Make a discrete state transition to state s′

2. Then evolve in the new discrete state s′ for h time units

The semi-algebraic expression capturing this model can be expressed thus:

T (ℓ
h
−→ ℓ′) = {∃ℓ′′ ℓ

0
−→
D
ℓ′′ ∧ ℓ′′

h
−→
C
ℓ′}

∨

{ℓ
h
−→
C
ℓ′}.

Limitations Equalities in the guard condition may lead to them being never sat-

isfied as they are checked only at the start/end of the h-long time-step. It might be

156

the case that a transition gets disallowed because its guard condition is satisfied only

at intermediate points. This problem can be overcome if the hybrid system model

can be rephrased so that all equalities are replaced by meaningful inequalities that

successfully capture the same system dynamics. The other innate problem is that

the system is not allowed to take multiple jumps in the time-step h. Reducing h can

mitigate the problem, but it increases the computational complexity of evaluating

long-term queries. Also, it is not a general solution.

Model 2: The One-Jump-Anywhere Model

The previous model is extended by allowing the discrete transition to occur at any

intermediate point. Thus, the two possible evolutions of the “one-jump-anywhere”

model in a time step h are:

• 1. Evolve continuously in the current discrete state s for the entire h time

units

OR

• 1. Evolve continuously in the current discrete state s for h1 time units, where

0 ≤ h1 ≤ h

2. Then make a discrete state transition to state s′

3. Then evolve in the new discrete state s′ for h− h1 time units

The semi-algebraic expression capturing this model can be expressed thus:

T (ℓ
h
−→ ℓ′) = {∃ℓ′′, ℓ′′′, h1 ℓ

h1−→
C
ℓ′′ ∧ ℓ′′

0
−→
D
ℓ′′′ ∧ ℓ′′′

h−h1−−−→
C

ℓ′}
∨

{ℓ
h
−→
C
ℓ′}.

Limitations The expression that results is a reasonably accurate transition ex-

pression for most physical systems for most practical purposes. To guarantee accu-

157

racy, the hybrid system has to be hand-examined to ensure that not-allowing more

than 1 discrete transition in a time-step h does not change the behavior one is in-

terested in studying. Apart from just going in for a smaller h value to achieve this,

one could introduce new transitions for every pair of possible consecutive discrete

transitions. It is to be remembered that this can capture multiple jumps without in-

termediate continuous evolution, but is still not an exact depiction of the real system.

Model 3: The K-Jumps Model

We can now construct the expression for the k-jumps-model, where the hybrid au-

tomaton is allowed to take at most k jumps anywhere within the time-step h.

When k = 1, the k-jumps model is the same as the one-jump model :

T 1(ℓ
h
−→ ℓ′) = {∃ℓ′′ ℓ

0
−→
D
ℓ′′ ∧ ℓ′′

h
−→
C
ℓ′}

∨

{ℓ
h
−→
C
ℓ′}.

The expression for the state of the system after at most k jumps is derived from the

expression for the state of the system after at most k − 1 jumps and then allowing

one more jump:

T k(ℓ
h
−→ ℓ′) = {∃ℓ′′, h1 T

k−1(ℓ
h1−→ ℓ′′) ∧ T k(ℓ

h−h1−−−→ ℓ′)}.

Note that we can use the simpler timed-jump model instead of the one-jump-anywhere

model as the time after which the system jumps hi is a variable for each step. This

effectively allows every possible jump to be taken. Also, as k → ∞, the k-jumps

model becomes exact.

Limitations Clearly, a good understanding of the hybrid system is necessary to

fix the k ahead of time. A reasonable rule-of-thumb would be one more than the

number of discrete states. It is easy to come up with systems where no matter what

158

k we fix, some behaviors get excluded. As an example, we can consider a system that

counts the number of transitions taken in a variable say trnumber, where almost all

the guard conditions are trivially satisfied. When trnumber > n, a special transition

becomes possible. By picking n > k, we can ensure that the transition gets excluded

no matter what k is used. It remains to be seen if such contrived systems have any

parallels in common biochemical systems.

7.5.3 Simpler TCTL Expressions

For the dense-time logic TCTL to be model-checked, we described the one-step until

operator as:

p ⊲ q = q(R)
∨

∀v
(

{∃S
∨

∀u〈v, R〉
0
−→
D
〈u, S〉 ∧ q(S)}

∨

{∃S, h (0 < h ≤ ∆) ∧ 〈v, R〉
h
−→
C
〈v, S〉 ∧ q(S) ∧

∀S ′, h′ ((0 ≤ h′ < h) ∧ 〈v, R〉
h′

−→
C
〈u, S ′〉)⇒ (p(S ′) ∨ q(S ′))}

)

.

The existential and universal eventually and henceforth operators are defined in terms

of the corresponding until operator, which is computed by iterating (possibly indefi-

nitely) over the one-step until operator.

In the previous section, we presented the approximations as being operational

entirely in the discrete mode. However, it is possible to transfer the restricted tran-

sition relation models to the continuous TCTL domain as well. We demonstrate this

approach with a simple instance of the application.

Let us try to devise a coarse approximation for TCTL model-checking, where

time is continuous (TCTL) but the transition relation is restricted according to the

Timed-Jump Model.

Definition 7.5.4 ⊲ For Restricted Semi-Algebraic Hybrid Systems With 1

159

Timed Jump p ⊲ q is True if

• q is true now, OR

• For one of the possible current discrete states v, there exists a continuous tran-

sition (of exactly ∆ time units) where p holds all along, and q holds at the end,

OR

• For one of the possible current discrete states v, there exists a continuous tran-

sition (of exactly ∆ time units) with p holding all along, after which there exists

at least one state u to which a discrete transition can be taken such that q holds

at the end.

Thus:

p ⊲ q = q
∨

∀v

p(r) ∧ ∃s {(〈v, r〉
h
−→
C
〈v, s〉 ∧ q(s))

∨

(p(s) ∧ ∃s′
∨

∀u〈v, s〉
0
−→
D
〈u, s′〉 ∧ q(s′))}

Thus, depending on the application, we can do accurate TCTL model-checking with

restricted transition relations as an alternative to accurate CTL model-checking with

restricted transition relations and time-discretization.

7.6 Discussion

In this chapter, we have extended the theory of approximate verification of hybrid

systems from the linear to the more expansive semi-algebraic domain. The algebraic

model checking method presented in [222] was made more computationally practi-

cable by extended bisimulation partitioning, approximation with general polyhedra

160

and unions of simple polyhedra, and time discretization. For the extended bisimula-

tion procedure suggested, we identified well-behaved subclasses based on some novel

critical observations about the behavior of exactly onto linear and monotonic maps

between arbitrary sets. For polyhedral approximations, we used the maximum and

minimum values of the system variables and their possible growth in one step to ex-

pand the convex hull. We demonstrated how these same metrics (maximal growth

along each dimension in one step) could be used to obtain a hyper-rectangular ap-

proximation of semi-algebraic sets. We also introduced a practical strategy to identify

candidate hyper-rectangles that require quantifier elimination-based confirmation.

Time discretization was seen to simplify the problem by allowing fewer discrete

jumps, excluding zeno paths, and by verifying the temporal property at certain sam-

pling times rather than everywhere. The meaning of different restrictions on the

number and timing of the discrete jumps was elaborated. While the “semi-algebraic”

assumption limited the continuous dynamics by restricting the functions that can

represent the flow, the requirement that a finite transition relation be available (for

verification of temporal logic queries) lead to the restrictions on the discrete dynam-

ics. More significantly, time-discretization could be coupled with the other methods

described in this chapter to further improve the performance.

All these methods need to be refined to better handle discrete resets and sym-

bolic approximations. More crucial is their actual implementation and performance

analysis. On the purely algebraic side, approximate quantifier elimination and di-

rect maximum-minimum estimation of a semi-algebraic set are those mathematical

techniques, that need to be developed to further accelerate these methods. There are

several approximating methods that are yet to be extended to semi-algebraic systems.

These include: (1) piece-wise approximations of continuous dynamics; (2) problem

161

domain transformation: optimal control using Pontryagin Maximum Principle, level

sets of solutions to Hamilton-Jacobi-Bellman equations, sum of squares decomposition

(semidefinite programming) and geometric programming; (3) predicate abstraction

and qualitative simulation; (4) other geometric approximations: oriented rectangular

hulls, zonotopes and ellipsoids. The next crucial research direction, which we do not

cover in this thesis, is the determination of the practical applicability of these meth-

ods, trade-offs among them and suitable combinations of these approximations that

work best with the available tools. Our implementation Tolque does not utilize any

approximation algorithms at this point. While the theory of hybrid automata can be

extended along many other lines, our contributions in this thesis come to a close at

this point. We now return to the Systems Biology side and see how we can translate

those problems into a format that can exploit the theory developed over the last four

chapters.

162

Chapter 8

Metabolic Networks

Having carefully defined semi-algebraic hybrid automata and having worked out in

detail the procedures for model checking and approximating them, we return to the

Systems Biology portion of the problem statement. Earlier, we had discussed the

kinds of problems Systems Biologists solve using hybrid automaton modeling and

had provided a list of well-studied biochemical systems along with their kinetic mass

action (KMA)-based ordinary differential equations (ODEs). However, we had not

specified the details of the problems and how they can be transformed to a format

which can exploit the theory we developed. In this chapter, we delve into the de-

tails of modeling biochemical networks. We start with the well-studied KMA-based

networks, typically used for genetic regulatory networks. We then move to the com-

plex realm of metabolism, where fast and slow reactions operate simultaneously, with

much of the system remaining in pseudo-equilibrium. While the numerical handling

of this scenario has already been well-documented in literature, we introduce a general

framework for analyzing metabolic networks algebraically. Our second contribution

here is extending an equilibrium-estimation technique called Flux Balance Analysis

(FBA), also to the algebraic domain. Here we introduce the application of algebraic

163

optimization to the Systems Biology domain. Thus, we show how the biochemistry

problem description can be transformed into an entirely algebraic dynamical system

specification. In this process, we have shown how techniques developed in previous

chapters can be exploited for their analysis. One problem that we do not address is

the conversion of a one-state dynamical system into a multi-state hybrid system.

8.1 Introduction

Problem Statement

We focus on the dynamical systems that naturally arise in a very important problem

in Systems Biology: the analysis of metabolic networks. Metabolism [119] is used

to denote the complete array of enzyme catalyzed biochemical reactions (involving

“metabolites”) continuously operating in a living cell, with the genetic regulatory

and signal transduction aspects alone excluded. The fundamental law of chemical

kinetics[91] provides ordinary differential equations governing the rate of change of

the concentrations of the interacting metabolites (refer Section 3.2.2).

The system of ODEs lends itself to simplification because of three fascinating

properties of metabolic networks: (1) A subset of the metabolites interact with each

other through reactions much faster than the rest of the system; (2) These fast re-

actions always reach an equilibrium state, which is local (involving only this subset

of metabolites) and momentary (it is modulated by the slower reactions in the rest

of the system); (3) Mass is conserved during this equilibrium recomputation, and

the position of the equilibrium is determined given the total concentration of the

metabolites. These inherent properties of the “quasi”-equilibrium subnetwork lead

to two broad questions that need to be addressed: (1) How can we characterize this

164

equilibrium state algebraically? (2) We are forced to simulate / analyze the entire

system in very small time-steps appropriate for the fast reactions. How can we move

in larger time-steps sufficient for the slow reactions, and yet get a reasonable symbolic

picture of the dynamics of the fast reactants?

State of the Art

Slow reactions have been modeled using the law of mass action. Their numerical

simulation has been used to understand their temporal properties. In order to model

a metabolic network accurately, the kinetic parameters should have been estimated

under reversible conditions, in the presence of all metabolites likely to affect the ac-

tivity in vivo, at the same temperature, pH, ionic strength, degree of macromolecular

crowding, etc. and preferably by the same research group [94]. As such criteria are al-

most impossible to meet, the ability to handle unknown parameters or their believed

ranges becomes an extremely powerful feature of any analysis tool, and an almost

essential feature for a tool attempting to analyze vast networks of slow and fast re-

actions. Towards this end, the kinetic mass action models have been extended to the

algebraic domain. These efforts include the techniques described in the earlier chap-

ters where a rigorous algebraic formalism with decidable and approximable techniques

was developed (also see AAMC I, II & III [239, 222, 221]). Models of biochemical

networks derived from the differential equations dictated by the kinetic mass action

laws have been successfully used for numerical simulation based analysis of temporal

properties including reachability [31, 278, 77]. Similarly, the algebraic estimation of

the equilibrium concentrations has also been extensively studied [54, 55, 78, 210, 302].

The fast reaction systems are typically subject only to a dynamical equilibrium

characterization with minimal dynamic characterization. There have also emerged

165

methods that try to integrate the two by dynamic KMA simulation of the slow re-

actions, under the assumption that the fast reactions quickly respond by reaching

equilibrium. In other words, the sub-network of fast reversible reactions is assumed

to be a self-contained metabolic network, whose response to the external stimuli has

been characterized in advance; so it is reasonable to abstract out the time-curve

which it follows to reach that new equilibrium. We assume that they are very fast

reactions compared to the external switches – so the metabolic network very quickly

moves to the new equilibrium in response to the stimuli. Though the assumptions

necessary for such a model to be realistic seem very restraining, surprisingly, they are

not unreasonable for many metabolic networks. Though the scheme for splitting the

entire network into slow and fast reactions is problematic and under development,

this approach is founded on sound biochemical principles, and is likely to be more

useful in understanding the systems-level properties. Methods that venture in this

direction include tendency modeling [288], dynamic flux balance analysis [200] and

hybrid static / dynamic simulation [304].

Algebraic Approach

There has been no effort to handle both KMA-based simulation and direct equilibrium

estimates (via KMA or FBA) algebraically. In this chapter, we present an entirely

symbolic algebraic framework for the unified analysis of metabolic networks. We pro-

ceed by first mathematically characterizing the dynamical system to which metabolic

networks correspond. The assumptions and constraints that capture the inherent

biochemical structure are presented. We then show that the algebraic equilibrium

description is decidable, both using kinetic mass action and its popular alternative

flux balance analysis [173]. This is thus an algebraic generalization of approaches

166

like tendency modeling [288], dynamic flux balance analysis [200] and hybrid static /

dynamic simulation [304], as mentioned previously.

Our proof of the decidability of the algebraic approach will be based on the well-

established Gröbner basis approach [73] for solving polynomial equations, and the

decidability of semi-algebraic optimization using real quantifier elimination [276]. We

then show how to go from the equilibrium description to its rate of change, which can

then be combined with the ODEs of the slow reactants to get a complete algebraic

description of the metabolic network. This directly leads to efficient algebraic model-

checking, since we have ensured that all the interactions operate at roughly the same

time scale. Hence a big time-step suitable for the slow interactions is sufficient.

The existing tools for metabolic networks are based primarily on numerical simu-

lation based analysis, such as Gepasi [209], Systems Biology Workbench [154], E-Cell

[159] and BioSpice [179]; so the ideas suggested in this chapter represent a step for-

ward. Further, we can directly obtain the expression governing the dependence of

the temporal property on the different parameters. This allows more immediate and

generalized reasoning, as well as the estimation of the sensitivity of the equilibria

to errors in rate parameters. The approach can also be used to estimate parameter

ranges that would allow a certain observed phenomenon in the network. Unfortu-

nately, key questions like what chemical species can be modeled as reaching equilib-

rium quickly and what species need explicit dynamic modeling, still remain in the

domain of biochemists studying the specific system of interest. Our approach has the

potential to yield a symbolic description of the external switches which can be used

to alter the flux of the metabolites, and hence the position of its dynamic equilibrium.

The seemingly inevitable pitfall is, once again, the computational complexity of the

approach.

167

8.2 Background: Metabolism

Here, we introduce metabolic networks and the various means of analyzing them.

Informally, metabolism stands for the complex enzyme-catalyzed pathways that pro-

duce and consume the metabolites in any living cell. Two independent properties

of these enzymes are [119]: (1) Control – the ability to increase or decrease the net

flux of a metabolite in response to external triggers, (2) Regulation – the ability to

ensure that the net flux remains constant in the face of external perturbations. From

the point of view of modeling, a very crucial aspect of metabolism is that different

mechanisms for regulation and control exist on different time scales [119]:

1. On long time scales, amounts of enzymes are changed by enzyme synthesis and

degradation.

2. On medium time scales, the activities of ready-formed enzyme are altered by

covalent modification.

3. On short time scales, the activities of enzymes alter in response to changes in

metabolite concentrations.

The second key characteristic is that these biochemical processes quickly attain dy-

namic equilibrium. In other words, the rates of production and consumption of these

“metabolites” become equal; so their net concentration does not change.

8.2.1 Analyzing Metabolism

In contrast with the detailed kinetic mass action models, biochemists have focused on

characterizing these steady-state fluxes and developed several approaches [130, 174]:

1. Metabolic Control Analysis (MCA) [149] provides a rigorous framework for char-

acterizing the control that the different enzymes exert over the effective flux

168

along a pathway. It is sensitivity analysis in a sense, and uses detailed KMA

equations to obtain the equilibrium concentrations.

2. Metabolic Flux Analysis (MFA) [95, 192] exploits the stoichiometric matrix

to determine the minimal number of experimental measures necessary to fully

describe the flux distribution.

3. Flux Balance Analysis (FBA) [173] tries to estimate the distribution of the flux

during steady-state conditions. It uses the stoichiometric matrix and the input

/ output fluxes of the system to constrain the solution space. By assuming

that the biochemical network would have so evolved as to optimize a biochem-

ically meaningful function, the actual flux distribution is estimated. Common

objective functions include maximization of biomass, maximization of ATP or

reducing power, and maximization of the rate of synthesis of a particular prod-

uct. (see next section for details)

4. Cybernetic approaches[227] extend the optimization assumption to states not

in equilibrium as well, thus obtaining a complete dynamical description of the

system. Now the response of microorganism to external stimuli is assumed to

optimize some biochemically meaningful function at all times.

5. Metabolic Pathway Analysis (MPA) [257, 256] tries to solve the flux distribu-

tion by characterizing elementary modes and extreme pathways. The different

optima can then be seen as the different extremities of the solution space, or as

combinations of them.

169

8.2.2 Flux Balance Analysis

Flux Balance Analysis (FBA) is one of the means fo estimating the fluxes (rate of

variation of concentration) of a metabolic network which has reached equilibrium.

FBA only requires the knowledge of biochemical pathways. The enzyme kinetics and

regulatory networks of all enzymes in a cell are not required to go through with this

analysis.

The Mass Balance Equation is typically written as Sn.Vn − b = −dXn

dt
, where S

is the stoichiometric matrix, v is the rate vector and b is the transportation vector.

As per the steady-state assumption, there is no net accumulation of intermediate

metabolites in the cell, i.e., −dXn

dt
= 0 for all intermediates. Thus Sn.Vn−b = 0. Since

the number of fluxes is always greater than the number of metabolites in the cell, this

system of linear equations (above) is under-determined, and so no unique solution

exists for the fluxes v. Hence, optimization is required to find a particular solution

of the system, where optimization effectively performs minimization or maximization

of a particular flux. Common objective functions include maximization of biomass

(cellular growth), maximization of ATP or reducing power, and maximization of the

rate of synthesis of a particular product.

Several studies established this optimization phenomenon in metabolic networks:

the growth and metabolic by-product secretion in wild-type Escherichia coli W3110

were found to be maximizing growth [287]; Computational models of E. coli metabolism

based on physicochemical constraints were used to interpret mutant behavior [111],

again assuming optimal growth objective function; E. coli metabolic network was

shown to be maximizing growth under the experimental conditions considered [112].

170

FBA Evolution

We briefly review various extensions of the basic FBA technique have been suggested

[173].

Mahadevan et al. [200] introduced Dynamic FBA and two kinds of optimization

schemes. They concluded that the static optimization approach was computationally

simpler to implement provided all of the constraints were linear, whereas the dynamic

optimization approach was more flexible and should be quite suitable for the incor-

poration of experimental data. Beard and coworkers [56] explored the impact of a

full energy balance analysis on the predictions of a flux balance analysis. Beard and

coworkers found that combination of the energy balance analysis with FBA gave the

same optimal growth rate, but the observed fluxes were substantially different.

Lee et al. [191] presented a multi-objective linear programming in FBA for simul-

taneous consideration of several objectives, by which Pareto solutions are generated

and the corresponding flux distribution profiles are explored to understand how the

internal fluxes are changed when pathways are switched for another purpose. Mini-

mization of metabolic adjustment (MOMA) [260] was suggested to improve the pre-

diction efficiency of FBA for studying E. coli mutants. In contrast to FBA, MOMA

does not assume optimality of growth or of any other metabolic function. Instead,

for perturbations such as gene deletions, MOMA approximates metabolic phenotype

by performing distance minimization in flux space. FBA has also been extended by

incorporating exploration of alternative classes of objective functions [199]. Regula-

tory On-Off Minimization (ROOM) [263] is a model for predicting the behavior of

metabolic networks in response to gene knockouts. It is based on minimizing the

number of significant flux changes with respect to the wild-type.

171

8.3 Algebraic Analysis of a Biochemical Dynamical System

8.3.1 Motivation

The most accurate simulation of a metabolic network will naturally require the com-

plete kinetic mass action equations and the allosteric models. The most common

strategy to handle the complexity is to identify the different time-scales at which

different reactions occur, and then make reasonable assumptions. For example, while

studying a VLSI circuit, the underlying components such as transistors can be as-

sumed to have a certain “instantaneous” response, even though the detailed charac-

terization of their voltage response is available. In biochemistry, fast reactions are

those that reach equilibrium quickly. Indeed, when a network of fast reactions reaches

dynamic equilibrium, the rate of production of the metabolites is equal to their rate

of consumption, and hence their concentrations remain constant. So while analyzing

/ simulating a big network, it is assumed that the fast sub-networks reach equilibrium

in one time-tick of the global-simulation.

While such a theoretical model has already been presented in one form or an-

other [288, 200, 304], we now present the new analytical framework for modeling and

studying such a biochemical network symbolically. This involves the following steps:

1. Start with a complete kinetic mass action model of the entire network, with

variables (parameters) substituted in place of unknowns.

2. Identify subnetworks of fast reactions (from biochemistry literature).

3. Compute the dynamic equilibrium concentrations and fluxes of the fast sub-

networks. This can be done accurately from given the KMA model, using

Gröbner basis. This can also be obtained from the FBA approach, using al-

172

gebraic optimization. We will thus get an (semi) algebraic description of the

equilibrium state of the system.

4. Now the entire system is simulated using algebraic KMA models, with the fast

reactants updated as per the equilibrium equation previously derived.

8.3.2 An Algebraic Framework

In a typical model of a network of interacting biochemicals, the variables represent the

concentrations of the biochemical species. The differential equations governing their

time evolution are given by the kinetic mass action laws, with the parameters being

the rate constants [91]. Let kis denote the rate constants, nis the number of molecules

of the metabolite that appear in the reactions, and Wjs their concentrations.

Definition 8.3.1 Biochemical Dynamical System

Ẇh = +Σi,j,..ki,j,.. 6=hni,j,..WiWj · · · − Σi,.. 6=hni,..kh,iWhWi · · · . 2

Here, the first summation represents all processes producing Wh, and the second

represents all processes consuming it. The number of Wjs multiplied in each term

depends on the number of molecules of reactants / products in that reaction. Note

that even higher order terms like W 3
i W

10
j W 5

k are possible.

Example 8.3.1 For the reaction aA + bB ←→ cC + dD, the rate of the forward

reaction vf ≡ kf [A]a[B]b and the rate of the backward reaction vb ≡ kb[C]c[D]d, where

kf and kb are the forward and backward rate constants respectively. The rates of the

reactions are related to the rate of individual reactants via the number of molecules.

Thus,

1

c
Ċ =

1

d
Ḋ = −

1

a
Ȧ = −

1

b
Ḃ = (vf − vb).

173

At equilibrium, all flows are zero since the forward and backward rates are equal, and

kf

kb
≡ Keq, the equilibrium constant. 2

Having characterized the KMA dynamical system as a system of ODEs, recall

that the algebraic temporal logic analysis of such systems involves constructing the

Flow expression (see section 5.2).

Definition 8.3.2 Flow Relation of a dynamical system Flow(V, V ′, t, h,K) is a

relation linking the symbolic state of system V at time t with the symbolic state V ′ at

time t+ h. 2

Thus, the metabolic dynamical system corresponds to a simple one-state semi-

algebraic hybrid automaton with flows of the form W ′ = W + hẆ . Thus the tech-

niques developed in Chapters 5,6 and 7 may be applied for analysis.

8.4 Algebraic Analysis of Metabolic Dynamical Systems

Having discussed general biochemical dynamical systems, we now detail the special

sublcass “metabolic dynamical systems”, where a subset of the system’s variables are

involved in fast interactions that quickly reach a local equilibrium. We first formalize

these assumptions about metabolic dynamical systems.

Definition 8.4.1 Metabolic Network

Three Types of Reactants A Metabolic Network has three kinds of metabolites

X, Y and Z, and symbolic (rate) parameters K, such that:

1. Dynamic Reactants All the reactions involving these metabolites (denoted by

X) are modeled using detailed kinetic mass action-based differential equations.

They may be involved in only one reaction. Typically, these reactions will be

slow and irreversible. Ẋ = F (X,Z,K)

174

2. Pseudo-Equilibrium Reactants All the reactions involving these metabolites

(denoted by Y) are modeled in terms of their dynamic equilibrium alone. They

always partake in at least one reaction as a substrate and in at least one reac-

tion as a product. Typically, these reactions will be fast and reversible. Ẏ =

G(Y, Z,K)

3. Interface Reactants These reactants (denoted by Z) interact with both the

Dynamic Reactants and the Pseudo-Equilibrium Reactants. Thus, their kinetic

mass action based flow equations (from slow reactions) will be modified because of

the fast reactions with the Pseudo-Equilibrium Reactants. They may be involved

in only one reaction. Ż = D(X,Z,K) + P (Y, Z,K)

The Equilibrium Constraints The underlying biochemical structure can be

expressed thus:

1. Each substrate of each reaction involving at least one interface metabolite also as

a substrate, is associated with mass conservation equation. The total concentra-

tion of these substrate metabolites in their many chemical forms at equilibrium

is captured using Equilibrium Pool Variables T .

2. The mass conservation equations T =M(Z, Y) have the form: Ti = Σj∈Pool iWj,

where Pool i represents the set of the different chemical forms Wj that the i-th

substrate metabolite exists in.

3. The equilibrium concentrations of Z and Y are expressible in terms of the

equilibrium pool concentrations, i.e., semi-algebraic relations EZ(Z, T,K) and

EY (Y, T,K) exist. 2

Note 8.4.1 One of the assumptions that becomes valid in metabolic dynamical sys-

tems is that: during the momentary recomputation of the equilibrium point, the total

175

concentrations of the pool variables T do not change. This is because the time required

to recompute equilibrium is negligible compared to the time-step used for simulating

the slow reactions. Hence, the change in the concentrations due to the slow reactions

is negligible compared to the effect of the equilibrium recomputation.

Mathematically, the dynamical system that such a metabolic network corresponds

to may be summarized thus:

Definition 8.4.2 Metabolic Dynamical System A Metabolic Dynamical Sys-

tem has three kinds of variables X, Y and Z, and symbolic (rate) parameters K, such

that:

Ẋ = F (X,Z,K)

Ẏ = G(Y, Z,K)

Ż = D(X,Z,K) + P (Y, Z,K)

T = M(Z, Y), where Ti = Σj∈Pool iWj

Ṫ = H(X,Z,K)

Z = EZ(T,K) and Y = EY (T,K) 2

Example 8.4.1 Consider a simple metabolic network composed of just two reactions:

• A slow irreversible reaction A+B
ks→ R + S

• A fast reversible reaction E + S
kf

⇋
kr

C.

This could represent say an enzyme (E) and substrate (S) interacting to produce

the enzyme substrate complex (C). We want to study how an external slow reaction

producing the substrate can control the position of equilibrium. Let us denote [E] by

e, [S] by s, [C] by c, kf/kr = K. The dynamic reactants X are A,B and R. The

176

pseudo-equilibrium reactants Y are E and C. The interface reactant is S. Their flow

equations are:

ȧ = ḃ = −ṙ = −ksab

ė = −ċ = krc− kfes

ṡ = ksab+ krc− kfes

The only reaction with an interface metabolite as a substrate is E+S
kf

⇋
kr

C. The mass-

conservation equations can be written for the two substrates E and S as eT = e + c

and sT = s + c, where eT and sT are the new equilibrium pool variables. 2

Having clearly defined the dynamics and constraints, we now show how to compute

the equilibrium description, and then extract the Flow expression. This will reduce

the metabolic dynamical system to a biochemical dynamical system where the fast

ODEs of the pseudo-equilibrium reactants have been approximated by slow reactions.

8.4.1 Detailed Kinetic Mass Action Based Approximation

We want to characterize the momentary pseudo-equilibria that the fast variables

(interface and pseudo-equilibrium metabolites) reach in response to a change in the

slow interactions (dynamic reactants).

Equilibrium Characterization

Let Z and Y be the initial concentrations (at the start of the time-step) of the interface

and pseudo-equilibrium metabolites. Let their equilibrium concentrations be Z ′ and

Y ′. The complete set of constraints which must be true at equilibrium are given by:

177

Definition 8.4.3 KMA Equilibrium Relation

E(Z ′, Y ′, T ′, Z, Y, T,K) ≡

{P (Z, Y,K) = 0 ∧ G(Y, Z,K) = 0 ∧

T =M(Z, Y) ∧ T ′ =M(Z ′, Y ′) ∧ T ′ = T} 2

This equilibrium characterization lends itself to simplification by algebraic meth-

ods. In other words, the equilibrium equations (and inequalities) in Flow can be

solved before being fed into the TCTL model checker.

Equilibrium Simplification using Gröbner Bases Since the KMA-based approach

involves only equalities (“algebraic sets”), the equilibrium relation E is effectively

just a system of polynomial equations, which needs to be solved for the Z ′ and Y ′

(in terms of Z, Y, t, h and K). In the case of metabolic dynamical systems, we know

that Z ′ and Y ′ are expressible in terms of the equilibrium pool variables T . Clearly,

the well-established method for solving such systems of simultaneous multivariate

polynomial equations with symbolic parameters is Buchberger’s 20-year old Gröbner

Basis algorithm [73]. Its many implemented forms include CoCoA [88] and Macaulay-2

[133].

Remark 8.4.1 Algebraic methods for enzyme kinetics have been elaborately studied

since the advent of computer algebra systems (for instance, see Bayram’s 1993 the-

sis [54]). The issue of simultaneous solution of polynomial equations, especially in

the context of biochemical networks, has been addressed by Bayram, Barnett and col-

leagues [55, 78, 210] (see Barnett [46, 47] for an exhaustive summary of recent work

that applies computer algebra to the life sciences).

178

Definition 8.4.4 Simplified KMA Equilibrium Relation

E(Z ′, Y ′, Z, Y, T,K) ≡ {T =M(Z, Y) ∧ Z ′ = EZ(T,K) ∧ Y ′ = EY (T,K)},

where EZ and EY represent the solutions obtained using the Gröbner basis technique

over

{P (Z, Y,K) = 0 ∧G(Y, Z,K) = 0 ∧ T =M(Z, Y)}. 2

Note 8.4.2 The existence of functions EZ and EY follows from the assumptions

about metabolic networks. However, we could characterize the algebraic requirements

for such a T -basis, in terms of the rank of the matrix and so on. We do not delve

into this here.

Flow Description

Let us now construct Flow(X, Y, Z, T ,X ′, Y ′, Z ′, T ′, t, h,K) – the continuous flow

expression, which connects the state of the system X, Y, Z at time t and the state of

the system X ′, Y ′, Z ′ at time t+ h.

The ODEs for Z and Y can be directly derived from EZ and EY by differential

calculus. The equilibrium concentrations of Z and Y are expressible in terms of the

equilibrium pool variables T . Thus,

Ż =
dEZ(T,K)

dt
=
δEZ(T,K)

δT
.
dT

dt
=
δEZ

δZ
H.

The same applies to Y as well. Thus we have our final result:

179

Definition 8.4.5 Approximated Metabolic Dynamical Systems

Ẋ = F (X,Z,K)

Ṫ = H(X,Z,K)

ˆ̇Z(T,X, Z,K) ≈
δEZ

δT
H

ˆ̇Y (T,X, Z,K) ≈
δEY

δT
H 2

Having derived the approximate ODE description, the dynamical system is now

amenable to direct analysis by the methods suggested for Biochemical Dynamical

Systems. Recall that the flow expression is simply:

Flow({X, Y, Z, T}, {X ′, Y ′, Z ′, T ′}, t, h,K) ≡

{(X ′ = X + hF (X,Z,K))

∧(T ′ = T + hH(X,Z,K)

∧(Z ′ = Z + h ˆ̇Z(T,X, Z,K)

∧(Y ′ = Y + ˆ̇Y (T,X, Z,K))}

The approach is summarized in Figure 8.1.

Example 8.4.2 Let us continue with the example introduced earlier.

If we wanted to simulate this system directly, the time-step of integration would

need to be small enough for the approximation error of the fast reactions to be reason-

able. For example, if all concentrations are initially 1, then the rate constant of the

fast reactions (kf , kr) would typically be a 100 times that of the fast reactions (ks).

So we will be forced to pick a time-step say 0.001 units. However, if we compute the

rate of change of equilibrium instead, we can simulate the system with a time-step of

0.1.

180

Interface Reactants Z

Fast Reactions Fast ReactionsSlow ReactionsSlow ReactionsSlow Reactions

ODE Description

Ẏ = G(Y, Z, K)

Z = EZ(T, K) Y = EY (T, K)

T = M(Z, Y)
Ṫ = H(X, Z, K)

Ż = D(X, Z, K) + P (Y, Z, K)

Ẏ =
δEY
δT

H(X, Z, K)

New set of approximate ODEs describing the metabolic system

Ẋ = F (X, Z, K)

Ẋ = F (X, Z, K)

P (Y, Z, K) = G(Y, Z, K) = 0

Approximate ODEs of rate of change of equilibrium
concentrations

Metabolic Dynamical System

Dynamic Reactants X Pseudo-Equilibrium Reactants Y

Equilibrium Description: Solution of polynomial equations

Ṫ = H(X, Z, K)

Ż =
δEZ
δT

H(X, Z, K)

Figure 8.1: Kinetic Mass Action based approximate analysis of a metabolic dynamical

system

At equilibrium, only one equation needs to hold: kfes = krc. The total amount of

enzyme eT is assumed to be fixed throughout the simulation, and is a parameter, along

with kf , kr and ks. The total amount of substrate changes with time, but is conserved

during the period when the equilibrium is recomputed. Thus the equilibrium relation

181

is given by:

E({s′}, {e′, c′}, {s}, {e, c}, K) ≡

{kfes− krc = 0 ∧ (e+ c = e′ + c′) ∧ (s+ c = s′ + c′)

∧e ≥ 0 ∧ c ≥ 0 ∧ s ≥ 0 ∧ e′ ≥ 0 ∧ c′ ≥ 0 ∧ s′ ≥ 0}.

This reduces to the quadratic equation

c2 − c(s′ + 2c′ + e′ + 1/K) + (s′ + 2c′ + e′) = 0,

with the all positive constraint leading to the solution:

c =
(s′ + 2c′ + e′ + 1/K)−

√

(s′ + 2c′ + e′ + 1/K)2 − 4(s′ + 2c′ + e′)

2

e = e′ + c′ − c

s = s′ + c′ − c

The modified flow expression would thus be:

ˆFlow({s′}, {e′, c′}, {s}, {e, c}, t, h) ≡

{∃s′′, (s′′ = s+ hksab) ∧ c2 − c(s′′ + 2c′ + e′ + 1/K) + (s′′ + 2c′ + e′) = 0

∧(c = e′ + c′ − c) ∧ (s = s′ + c′ − c)

∧e ≥ 0 ∧ c ≥ 0 ∧ s ≥ 0 ∧ e′ ≥ 0 ∧ c′ ≥ 0 ∧ s′ ≥ 0 ∧ s′′ ≥ 0}

Alternatively, we can express the equilibrium using the equilibrium pool variables

as

(sT + eT + 1/K)−
√

(sT + eT + 1/K)2 − 4(sT + eT)

2
.

8.4.2 Flux Balance Analysis Based Approximation

FBA [173] is the most popular alternative to detailed kinetic modeling of the fast

metabolic reactions, because it only requires knowledge of the wirings of biochemical

182

pathways and not their kinetic parameters or regulatory functions. The essence of

flux balance analysis is optimizing a function under a set of constraints. Since we are

stressing the ability to treat variables and parameters as symbols, we first formalize

the established theory that algebraic optimization is decidable. The aim of the op-

timization can be reworded as: for all values U that differ from the optimal value

Ǔ and still satisfy the constraints C(U, V) , the value of the function f(U, V) is less

than f(Ǔ , V). This immediately leads to the following characterization of {Ǔ , V }:

Definition 8.4.6 Optimization Relation Optimize(f(U, V), C(U, V), Ǔ) ≡

C(Ǔ , V)
∧

{∀U, (U 6= Ǔ ∧ C(U, V))⇒ (f(U, V) < f(Ǔ , V))} 2

Theorem 8.4.1 Decidability of Semi-Algebraic Optimization The set of

optimal values Ǔ of the n-length vector U satisfying the semi-algebraic constraints

C(U, V) where V represents the vector of variables not being optimized (i.e., the pa-

rameters), which leads to the maximum value of a polynomial function f(U, V) is

decidable.

Proof 8.4.1 Clearly, if C is semi-algebraic and if f is polynomial, the expression

Optimize(f(U, V), Ǔ , V,) ≡ C(Ǔ , V) is a quantified semi-algebraic set, which is

decidable [276]. 2

A simpler approach to obtaining the optimal value of the function being optimized

is well-established in literature. This involves first characterizing the function f to

be optimized by a new variable z. This is done by conjuncting a constraint of the

form z − f(U) > 0 to the original system, and eliminating all U . The result will

express z as g(V), a function of the parameters alone. The task is to now use this

bound on the range of f and calculate the bound on the variables Z. This can be

done by conjuncting with the system invariants. However, the procedure outlined in

183

our proof is a more direct way of capturing the optimal values (and not the value of

the function being optimized).

Now that the central computational engine is in place, it just remains to reformat

the flux balance analysis problem so it can exploit this algebraic device.

Equilibrium Characterization

Let C(Z ′, Y ′, Z, Y,K) represent the semi-algebraic constraints on the kinetic param-

eters, rates of change, bounds on parameters, energy balance equations, etc. Let

O(Z ′, Y ′, Z, Y) represent the function1 that the metabolic network is assumed to be

optimizing. Thus, the complete set of equations and inequalities that need to be true

at equilibrium may be represented thus:

Definition 8.4.7 FBA Equilibrium Relation

Ê(Z ′, Y ′, Z, Y, T) ≡ Optimize(O(Z ′, Y ′, Z, Y, T),M(Z ′, Y ′, Z, Y, T), {Z ′, Y ′}),

where M(Z ′, Y ′, Z, Y, T) ≡ ∃K, {C(Z ′, Y ′, Z, Y,K) ∧ E(Z ′, Y ′, Z, Y, T,K)} with E

being the KMA Equilibrium Relation. 2

Note 8.4.3 Since FBA assumes that kinetic parameters K are unavailable, the ef-

fective set of constraints over which the optimization must be performed is obtained

by eliminating K. The existential quantifier captures the assumption that the network

would have so evolved that the kinetic parameters effectively make the optimization

possible.

1The primed variables may be necessary to capture functions involving the rate of change of

concentrations

184

Algebraic Optimization using Quantifier Elimination Here, we need to optimize

a function under semi-algebraic constraints (i.e., equations and inequalities). Gröbner

bases cannot be used as they can handle only equalities. Instead, the general tech-

nique of real quantifier elimination [276, 151, 109] has to be employed to perform the

algebraic optimization [20]. One ideal system is the Maple toolbox Symbolic-Numeric

toolbox for Real Algebraic Constraints (SyNRAC) developed by Anai and Yanami

[23, 300]. SyNRAC includes a collection of symbolic, numerical, and symbolic-numeric

solvers based on quantifier elimination. These handle semi-algebraic constraints ef-

ficiently, and can perform even non-convex parametric Semi-Definite Programming

required by algebraic FBA.

Linking Fluxes and Concentrations The flux balance analysis approach is typi-

cally defined using the fluxes rather than the concentrations. Each flux term has a

typical form ki,jXiXj . Thus, these new quadratic equations in the Xis needs to be

solved. While the flux-approach is simpler if we are not interested in concentrations,

the introduction of new variables is unnecessary if time-profiles of the equilibria are

desired. Thus, the flux balance equations which are typically written as ΣiFi = 0, are

now written explicitly as ΣikiXiYi = 0. These rate parameters are removed during

optimization, i.e.,

∃K, C(X̌, Y)
∧

{∀X, (X 6= X̌ ∧ C(X, Y))⇒ (f(X, Y) < f(X̌, Y))}.

This is equivalent to the assumption that the kinetic parameters are such that the

function f is maximized. Thus, the flow may be expressed as:

Definition 8.4.8 FBA Flow Relation

ˆFlow({X, Y, Z, T}, {X ′, Y ′, Z ′, T ′}, t, h,K) ≡ {(X ′ = X + hF (X,Z,K)) ∧ (T ′ =

T +H(X,Z,K)) ∧ Ê(Z ′, Y ′, Z, Y, T ′)}

185

Note 8.4.4 In some cases, the solution after optimization might be an algebraic equa-

tion of the form Z ′ = EZ(Z, Y, T,K) and Y ′ = EY (Z, Y, T,K). Thus, we can write:

Ż =
δEZ

δZ
Ż +

δEZ

δY
Ẏ +

δEZ

δT
Ṫ

Ẏ =
δEY

δZ
Ż +

δEY

δY
Ẏ +

δEY

δT
Ṫ .

By solving these two equations, one can obtain the general solution:

Ẏ =

δEY
δZ

δEZ
δT

1−
δEZ
δZ

+ δEY

δT

1−
δEY
δZ

δEZ
δY

1−
δEZ
δZ

− δEY

δY

Ṫ

Ż =
δEZ

δY
Ẏ + δEZ

δT
Ṫ

1− δEZ

δZ

.

Also note that Ż = δEZ

δT
Ṫ and Ẏ = δEY

δT
Ṫ derived in the KMA based approximation is

just a special case where δE
δY

= δE
δZ

= 0.

8.5 Discussion

It has been reiterated that a systems level analysis (as opposed to a reductionist ap-

proach) of biology is crucial for giant leaps in our understanding of life to be possible

[93], and to contribute more directly to the drug discovery process [76, 92]. The frame-

work outlined in this chapter demonstrates how richer and deeper symbolic queries

can be phrased about metabolic networks, in a format that makes them amenable

to the algebraic temporal logic analysis techniques described in the earlier chapters.

There are several avenues of extending this research:

Solving Polynomial Equations Efficiently

This will necessitate incorporating more efficient and less general techniques for equi-

librium estimation and heuristics for choosing between them[236]. These include

186

direct algebraic simplification using quantifier elimination, the Wu-Ritt resultant al-

gorithm for solving simultaneous equations[204, 55], resultant computation followed

by eigen decomposition of a generalized companion matrix[291], and linearization-

based techniques for solving quadratic systems.

Performing Algebraic Optimization

While quantifier elimination based algebraic optimization is relatively general, less

general but more efficient quantifier elimination algorithms could be applicable in

many scenarios. Some approaches that merit attention include constraint logic pro-

gramming with first-order constraints CLP (RL) [271] based on Redlog, systems the-

oretic algebraic optimization [161] and semidefinite programming [234]. Dolzmann et

al. [108] survey three implemented real quantifier elimination methods: partial cylin-

drical algebraic decomposition, virtual substitution of test terms, and a combination

of Gröbner basis computations with multivariate root counting. Weispfenning[296]

has described an optimized method for the elimination of linear variables from a

Boolean combination of polynomial equations and inequalities. Hong et al. [152]

show how to write all common stability problems as quantifier-elimination problems,

while Jirstrand [162] analyzes dynamical systems described by polynomial differential

equations subjected to constraints on control and system variables using quantifier

elimination.

Systems Biology Extensions

Algebraic analysis can be used to perform the classification of the dynamical system

interactions as fast and slow, and the decomposition into sub-modules of a large

network. The newer constraints (see Section 8.2.2) that have been defined in an

187

effort to bring the results of the optimization-based simulation closer to experimental

values also need to be extended to the algebraic domain. Other approximate methods

to estimate the equilibrium fluxes (e.g., cybernetic modeling[227]) also need to be

extended to the algebraic domain. Also, the problems in modeling and analyzing

biochemical networks are becoming increasingly related to more general scenarios

handled much more mathematically rigorously in the field of Control Theory[301,

158, 255].

Conclusion

The foundation of Algorithmic Algebraic Model Checking is the decidability of real

quantifier elimination [276]. Over the last couple of chapters, we have established that

reachability analysis [239], TCTL model-checking [222] and many popular approxi-

mation methods [221] can be reduced to iterative quantifier elimination calls. For this

procedure to be decidable, only Boolean combinations of polynomial equations and

inequalities can appear in the description of the system’s dynamics. This motivated

the definition of the semi-algebraic hybrid automaton class. In this chapter, we did

not use the discrete aspects of hybrid systems. We instead focused on dynamical

systems which have only one discrete state and no notion of discrete transitions. We

showed how a new class of problems that appear in metabolic network analysis may

be reformulated as an algebraic biochemical system. Our algebraic framework al-

lowed the description of the behavior of the metabolic network symbolically, in terms

of when it will be in which equilibrium, and when it will move. Having completed

the documentation of the Systems Biology, Hybrid Automata and Model Checking

theory, we now discuss the preliminary implementation of some of these algorithms

in the symbolic algebraic dense-time model-checker Tolque [222, 224].

188

Chapter 9

Tolque: An Algebraic Model

Checker

It is natural to hope that the theory hitherto developed can immediately be applied

to the Systems Biology domain, leading to the solution of important problems that

radically alter our understanding of life. However, such näıveté is thwarted by the

double-exponential complexity of the quantifier elimination procedure. In this chap-

ter, we find that Qepcad is unable to solve “big” quantifier elimination problems in

reasonable time on a reasonable computer. Nevertheless, we are able to get a sense

of the power of a dense-time TCTL model-checker that can handle semi-algebraic

hybrid automata. We document many simple examples where symbolic solutions are

obtained, and some cases where Tolque stalls quickly due to lack of sufficient memory.

On the Systems Biology side, we discuss the repressilator and the Delta-Notch exam-

ples. The purpose of this chapter is to motivate the development of a powerful tool

that can exploit several existing computer algebra libraries, approximation schemes

and paralellizable algorithms to solve general semi-algebraic TCTL queries over hy-

189

brid automata. We also include a review of popular software tools for model-checking

/ verification.

9.1 Tolque: A Preliminary Prototype

A preliminary version of a symbolic algebraic model checker that uses the TCTL based

approach outlined in this thesis has been implemented. This quantifier-elimination-

centric model checker, christened Tolque [222] (an acronym for “TempOral Logic via

QUantifier Elimination”), takes as input a semi-algebraic hybrid automaton specifi-

cation (with the flow equations already approximated if necessary) and an Existential

Until (p ∃U q) query. It then computes the fixpoint p ∃U q = µX.(q∨ (p ⊲X)) [143]

by using Qepcad [151] (an acronym for “Quantifier Elimination by Partial Cylindrical

Algebraic Decomposition”) to perform the quantifier elimination in p ⊲X. The entire

process is automated in this C/C++ implementation that runs in Linux.

A basic module reads in the definition of the hybrid system - the states, the

transitions, the flows, etc. and generates its transition relation. A lex/yacc-based

parser/generator is used to read / write the semi-algebraic formulæ. The CTL query

on this system is translated into a series of quantifier elimination problems which

are solved by calls to Qepcad [151]. Qepcad is an implementation of quantifier elim-

ination by partial cylindrical algebraic decomposition, based on the original CAD

algorithm[90] (see Section 5.1.2 for technical details and summary). A typical in-

put formula looks like: (Ex)[ax2 + bx + c = 0]., with the output generated being:

4ac− b2 ≤ 0 ∧ [c = 0 ∨ a 6= 0 ∨ 4ac− b2 < 0].

Both discrete and continuous modes of operation are supported. The discretization

scheme that has been chosen is the Euler Forward one, though this is not assumed

by the implementation. In the continuous mode, no restrictions are imposed and

190

conventional TCTL model checking is performed. In the discrete mode, the discrete-

time one-jump-anywhere model of the transition relation has been chosen, and the

state invariant is checked only at the start of each time-step.

9.2 Survey of Computational Tools

As discussed in Sec. 6.4, fundamental algorithmic concerns have limited the devel-

opment and application of temporal analysis techniques to severely restricted hybrid

automaton subclasses, and in addition, the methods often sacrifice accuracy or sym-

bolic capabilities. In this section, we briefly document some of the major software

tools for analyzing the dynamics of discrete and hybrid automata.

9.2.1 Discrete Model Checkers

Purely discrete dynamical systems do not present problems comparable with those

faced in the analysis of hybrid automata. Thus, we survey the approaches developed

for these systems only very briefly:

1. smv [208] The current user-friendly industrial quality version of this seminal

tool is the Cadence SMV model checker, which supports both extended SMV and

synchronous verilog. CTL and LTL are both handled, in addition to other forms

of specification.

2. NuSMV [85, 84] This SMV rewrite supports the original SMV input language, and

also has CTL / LTL modelcheckers.

3. Spin [150] is an LTL model checker for distributed software systems (described

in the promela formalism), based mostly on Vardi and Wolper’s pioneering work

[286].

191

4. DSSZ is a suite comprising BDD-based CTL and LTL model checkers for safe

Petri Nets [229].

5. Bogor [110] is a model checker specifically designed for software verification.

6. SLAM is the software verification and debugging project of Microsoft [44].

7. PVS (Prototype Verification System) [233] is a comprehensive verification /

theorem-proving tool with a powerful specification language, based on decision

procedures for different theories.

8. CVC Lite [48] is an interactive library with natural-language support for verifying

quantifier-free first-order formulas over different theories.

9. ASTRE [96] is a static program analyzer for checking for run-time errors in

C programs.

9.2.2 Hybrid Model Checkers

As seen in section 9.2.1, a plethora of model checking, verification, automated rea-

soning and theorem prover tools for discrete systems have become available in the

short span of two decades. Different tools focus on different problem domains, make

differing assumptions and employ one of the many efficient and optimal algorithms

developed for that restrictive sub-domain. Hence, it becomes very difficult to justify

one tool or approach as being better than the others.

In order to better gauge the relative merit of tools comparable to Tolque, we

observe the key characteristics of the algorithmic algebraic model checking approach:

• Hybrid automata, with continuous and discrete dynamics, can be analyzed.

192

• Semi-algebraic sets can appear in the description of the continuous dynamics.

If the differential equations are polynomial, they can be approximated using

symbolic version of discretization schemes. If the dynamics are innately semi-

algebraic, no approximation is necessary.

• Semi-algebraic sets can appear in the description of the discrete dynamics, with

constraints on the resets.

• All expressions can be symbolic, i.e., with algebraic parameters.

• The initial condition can be unspecified or symbolic.

• The TCTL query should be of the form p∃U\⊔〉lq, where p and q are semi-

algebraic sets.

• The algorithm is iterative quantifier elimination which is not guaranteed to

terminate unless the solution is true. There are no heuristics or optimizations

implemented to exploit systems with simpler dynamics (though they have been

theoretically developed [221]).

• There is no user-friendly interface currently implemented. It is a command-

line tool that uses a text file as the input (with integration into Simpathica in

progress).

Based on these observations, we now survey the relevant features of some of the

popular tools for analyzing the temporal dynamics of hybrid systems, which are rela-

tively in their early stage of development. For the reader’s convenience, a comparison

of these features has been tabulated in Table 9.1.

1. Kronos [100, 303] handles real-time systems modeled as timed automata, and

model checks queries described in TCTL.

193

Table 9.1: Tools for the Analysis of Hybrid Automata

Tool Details

Kronos [100, 303] timed automata, TCTL

Uppaal [58, 59] timed automata extended with data types

HyTech [16, 142, 146] HA with piecewise constant polyhedral differential inclusions

HyperTech / HA with general continuous dynamics,

ADIODES [145] over-approximation, interval numerical methods

VeriShift [70] ellipsoidal over-approximation, ẋ(t) = Ax(t) + u(t), x(t) ∈ I, u(t) ∈ U

Coho [134] reachability, two dimensional projections of polyhedra,

non-linear, ordinary differential equations,

linear programming, linear systems theory,

local linearizations for each face of the projectahedron

Step [65] deductive verification, clocked transition systems

CheckMate / polyhedral-invariant hybrid automata (PIHA),

MATLAB [265, 83] polyhedral set of initial continuous states,

flow-pipe approximation procedure, ACTL,

approximate quotient transition system (AQTS)

PHAVer / safety properies, hybrid systems, exact arithmetic,

PPL [124] piecewise constant bounds on the derivatives,

over-approximation of piecewise affine dynamics

Maple / Qepcad[127] Hybrid System, Symbolic Reachability, Abstraction

Requiem / nilpotent linear differential equation,

Mathematica[218, 186] quantifier elimination, exact reachability

Charon / Specification language, agents and modes,

Requiem [18, 6] hierarchical interacting hybrid systems

Maple / computer algebra, automated theorem proving,

PVS [1] symbolic computation problems

SAL Theorem-prover, abstraction, intermediate language,

[261, 60, 125, 103] LTL/CTL model checkers

SAL / MATLAB predicate abstraction, reachable set computation, quantifier

/ Qepcad [125] elimination, hybrid automata, delta-notch

d/dt [36, 41] orthogonal polyhedral approximation, reachability,

HA with linear differential inclusions,

numerical integration,Maximum Principle from optimal control

Tolque[222] Semi-Algebraic Hybrid Automata, TCTL, AAMC

194

2. Uppaal [58, 59] is another popular tool for analyzing timed automata, with

support for bounded integers, arrays and other variable types.

3. HyTech [16, 142, 146] was one of the early model-checkers to proceed beyond

timed systems to hybrid automata where the continuous dynamics are defined

by piecewise constant polyhedral differential inclusions. It thus expanded the

domain of application of formal methods to interesting problems in digital con-

trollers, schedulers and distributed algorithms.

4. HyperTech [145] extends HyTech by being able to handle hybrid automata with

dynamics defined by non-linear differential equations of the form dxi/dt =

f(x1, ..., xn), where f is a composition of polynomials, exponentials and trigono-

metric functions. The tool overcomes the pitfalls of traditional numerical inte-

gration by resorting to interval numerical methods (specifically, the ADIODES

library), which over-approximate the result of integrating differential equation

by a set of points guaranteed to include the true solution.

5. VeriShift [70] builds on the ellipsoidal over-approximation technique of Kurzhan-

ski and Varaiya [180, 181, 183] and can handle differential equations of the form

ẋ(t) = Ax(t) + u(t), x(t) ∈ I, u(t) ∈ U .

6. Coho [134] relies on a technique for representing high dimensional objects (non-

convex polyhedra) by their projections onto the two dimensional subspaces

(“projectahedron”) defined by every pair of variables. At each time step of

integration, ideas from computational geometry, linear programming and linear

systems theory are used to keep track of the faces of each projection of the poly-

hedron. The tool also handles non-linear differential equations by approximate

linearization along each face of each projectahedron.

195

7. Step [65] performs deductive verification over clocked transition systems with

discrete and clock variables.

8. CheckMate [265, 83] uses MATLAB procedures to model-check ACTL queries

over polyhedral-invariant hybrid automata (PIHA) where all invariants and

guards are defined by linear inequalities, with the initial state also being poly-

hedral. The linear and non-linear terms in the continuous dynamics are approx-

imated using appropriate flow-pipes with controllable error bounds. Interfacing

with Simulink and Stateflow is supported. Model-checking is performed over

the approximate quotient transition system (AQTS) extracted by conservative

abstraction.

9. PHAVer (Polyhedral Hybrid Automaton Verifier) [124] is a tool for verifying

hybrid systems with piecewise constant bounds on the derivatives, with affine dy-

namics being handled by overapproximation and state-space partitioning. The

Parma Polyhedra Library (PPL) is used for performing robust exact arithmetic

over non-convex polyhedra.

10. d/dt [36, 41] is a tool for analyzing hybrid systems with linear continuous dy-

namics of the form dx/dt = Ax+u, where u is input taking values in a bounded

convex polyhedron U (i.e., linear differential inclusions). The invariants and

guards are also assumed to be convex polyhedra. The polyhedral approxima-

tion, in combination with the Maximum Principle from optimal control, allows

numerical integration based reachability verification.

11. SAL (Symbolic Analysis Laboratory) [261, 60, 125, 103] is a powerful framework

providing tools for abstraction, program analysis, theorem proving an model

checking. The tool-set was designed to abstract a continuous dynamical system

196

into a finite-state problem amenable to conventional model checking. Logical

reasoning over the first-order theory of real closed fields is performed using

quantifier elimination based on cylindrical algebraic decomposition. The set

of polynomials that appear in the description of the continuous and discrete

dynamics and their higher order derivatives are used to identify partitions of

the original state space that are sign-invariant to all polynomials in the set.

An intermediate language for describing transition systems is also defined. SAL

supports many features of PVS, including model-checkers for LTL and CTL.

12. Ghosh et al. [125] used MATLAB to automate the process of modeling the Delta-

Notch system in SAL, obtaining the abstract state corresponding to the hybrid

automaton, performing symbolic backward reachability computation, and sim-

plifying the solution using Qepcad.

13. Ghosh et al. [127] repeat their analysis using Maple and Qepcad, rather than

MATLAB and SAL, by assuming piecewise affine continuous dynamics. An iter-

ative refinement procedure is used to obtain the symbolic discrete abstraction,

which is used to compute the under-approximate parametric backward reachable

sets from the equilibria of the hybrid automaton.

14. Adams et al. [1] integrate the computer algebra system Maple with PVS and

provide a new approach to symbolic computation problems.

15. Requiem [218] is a Mathematica notebook for reachability computation, based

on the characterization of differential equations amenable to exact symbolic

analysis [186]. It uses the quantifier elimination package in Mathematica.

16. Charon [18, 6] is a language for describing hierarchical concurrent hybrid sys-

tems, characterized using agents and modes. The continuous evolution can be

197

described using differential constraints, algebraic constraints or invariants. Re-

quiem is used for reachability analysis.

9.3 A Case Study: The Delta-Notch Protein Signaling

Here we examine the Delta-Notch protein interaction system, the primary basis of

biological pattern formation (see Section 3.4.1 for details). Ghosh et al. [126, 155]

analyzed a simplified piece-wise linear hybrid automaton model (derived from the

work of Collier et al. [89]) with the following properties: (1) The Delta (concentration

vD) production is turned on by low Notch concentration (vN) in the same cell, i.e.,

when −vN > hD; (2) The Notch production is turned on by high Delta concentration

in the cell environment (neighbors), i.e., when Σiu
i
D > hN . Here, hD and hN are the

thresholds, and ui
D denotes the Delta concentration in each (i-th) neighbor.

In this section, we show how some interesting properties of the one-cell and two-

cell Delta-Notch model of Ghosh et al. [126, 155] can be formulated as temporal logic

queries, that Tolque can answer. Unfortunately, Qepcad cannot support the queries

necessary to analyze system properties more complex than those documented here.

Approximate methods (such as those discussed in AAMC-III [221]), reduction in the

computational complexity of quantifier elimination, and greater computing power will

help overcome this computational bottleneck. Rather than providing new insights1

about the model, at this point, Tolque is only seen to support a more elegant and

general way of thinking about system properties.

1A summary of the Ghosh-Tomlin analysis of this Delta-Notch pathway is presented in Sec. 9.3.3

198

9.3.1 One-Cell Delta-Notch Analysis in Tolque

In the hybrid automaton modeling the one-cell system [126], there are 2 dynamic

variables vD and vN corresponding to the Delta and Notch concentration in the cell,

4 discrete states corresponding to the 2 × 2 possibilities resulting from Delta and

Notch production being switched “on” or “off”. The external variable uN is assumed

to be static. We will denote the upper bound on the continuous time-step by ∆.

The one-cell Delta-Notch hybrid automaton is depicted in Figure 9.1

˙vD = −λDvD
˙vN = −λNvN

−vN ≥ hD ∧ uN ≤ hN
−vN ≤ hD ∧ uN ≤ hN

˙vD = RD − λDvD
˙vN = −λNvN

−vN ≤ hD ∧ uN ≥ hN

˙vD = −λDvD

˙vN = RN − λNvN

−vN ≥ hD ∧ uN ≥ hN

˙vD = RD − λDvD

˙vN = RN − λNvN

Figure 9.1: One-Cell Delta-Notch Hybrid Automaton

Note 9.3.1 Since we model the external delta concentration uN = Σiu
i
D as a pa-

rameter and not a dynamic variable, the hybrid automaton naturally assumes these

external variables do not change in the course of its evolution. Transitions are pos-

sible only between states 1 and 2, and states 3 and 4 because uN ’s relation to hN

cannot change in the course of the evolution of this one-cell hybrid system. Also,

strong inequalities are sometimes changed to weak inequalities to correctly capture the

199

Delta-Notch dynamics as per the standard semantics of hybrid automata.

Similarly, for simplification, we replace all inequalities with their weaker forms,

i.e., < to ≤ and > to ≥. This is just to allow computation of the discrete state tran-

sitions using the simplest transition relation possible. For example, if the invariant of

a state is x ≤ 5 and the jump condition to another state is x > 5, the standard hybrid

system semantics do not allow the system to ever take the jump because it will have

to violate the state invariant for a time > 0. However, if the state invariant is x < 5

and the jump condition is x ≥ 5 then the standard semantics allow the jump because

the state invariant is violated for zero time, i.e., in one instant when x = 5 it violates

the invariant - but it immediately jumps to the other state (in zero time). Hence its

value does not violate its current (new) state’s invariant. In the one-cell Delta-Notch

model, we encounter this problem for example when we want to jump from state 4

(−vN ≤ hD) to state 3 (−vN > hD). It will never be allowed according to the stan-

dard semantics. To overcome this “technical” problem, we change all invariants to

the ≤ and ≥ forms.

1. Pruned Transition Map Only 8 out of the 12 discrete state transitions

are mathematically possible [126]. This inference can be automated using the

following query: for each discrete transition from state i to state j, ask if there

exists a path where the invariant of state i is true until the invariant of state j

becomes true.

Definition 9.3.1 Jump-Possibility Query When the state invariants are

non-overlapping, an evolution path from discrete state i to j is possible iff Inv i ∧

{Inv i ∃U Inv j}.

Notice that invariants can be made non-overlapping by introducing a new en-

200

vironmental variable “discrete-state” that is reset to the destination discrete

state number during discrete state transitions, with flow always 0. For the four

transitions that are not possible, Tolque correctly replies that the query is False.

• Discrete Transition 1
0
−→
D

2

[−vN ≤ hD ∧ uN ≤ hN] ∃U [−vN ≥ hD ∧ uN ≤ hN]

After k iterations, we get the requirement vN ≤ −hD/(1−∆lN)k which is

True when k (≥ − log (hD/vN)/ log (1−∆lN)). Thus the transition from

1 to 2 is possible.

• Discrete Transition 2
0
−→
D

1

[−vN ≥ hD ∧ uN ≤ hN] ∃U [−vN < hD ∧ uN < hN] converges after two

iterations to False. Thus, it is not possible to jump to state 1 from state 2.

2. Estimating Continuous-State Equilibrium Concentrations The equi-

librium values are computed in [126] by setting the derivatives to 0, solving for

the equilibrium concentrations and substituting them in the invariants to see if

they are satisfiable. In Tolque, this process can be automated by asking what

needs to be initially true for no path to exist along which the values of the

dynamic variables change. The fact that the state invariant has to hold at the

starting point will eliminate the other terms resulting from the negation.

When the state invariants are non-overlapping, an equilibrium of the continuous

state exists in state i iff Inv i ∧ ¬{Inv i ∃U (v′D 6= vD ∨ v′N 6= vN)}, where v′D

and v′N are the values after one step of the hybrid automaton.

Remark 9.3.1 We have extended the TCTL notation to allow more complex

temporal queries that can describe the values of the variables before and after

201

one step of evolution. The semi-algebraic quantifier elimination based model-

checking supports these queries without any additional work.

State 1: ¬{[−vN ≤ hD ∧ uN ≤ hN] ∃U [v′D 6= vD ∨ v′N 6= vN]} converges to

False – implying the non-existence of an equilibrium in this state.

State 2: ¬{[−vN ≥ hD ∧ uN ≤ hN] ∃U [v′D 6= vD ∨ v′N 6= vN]} converges to

vDlD − rD = 0 ∧ vN ≤ 0. Thus we get the equilibrium concentrations as

v∗D = rD/lD, v
∗
N = 0.

State 3: ¬{[−vN ≤ hD ∧ uN ≥ hN] ∃U [v′D 6= vD ∨ v′N 6= vN]} converges to

vD ≤ 0 ∧ vN lN − rN = 0. Thus v∗D = 0, v∗N = rN/lN are the equilibrium

values.

State 4: ¬{[−vN ≥ hD ∧ uN ≥ hN] ∃U [v′D 6= vD ∨ v′N 6= vN]} converges to

the equilibrium condition v∗N lN − rN = 0 ∧ hD + v∗N 6= 0 ∧ v∗DlD − rD =

0 ∧ hN − uN 6= 0.

3. Discrete State Equilibria When the invariants are non-overlapping, a sys-

tem can stay forever in the discrete state i iff Inv i ∧ ¬ {Inv i ∃U ¬Inv i}.

State 1: [−vN ≤ hD ∧ uN ≤ hN] ∃U [−vN > hD ∨ uN > hN] returns vN ≤

−hD/(1−∆lN)k after k iterations, effectively evaluating to True. Thus the

system always evolves out of state 1 and hence it does not correspond to

any equilibrium.

State 2: [−vN ≥ hD ∧ uN ≤ hN] ∃U [−vN < hD ∨ uN > hN] converges to

False. Thus there is no path out of state 2 and hence it corresponds to an

equilibrium. Note that the transition from 2 to 4 recorded in [126] is not

possible in a one-cell model where uN is not modeled as a dynamic variable.

202

State 3: [−vN ≤ hD ∧ uN ≥ hN] ∃U [−vN < hD ∨ uN > hN] is non-convergent

and returns vN ≤ (−hD −∆rN)/(1−∆lN) after one iteration. So, for such

a path out of state 3 to not exist, there should be no way of satisfying the

above inequality when−vN < hD. So we get (−hD−∆rN)/(1−∆lN) < −hD

which simplifies to hD > −rN/lN .

State 4: [−vN ≥ hD ∧ uN ≥ hN] ∃U [−vN < hD ∨ uN < hN] is non-convergent

and returns lNhD + rN > 0∧hD−∆vN lN +∆rN + vN ≥ 0 after the second

iteration. The second term is just a lower bound on the starting value of vN

which continues to drop with each iteration - effectively being True. Hence,

for an equilibrium to exist in State 4, the first term must not be satisfiable,

i.e., lNhD + rN ≤ 0 which is equivalent to hD ≤ −rN/lN .

4. Backward Reachability From An Equilibrium State We could now find

the initial conditions that force the system to choose between the equilibria,

by asking if there is a path of evolution that ends in the equilibrium state of

interest.

Definition 9.3.2 State Reachability Query When the invariants are non-

overlapping, the initial conditions that lead to a discrete state i are given by:

True ∃U Inv i

Reaching:

State 2 True ∃U [−vN ≥ hD ∧ uN ≤ hN] is non-convergent and returns

vN ≤ −hD/(1−∆1N)k∧hN−uN ≥ 0 after k iterations. The first term is the

same slowly increasing upper bound on the initial Notch concentration and

203

is effectively True. Hence we get the initial condition uN ≤ hN necessary

to force this equilibrium.

State 3 After 2 (non-convergent) iterations of True ∃U [−vN ≤ hD∧uN ≥ hN]

we get hN − uN ≤ 0 ∧ [hD + ∆2vN l
2
N −∆2rN lN − 2∆vN lN + 2∆rN + vN ≥

0∨hD +vN ≥ 0∨hD−∆vN lN +∆rN +vN ≥ 0∨ [hD +∆2vN l
2
N −2∆vN lN +

∆rN + vN ≥ 0∧ hN − uN = 0]]. The second term in the conjunction which

is non-convergent, lists all the possible initial conditions that can lead to

−vN ≤ hD and can be seen to be eventually True leaving just the first term

uN ≥ hN .

9.3.2 Two-Cell Delta-Notch Analysis in Tolque

The above exercise can be repeated for a two cell model, where there are 4 dynamic

variables n1, d1, n2 and d2, which stand for the Notch and Delta concentrations in cell 1

and 2 respectively. Due to the limitations of Qepcad, we use the numerical parameter

values courtesy Hwang et al. [155] to demonstrate our approach. In particular, we

set λN = λD = rN = rD = 1, hD = −1
2
, hN = 1

5
,∆ = 1

2
. In other words

• Cell-1 produces Delta when n1 <
1
2

and Notch when d2 >
1
5

• Cell-2 produces Delta when n2 <
1
2

and Notch when d1 >
1
5

The two-cell Delta-Notch hybrid automaton is depicted in Figure 9.2

1. Equilibrium Concentration Estimation Again, we ask if there exists some

path out of the state i where the variables change. The negation gives the

condition for the system to remain in the same continuous state forever.

State q10 (3,2): ¬{[−2n1 > −1 ∧ 5d2 < 1 ∧ −2n2 < −1 ∧ 5d1 > 1]∃U [d′1 6=

204

{vN ≡ n1, vD ≡ d1} {uN ≡ n2, uD ≡ d2}

Figure 9.2: Two-Cell Delta-Notch Hybrid Automaton

d1 ∨ n′
1 6= n1 ∨ d′2 6= d2 ∨ n′

2 6= n2]} converges to [n1 ≤ 0∧ d2 ≤ 0∧ d1− 1 =

0 ∧ n2 − 1 = 0]. Thus n∗
1 = d∗2 = 0 and d∗1 = n∗

2 = 1.

State q7 (2,3): ¬{[−2n1 < −1 ∧ 5d2 > 1 ∧ −2n2 > −1 ∧ 5d1 < 1]∃U [d′1 6=

d1 ∨ n′
1 6= n1 ∨ d′2 6= d2 ∨ n′

2 6= n2]} converges to [n2 ≤ 0∧ d1 ≤ 0∧ d2− 1 =

0 ∧ n1 − 1 = 0]. Thus n∗
2 = d∗1 = 0 and d∗2 = n∗

1 = 1.

State q15 (4,3): ¬{[−2n1 > −1 ∧ 5d2 > 1 ∧ −2n2 < −1 ∧ 5d1 > 1]∃U [d′1 6=

d1 ∨ n′
1 6= n1 ∨ d′2 6= d2 ∨ n′

2 6= n2]} converges to False, implying that in this

discrete state the variables can never be in equilibrium.

2. Are Equilibria Reversible? We can find out if the system can ever leave

an equilibrium state by asking of there is a path from its inside to its outside.

We assume a numerical value of 0.5 for ∆, the upper-bound on the continuous

time-step.

State q7 (2,3): [−2n1 > −1 ∧ 5d2 < 1 ∧ −2n2 < −1 ∧ 5d1 > 1] ∃U [−2n1 =

205

−1 ∨ 5d2 = 1 ∨ −2n2 = −1 ∨ 5d1 = 1] converges to False after 2 iterations

implying that this is an irreversible discrete state equilibrium.

State q10 (3,2): [−2n1 < −1 ∧ 5d2 > 1 ∧ −2n2 > −1 ∧ 5d1 < 1] ∃U [−2n1 =

−1 ∨ 5d2 = 1 ∨ −2n2 = −1 ∨ 5d1 = 1] also converges to False after 2

iterations implying that the equilibrium is irreversible.

State q16 (4,4): [−2n1 > −1 ∧ 5d2 > 1 ∧ −2n2 > −1 ∧ 5d1 > 1] ∃U [−2n1 =

−1 ∨ 5d2 = 1 ∨−2n2 = −1 ∨ 5d1 = 1] converges to True implying that the

two-cell Delta-Notch system will always leave this discrete state.

3. Choice Of Equilibrium Now, suppose, we wish to find out what initial con-

dition can lead to one equilibrium or the other. While we should ideally ask

what initial condition always guarantees a specific equilibrium (∀U), we com-

pute only ∃U and then check if the initial conditions overlap. This is because

Qepcad is not able to proceed beyond 2 iterations. We can “verify” that the

wrong equilibrium cannot be reached from a given initial relation between n1

and n2, and d1 and d2. When the invariants are non-overlapping, the initial

conditions that allow a path to discrete state i but not to discrete state j are

given by {True ∃U Inv i} ∧ ¬{True ∃U Inv j}.

State q7 (2,3): At iteration 2 of True ∃U [−2n1 > −1 ∧ 5d2 < 1 ∧ −2n2 <

−1∧5d1 > 1], we get: n1−1 ≤ 0∧[[2n1−5d1 ≤ 0∧5d2−1 ≤ 0∧8n2−5d2−3 ≥

0 ∧ n2 + n1 − 1 = 0] ∨ [8n1 − 5d1 − 3 ≤ 0 ∧ 4d2 + d1 − 1 = 0 ∧ 2n2 − 1 ≥

0 ∧ 8n2 + 5d1 − 5 ≥ 0] ∨ [5d1 − 1 ≥ 0 ∧ 2n1 − 5d1 ≤ 0 ∧ 5d2 + 2n1 − 2 ≤

0∧ 2n2− 1 ≥ 0]∨ [5d1− 1 ≥ 0∧ 2n1− 1 ≤ 0∧ 5d2− 1 ≤ 0∧ 8n2− 5d2− 3 ≥

0] ∨ [2n1 − 1 ≤ 0 ∧ 5d2 − 1 ≤ 0 ∧ 8n2 − 5d2 − 3 ≥ 0 ∧ 8n2 + 5d1 − 5 ≥

0]∨ [2n1 − 5d1 ≤ 0∧ 5d2 − 1 ≤ 0 ∧ 2n2 − 1 ≥ 0∧ 8n2 + 5d1− 5 ≥ 0]] ≡ f7.

206

Iteration 1 says “to get inside the state, you must first reach the border”,

while iteration 2 then lists the different states from where one could reach

those bordering values.

State q10 (3,2): At iteration 2 of True ∃U [−2n1 < −1 ∧ 5d2 > 1 ∧ −2n2 >

−1 ∧ 5d1 < 1], we get: n2 − 1 ≤ 0 ∧ [[2n1 − 1 ≥ 0 ∧ 5d2 + 8n1 − 5 ≥

0 ∧ d2 + 4d1 − 1 = 0 ∧ 2n2 + 5d1 − 2 ≤ 0] ∨ [2n1 − 1 < 0 ∧ 8n1 − 5d1 − 3 ≥

0∧5d2 +8n1−5 ≥ 0∧n2 +n1−1 = 0]∨ [8n1−5d1−3 ≥ 0∧5d2 +8n1−5 <

0∧ 5d2 +2n1− 2 ≥ 0∧n2 +n1− 1 = 0]∨ [2n1− 1 ≥ 0∧ 5d2− 1 ≥ 0∧ 2n2 +

5d1−2 ≤ 0∧n2 +n1−1 < 0]∨ [5d1−1 ≤ 0∧2n1−1 ≥ 0∧5d2 +8n1−5 ≥

0∧2n2−5d2 ≤ 0]∨ [5d1−1 ≤ 0∧2n1−1 ≥ 0∧5d2 +8n1−5 ≥ 0∧2n2−1 ≤

0]∨ [8n1−5d1−3 ≥ 0∧5d2−1 ≥ 0∧2n2+5d1−2 ≤ 0∧2n2−1 ≤ 0]] ≡ f10.

State q7 and not State q10: The initial conditions that lead only to q7 and

not q10 are thus given by f7∧¬f10 = n1−1 ≤ 0∧ [[2n1−5d1 ≤ 0∧5d2−1 <

0 ∧ 8n2 − 5d2 − 3 ≥ 0 ∧ n2 + n1 − 1 = 0] ∨ [2n1 − 1 ≤ 0 ∧ 5d2 − 1 ≤

0∧ 8n2− 5d2− 3 ≥ 0∧ 2n2 + 5d1− 2 > 0]∨ [2n1 − 1 ≤ 0∧ 5d2 + 2n1 − 2 ≤

0∧4d2+d1−1 = 0∧n2+n1−1 > 0]∨[2n1−5d1 ≤ 0∧5d2−1 ≤ 0∧n2+n1−1 >

0∧2n2−1 ≥ 0]∨[2n1−1 ≤ 0∧5d2−1 < 0∧8n2−5d2−3 ≥ 0∧8n2+5d1−5 ≥

0] ∨ [8n1 − 5d1 − 3 < 0 ∧ 4d2 + d1 − 1 = 0 ∧ 2n2 − 1 ≥ 0 ∧ 8n2 + 5d1 − 5 ≥

0]∨ [5d1−1 ≥ 0∧2n1−5d1 < 0∧5d2+2n1−2 ≤ 0∧2n2−1 ≥ 0]∨ [5d1−1 ≥

0∧ 2n1− 1 ≤ 0∧ 5d2− 1 < 0∧ 8n2− 5d2− 3 ≥ 0]∨ [2n1− 1 < 0∧ 5d2− 1 ≤

0 ∧ 8n2 − 5d2 − 3 ≥ 0 ∧ 8n2 + 5d1 − 5 ≥ 0]]

Since we have assumed no upper bound on the initial values and since

we have been able to compute only two iterations, this formula does not

evaluate to True given the correct initial partition n1 < n2 ∧ d1 > d2.

However, when Qepcad simplifies the above formula assuming that n1 >

207

n2 ∧ d1 < d2, it evaluates to False.

State q10 and not State q7 Similarly, ¬f7 ∧ f10 = n2 − 1 ≤ 0∧ [[5d1 − 1 ≤

0∧ 8n1− 5d1− 3 > 0∧ 5d2 + 8n1 − 5 ≥ 0∧ 2n2 − 1 ≤ 0]∨ [8n1 − 5d1− 3 >

0∧5d2−1 ≥ 0∧n2+n1−1 = 0∧2n2−5d2 = 0]∨[8n1−5d1−3 ≥ 0∧5d2−1 ≥

0 ∧ 2n2 − 1 < 0 ∧ 2n2 + 5d1 − 2 ≤ 0] ∨ [2n1 − 1 ≥ 0 ∧ 5d2 + 8n1 − 5 >

0 ∧ d2 + 4d1 − 1 = 0 ∧ 2n2 + 5d1 − 2 ≤ 0] ∨ [2n1 − 1 ≥ 0 ∧ 5d2 + 8n1 − 5 ≥

0∧d2+4d1−1 = 0∧n2+n1−1 < 0]∨[2n1−1 ≥ 0∧5d2−1 ≥ 0∧n2+n1−1 <

0∧ 2n2 + 5d1− 2 ≤ 0]∨ [8n1 − 5d1− 3 ≥ 0∧ 2n1− 1 < 0∧ 5d2 + 2n1− 2 >

0∧n2 +n1− 1 = 0]∨ [5d1− 1 ≤ 0∧ 2n1− 1 ≥ 0∧ 5d2− 1 > 0∧ 2n2− 5d2 ≤

0] ∨ [8n1 − 5d1 − 3 ≥ 0 ∧ 5d2 − 1 ≥ 0 ∧ 2n2 − 1 ≤ 0 ∧ 2n2 + 5d1 − 2 < 0]],

evaluates to False assuming n1 < n2∧d1 > d2. This concurs with the result

of Ghosh et al. [125].

9.3.3 Summary of other Efforts

For the sake of completeness, the series of symbolic analyses of the Delta-Notch system

conducted by Ghosh and Tomlin, which clearly outperforms Tolque, is summarized

here from [127].

One-Cell Delta-Notch Automaton

Representing Delta and Notch concentrations as x1 and x2 respectively, a three-state

abstract state space was derived:

q1 : Inv(q1) = x1 > 0 ∧ x2 + hD > 0 and q1 → q2

q2 : Inv(q2) = x1 > 0 ∧ x2 + hD = 0 and q2 → q3

q3 : Inv(q3) = x1 > 0 ∧ x2 + hD < 0 and q3 → φ : contains equilibrium

208

From backward reachability computation of the equilibrium state q3 (Reach(q3) =

q1 ∪ q2 ∪ q3), there were able to conclude that an isolated cell will adopt the “Delta”

fate over the “Notch” fate.

Two-Cell Delta-Notch Automaton

In addition to x1 and x2, in the second cell x3 and x4 are now used to denote the Delta

and Notch concentration respectively. The equilibria and their backward reachability

states were characterized thus:

1. Equilibrium 1: (x1 = 0, x2 = RN

λN
, x3 = RD

λD
, x4 = 0)

(x3−x1 ≥ 0∧x4−x2 ≤ 0∧((x3−x1 > 0∧hD +x4 ≥ 0)∨(x3−x1 > 0∧hD +x2 ≤ 0)∨(x4−x2 < 0∧hN −x3 ≥

0)∨ (x4 −x2 < 0∧hN −x1 ≤ 0)))∨ (x3 −x1 < 0∧x4 −x2 < 0∧ ((−x2 −hD < 0∧x1 −hN ≤ 0∧−x4 −hD >

0∧(1− λD
RD

(x3−x1))λN ≤ (x2

−hD
)λD)∨(−x2−hD ≤ 0∧x3−hN ≥ 0∧−x4−hD > 0∧(1− λD

RD
(x3−x1))λN ≤

(RN−λN x4

RN+λN hD
)λD))) ∨ (x3 − x1 > 0 ∧ x4 − x2 > 0 ∧ ((−x2 − hD < 0 ∧ x3 − hN > 0 ∧ x1 − hN ≤ 0 ∧ x4 − x2 ≤

−RN
λN

(1 − (x3

hN
)

λN
λD)) ∨ (x3 − hN ≥ 0 ∧−x4 − hD ≥ 0 ∧ x1 − hN < 0 ∧ x4 − x2 ≤ −RN

λN
(1 − (x1

hN
)

λN
λD)))

2. Equilibrium 2: (x1 = RD

λD
, x2 = 0, x3 = 0, x4 = RNλN)

(x3−x1 ≤ 0∧x4−x2 ≥ 0∧((x3−x1 < 0∧hD +x2 ≥ 0)∨(x3−x1 < 0∧hD +x4 ≤ 0)∨(x4−x2 > 0∧hN −x1 ≥

0)∨ (x4 − x2 > 0∧ hN − x3 ≤ 0))) ∨ (x3 − x1 < 0∧ x4 − x2 < 0∧ ((x3 − hN ≤ 0∧−x4 − hD < 0∧ x1 − hN >

0∧ (1− λN
RN

(x4 −x2))λD ≤ (x1

hN
)λN)∨ (−x2 −hD ≥ 0∧x3 −hN < 0∧ x1 −hN ≥ 0∧ (1− λN

RN
(x4 −x2))λD ≤

(RD−λDx3

RD−λDhN
)λN))) ∨ (x3 − x1 > 0 ∧ x4 − x2 > 0 ∧ ((−x2 − hD ≥ 0 ∧ x3 − hN < 0 ∧ x1 − hN < 0 ∧ x3 − x1 ≤

−RD
λD

(1 − (x4

−hD
)

λD
λN)) ∨ (x3 − hN > 0 ∧ −x4 − hD ≤ 0 ∧ x1 − hN ≥ 0 ∧ x3 − x1 ≤ −RD

λD
(1 − (x2

−hD
)

λD
λN)))

Thus, they were able to prove that the two-cell system adopts cell-fate dictated by

the amplification of the initial differences in Delta and Notch concentrations, except

when certain semi-algebraic relations hold between the various symbolic parameters.

209

Four-Cell Delta-Notch Automaton

Adding four more variables, x1, · · · , x8 now represent the Delta and Notch concen-

trations in the four cells, which now have three possible equilibria:

1. Equilibrium 1: (x1 = 0, x2 = RN

λN
, x3 = 0, x4 = RN

λN
, x5 = RD

λD
, x6 = 0, x7 =

0, x8 = RN

λN
)

(hD + x6 ≤ 0 ∧ hD + x4 ≥ 0 ∧ hD + x2 ≥ 0 ∧ hD + x8 ≥ 0 ∧ hN − x7 − x5 − x1 ≤ 0 ∧ hN − x5 − x3 ≤

0∧hN −x7−x3−x1 ≥ 0∧((x5 −x3 > 0∧x7 −x3 +x1 ≤ 0∧hD +x4 ≤ 0∧hN −x7−x3−x1 > 0)∨(x5 −x3 >

0∧x7−x3+x1 ≤ 0∧hD +x6 ≥ 0∧hN −x7−x3−x1 > 0)∨(x5−x3 > 0∧x7−x3+x1 ≤ 0∧hN −x7−x5−x1 ≥

0) ∨ (x5 − x3 > 0 ∧ x7 − x3 + x1 ≤ 0 ∧ hD + x8 ≤ 0 ∧ hN − x7 − x3 − x1 > 0) ∨ (hD + x2 ≤ 0 ∧ hD + x8 >

0 ∧ hN − x7 − x3 − x1 > 0) ∨ (x7 − x3 + x1 ≥ 0 ∧ x7 − x5 + x1 < 0 ∧ hD + x4 ≤ 0 ∧ hN − x7 − x3 − x1 >

0) ∨ (x7 − x3 + x1 ≥ 0 ∧ x7 − x5 + x1 < 0 ∧ hD + x6 ≥ 0 ∧ hN − x7 − x3 − x1 > 0) ∨ (x7 − x3 + x1 ≥

0 ∧ x7 − x5 + x1 < 0 ∧ hN − x5 − x3 ≥ 0) ∨ (hD + x6 < 0 ∧ hD + x4 > 0 ∧ hD + x2 > 0 ∧ hD + x8 >

0∧ hN − x7 − x3 − x1 ≤ 0)∨ (x7 − x3 + x1 ≥ 0∧ x7 − x5 + x1 < 0∧ hD + x8 ≤ 0∧ hN − x7 − x3 − x1 > 0)))

2. Equilibrium 2: (x1 = 0, x2 = RN

λN
, x3 = RD

λD
, x4 = 0, x5 = 0, x6 = RN

λN
, x7 =

0, x8 = RN

λN
)

(hD + x4 ≤ 0 ∧ hD + x6 ≥ 0 ∧ hD + x2 ≥ 0 ∧ hD + x8 ≥ 0 ∧ hN − x7 − x5 − x1 ≥ 0 ∧ hN − x5 − x3 ≤

0∧hN −x7−x3−x1 ≤ 0∧((x5 −x3 < 0∧x7 −x5 +x1 ≤ 0∧hD +x6 ≤ 0∧hN −x7−x5−x1 > 0)∨(x5 −x3 <

0∧x7−x5+x1 ≤ 0∧hD +x4 ≥ 0∧hN −x7−x5−x1 > 0)∨(x5−x3 < 0∧x7−x5+x1 ≤ 0∧hN −x7−x3−x1 ≥

0) ∨ (x5 − x3 < 0 ∧ x7 − x5 + x1 ≤ 0 ∧ hD + x8 ≤ 0 ∧ hN − x7 − x5 − x1 > 0) ∨ (hD + x4 < 0 ∧ hD + x2 ≤

0∧hD +x8 > 0∧hN −x7−x5−x1 > 0)∨(x7−x5+x1 ≥ 0∧x7−x3+x1 < 0∧hD +x6 ≤ 0∧hN −x7−x5−x1 >

0)∨(x7−x5+x1 ≥ 0∧x7−x3+x1 < 0∧hD +x4 ≥ 0∧hN −x7−x5−x1 > 0)∨(x7−x5+x1 ≥ 0∧x7−x3+x1 <

0 ∧ hN − x5 − x3 ≥ 0) ∨ (hD + x4 < 0 ∧ hD + x6 > 0 ∧ hD + x2 > 0 ∧ hD + x8 > 0 ∧ hN − x7 − x5 − x1 ≤

0) ∨ (x7 − x5 + x1 ≥ 0 ∧ x7 − x3 + x1 < 0 ∧ hD + x8 ≤ 0 ∧ hN − x7 − x5 − x1 > 0)))

3. Equilibrium 3: (x1 = RD

λD
, x2 = 0, x3 = 0, x4 = RN

λN
, x5 = 0, x6 = RN

λN
, x7 =

210

RD

λD
, x8 = 0)

(hD +x4 ≥ 0∧hD +x6 ≥ 0∧hN −x5 −x3 ≥ 0∧hN −x7 −x5 −x1 ≤ 0∧hN −x7 −x3 −x1 ≤ 0∧ ((hD +x4 >

0 ∧ hD + x6 > 0 ∧ hD + x2 ≥ 0 ∧ hD + x8 < 0) ∨ (hD + x2 ≤ 0 ∧ hN − x5 − x3 > 0 ∧ hN − x7 − x3 − x1 ≥

0) ∨ (hD + x2 ≤ 0 ∧ hN − x5 − x3 > 0 ∧ hN − x7 − x5 − x1 ≥ 0) ∨ (hD + x4 > 0 ∧ hD + x6 > 0 ∧ hD + x2 <

0 ∧ hN − x5 − x3 ≤ 0)∨ (x7 − x3 + x1 > 0∧ x7 − x5 + x1 > 0 ∧ hD + x4 ≤ 0 ∧ hD + x8 ≤ 0 ∧ hN − x5 − x3 >

0)∨ (x7 −x3 +x1 > 0∧x7 −x5 +x1 > 0∧hD +x8 = 0∧hN −x5−x3 > 0)∨ (x7 −x3 +x1 > 0∧x7 −x5 +x1 >

0 ∧ hD + x6 ≤ 0 ∧ hD + x8 ≤ 0 ∧ hN − x5 − x3 > 0) ∨ (hD + x2 ≤ 0 ∧ hD + x8 ≥ 0 ∧ hN − x5 − x3 > 0)))

Based on this characterization, they were able to verify that the amplification of initial

variations dominates cell-fate choice even in the four-cell system. However, the results

are more complex in that the semi-algebraic relations that need to hold to guarantee

a certain equilibrium are not easily interpretable as the product of 2 two-cell systems.

The third equilibrium, where two cells adopt the Delta-fate as opposed to just one

cell, was seen to have a larger backward reachable set.

9.4 Other Examples

9.4.1 One-State Harmonic Oscillator Example

Consider a basic harmonic oscillator defined by the equation ẍ = −x. We can encode

it as a one-state hybrid system in two variables u and v where:

u = x

v = u̇(= dx/dt)

v̇ = ü = ẍ = −x = −u

211

In other words, u = x,du/dt = v,dv/dt = −u and the solution is x = Asin(t) +

Bcos(t). Using h = 1/10, the transition relation is:

10u′ − v − 10u = 0 ∧ 10v′ − 10v + u = 0

To test the system, let us start with the initial condition u = 0, v = 1. This refers

to the solution x = Asin(t). Now we ask if u ever becomes < 0, i.e., EFu < 0? We

know that after π units of time, the sinusoidal curve becomes negative and hence the

query should become true then. Indeed, after 31 iterations, t = 1/10 ∗ 31 = 3.1 < π

and result is :

u < 0∨

604861792550624708513466396499v− 11651904679516388652296236605310u < 0.

Checked against initial conditions, we get:

0 < 0 ∨ 604861792550624708513466396499< 0 ≡ False.

After the 32nd iteration, t = 1/10 ∗ 32 = 3.2 > π and result is :

u 6= 0∨

5603286754010141567161572640320v+ 117123908587714511231475832449599u 6= 0

Checked against initial conditions, we get:

0 6= 0 ∨ 5603286754010141567161572640320 6= 0 ≡ True.

9.4.2 The Repressilator Example

The repressilator is an artificial network of 6 proteins and their corresponding mRNAs

(see 3.4.4 for details). Protein-1 represses protein-2 which represses protein-3, which

in turn represses protein-1. More specifically, each protein suppresses the production

of its target mRNA. As the mRNA concentration drops, the protein levels also drop.

212

The flow equations may be expressed as:

(1 + P 2
3)(M ′

1 −M1) = ((γ −M1)(1 + P 2
3) + α)h

(1 + P 2
1)(M ′

2 −M2) = ((γ −M2)(1 + P 2
1) + α)h

(1 + P 2
2)(M ′

3 −M3) = ((γ −M3)(1 + P 2
2) + α)h

P ′
1 = P1 − β(P1 −M1)h

P ′
2 = P2 − β(P2 −M2)h

P ′
3 = P3 − β(P3 −M3)h

We further simplify our problem by assuming γ = α = 0, β = 1. The initial conditions

are: [p1 = 2]∧ [p2 = 2]∧ [p3 = 2]∧ [m1 = 2]∧ [m2 = 2]∧ [m3 = 2]. We want to check

if the concentration of p1 never drops below 1. So we ask EHp1 > 1.

The transition relation of this one state hybrid system is just their value as given

by the discretization equations:

10p2
3m

′
1+10m′

1−9m1p
2
3−γp

2
3−9m1−γ−α = 0∧10p2

1m
′
2+10m′

2−9m2p
2
1−γp

2
1−9m2−

γ−α = 0∧10p2
2m

′
3+10m′

3−9m3p
2
2−γp

2
2−9m3−γ−α = 0∧10p′1+βp1−10p1−βm1 =

0 ∧ 10p′2 + βp2 − 10p2 − βm2 = 0 ∧ 10p′3 + βp3 − 10p3 − βm3 = 0

1. At time t = 0, we check if P1(0) > 1 which is indeed true according to the initial

condition P1 = 2.

2. Evaluating query with future-length = 1 :

(∃m′
1)(∃m

′
2)(∃m

′
3)(∃p

′
1)(∃p

′
2)(∃p

′
3)[[[p

2
3m

′
1 + m′

1 − 50 = 0 ∧ p2
1m

′
2 + m′

2 − 50 =

0∧p2
2m

′
3+m′

3−50 = 0∧p′1+4p1−5m1 = 0∧p′2+4p2−5m2 = 0∧p′3+4p3−5m3 =

0] ∧ [[p′1 − 1 > 0]]]], assume = [[m1 >= 0] ∧ [m2 >= 0] ∧ [m3 >= 0] ∧ [p1 >=

0] ∧ [p2 >= 0] ∧ [p3 >= 0] ∧ [1h− 1 = 0]]

= 4p1 − 5m1 + 1 < 0

213

= [[[p1 − 1 > 0]] ∧ [4p1 − 5m1 + 1 < 0]]

Checked against initial conditions, 2− 1 = 1 > 0 ∧ 8− 10 + 1 = −1 < 0 is also

true.

3. Evaluating query with future-length = 2 :

(∃m′
1)(∃m

′
2)(∃m

′
3)(∃p

′
1)(∃p

′
2)(∃p

′
3)[[[p

2
3m

′
1 + m′

1 − 50 = 0 ∧ p2
1m

′
2 + m′

2 − 50 =

0∧p2
2m

′
3+m′

3−50 = 0∧p′1+4p1−5m1 = 0∧p′2+4p2−5m2 = 0∧p′3+4p3−5m3 =

0] ∧ [[[[p′1 − 1 > 0]] ∧ [4p′1 − 5m′
1 + 1 < 0]]]]]

= [[[p1−1 > 0]]∧[4p1−5m1+1 < 0∧16p1p
2
3−20m1p

2
3−p

2
3+16p1−20m1+249 > 0]]

Checked against initial conditions, 2− 1 = 1 > 0∧ 8− 10 + 1 = −1 < 0∧ 128−

160− 4 + 32− 40 + 249 = 205 > 0 is also true.

4. Evaluating query with future-length = 3 :

(∃m′
1)(∃m

′
2)(∃m

′
3)(∃p

′
1)(∃p

′
2)(∃p

′
3)[[−γp

2
3 − 9m1p

2
3 + 10p2

3m
′
1 − α − γ − 9m1 +

10m′
1 = 0] ∧ [−γp2

1 − 9m2p
2
1 + 10p2

1m
′
2 − α − γ − 9m2 + 10m′

2 = 0] ∧ [−γp2
2 −

9m3p
2
2 + 10p2

2m
′
3 − α − γ − 9m3 + 10m′

3 = 0] ∧ [−βm1 + βp1 − 10p1 + 10p′1 =

0]∧ [−βm2 +βp2−10p2+10p′2 = 0]∧ [−βm3+βp3−10p3+10p′3 = 0]∧ [[5p′1−1 <

0] ∨ [−βm′
1 + βp′1 − 10p′1 + 2 > 0]]].

Qepcad, because of computational limitations, cannot handle this query, and is

not able to proceed.

9.5 Discussion

Under ordinary computational settings, Qepcad failed to support fully symbolic anal-

ysis of the two-cell Delta-Notch system and other interesting examples. However, it

is to be noted that even this preliminary version of Tolque was able to support a very

uniform way of asking about a good spectrum of interesting temporal properties of

214

a biologically significant hybrid system. The performance on the harmonic oscillator

example was promising, as oscillating biochemical networks are prevalent in nature.

We are in the process of rewriting Tolque in Lisp and integrating it with Simpath-

ica[33] (see [224] for a progress report). These modifications will allow biochemical

networks to be easily represented, stored and analyzed in keeping with our “Systems

Biology” motivation. Eventually, we plan to implement our own symbolic algebra

system to work hand in hand with the different quantifier elimination, Gröbner ba-

sis and characteristic set tools that can systematically simplify the formulæ at each

fixpoint iteration. Similarly, it is hoped that we can also build upon the efforts at

parallelizing these computational algebra algorithms [254, 107, 207]. It is hoped that

the possibility of such a powerful and universal tool will engender the development

of new techniques and more efficient implementations of quantifier elimination and

other algorithms from real algebraic geometry.

215

Chapter 10

Conclusion

Summary

Systems Biology was seen to be a very broad and challenging field attempting to

hasten the understanding of life by integrating computational, mathematical, statis-

tical, AI, machine learning and temporal reasoning techniques with tradition wet-lab

experimentation. One important strand of research is modeling, simulation and anal-

ysis of biochemical pathways to evaluate mutual consistency of biological facts, to

validate or falsify hypotheses, to aid experiment design and refine existing models.

The fundamental problem in biochemical networks continues to be reasoning about

the emergent temporal properties and their modulation by external signals. The di-

rect detailed kinetic mass action based numerical analysis of biochemical networks is

intractable because of the complexity of the network in terms of the number of inter-

acting species, the number of interconnections and the different types of interactions.

More importantly, it becomes extremely difficult to reason about the system-level

properties of the entire network from the time-course analysis of its many molecular

components. A related problem of tremendous interest to the pharmaceutical indus-

216

try is the identification of mechanisms by which a biochemical network can be enticed

to shift from one equilibrium (causing ill-health, or not producing an invasion sensor,

etc.) to a target equilibrium (enhancing health, producing a protein that can detect

cancer cells, etc.). Effectively, a strategy that a new drug or therapy should try to

mimic can be discovered.

The computer science formalism Hybrid Automaton has been found to be very

useful in modeling biological systems, especially at the subcellular level in terms of

interactions of biochemical species. In this thesis, we improved our fundamental

understanding of hybrid automata. We considered hybrid dynamical systems which

are described by sets of ODEs, which govern the evolution of the system variables

with time. One common approach to understanding how the system properties vary

with time is by inspecting the answers (or the counter-examples) to temporal logic

queries like “Is a certain unfavorable property ever satisfiable?” and “Is a certain

essential property always satisfied?”. When the system description involves symbolic

parameters, deeper questions and richer answers become necessary; e.g., “For what

ranges of parameters is a certain unfavorable property never satisfiable?”, “Are there

any parameters which can guarantee that a certain essential property will always be

true?”, etc.

Our first important result was proving that the open subclass HPCD is closer to

the decidability and undecidability frontiers for the reachability query, than was pre-

viously characterized. Our most significant contribution, however, was the extension

of Fränzle’s ideas to construct the new semi-algebraic hybrid automaton subclass. It

is a substantially expansive class of hybrid automata amenable to rigorous symbolic

temporal analysis. Moreover, the fundamental mathematical machinery – real quan-

tifier elimination, handles symbolic parameters in a very natural way. In a sense,

217

we have partially answered the question: “Given the existence of the real algebraic

geometry decision procedure quantifier elimination, what is the most complex tem-

poral logic analysis one can perform?”. After going from bounded reachability to

an enhanced version of dense-time TCTL that can answer semi-algebraic queries, we

also characterized the semi-decidability properties. The intractability of reachability

was also proved in the real Turing Machine formalism. We developed many approxi-

mation strategies based on bisimulation partitioning, approximation with rectangular

grids, approximation with polytopes and time discretization. On the Systems Biol-

ogy side, we showed how the biochemistry problem description can be translated into

the dynamical systems theory format, thus making the biochemical pathway models

ready for the sort of analyses devised for semi-algebraic hybrid automata. We also

contributed by fundamentally extending techniques like Flux Balance Analysis to the

algebraic domain. On the software side, we were able to provide a glimpse into what

could be eventually possible, by presenting the proof-of-concept tool Tolque. The

double-exponential complexity of quantifier elimination continues to be the compu-

tational bottleneck of this approach.

Future Work

This thesis has opened up several interesting avenues for research. First of all, how

can the new characterization of the HPCD class lead to better semi-decidable algo-

rithms? Do chaotic dynamical systems have a say in the decidability of this class?

The next and more fundamental question is: have we indeed characterized the most

expansive temporal decision procedure based on real quantifier elimination? Can

the semi-algebraic class be extended? What extensions are possible that will still

yield a semi-decidable procedure? The characterization of decidable subclasses is an

218

open problem. What are biochemically sound assumptions we can use to simplify the

possible dynamics of semi-algebraic hybrid automata? Similarly, there do not exist

efficient methods that convert a one-state dynamical system into a semi-algebraic hy-

brid automaton. Bisimulation partitioning may be one approach, but are there more

general approaches that also utilize the properties valid for biochemical systems? On

the software side, the obvious step is to integrate all available quantifier elimination

tools, develop the necessary parallelizable algorithms, and utilize a cluster of machines

of substantial power to see if practically useful results are extractable. Here again,

we will face questions such as: What approximation schemes will work in practice?

When is there a net gain?

Characterizing recursive paths and system invariants, extending concepts from

BMC to the algebraic domain, deriving assumptions that will guarantee fixpoint con-

vergence and extension of Cousot’s widening technique from polyhedra to the more

general semi-algebraic sets (to hasten convergence by over-approximation) are some

of the many issues waiting to be explored. The analysis of perturbed and robust

systems also warrants investigation. The semi-decidability results for the TCTL op-

erators and the introduction of the Blum-Shub-Smale model are expected to spark

further investigations of the relations between dynamical systems, topology and com-

plexity. To demonstrate the generality of the AAMC approach, the techniques need

to be extended beyond TCTL model-checking to dense-time LTL. The enhancement

achievable by allowing non-linear (but polynomial) expressions in the temporal queries

that can involve the values before and after one step of the hybrid system needs to be

captured semantically and formally, possibly leading to a definition of a new subclass

of temporal logic.

As we enlarge the scope of the biological models by considering metabolic pro-

219

cesses, signal transduction processes and subcellular biochemical processes that are

specific to locations and transportation between cellular compartments, the chal-

lenges to the algorithmic complexity and approximability deepen the need for better

algorithmic algebraic techniques. In the process, we are also forced to explore the

connection among constructive approaches for differential algebra, commutative alge-

bra, Tarski-algebra, etc. It is hoped that all these ideas will coalesce into a powerful

algebraic tool for the better analysis of biochemical systems. Although the state of

the art of algebraic hybrid systems model-checking can only be compared to that of

Boolean finite-state model-checking in the early 80s, we believe that the approach will

make quick and important strides, and yield deep insights in biological areas before

the end of this decade.

220

Appendix

221

A. Detailed Proofs for Chapter 4

Lemma 4.3.1 A 1-dim PAM is bounded.

Proof Consider the 1-dim PAM f(x) = aix + bi , x ∈ Ii(≡ [li, ri)) , i =

1, 2, · · · , n. Since it is a well-defined function, each interval has a post image which

has to be covered by other intervals. Thus, if the n intervals are arranged in ascend-

ing order on the real line, l1 is the smallest value that any trajectory of the PAM can

ever reach. Similarly, rn is the largest value that any trajectory can ever tend to. By

definition, all intervals Ii have rational end points, hence ±∞ are excluded. 2

Lemma 4.3.2 Every 1-dim PAM is equivalent to a 1-dim “positive” PAM where

all intervals are positive.

Proof Consider a 1-dim PAM f(x) = aix+bi , x ∈ Ii(≡ [li, ri)) , i = 1, 2, · · · , n.

Shifting the axis by D units, x′ = x+D and hence f ′(x′) = ai(x
′−D)+ bi +D , x ∈

I ′i(≡ [li + D, ri + D)) i.e., a′i = ai and b′i = D(1− ai) + bi. By picking D > |l1|, all

intervals become positive in this new PAM. 2

Theorem 4.3.3 A 1-dim PAM can be simulated by a 2-dim HPCD with compar-

ative guards, 3 different flows +1,−1, 0 and no resets.

Proof Consider a 1-dim PAM f(x) = aix + bi , x ∈ Ii , i = 1, 2, · · · , n. Once

again, we use the “taking-turns” idea. Unlike the previous case, we cannot make a

variable start at bi as we do not have resets. So, we now have p evolving from xn−1

to xn+1, while q remains stationary at xn. The guard condition p = aiq + bi makes

the HA jump to the next state at the correct time. Since xn+1 could be greater or less

222

than xn−1, the flow will need to be +1 or −1 respectively. Hence, each P (and Q)

state now corresponds to two states: P+ and P−.

We will construct a HPCD with 4n states of the form P±
j and Q±

j that simulates

this PAM. Just as before, p and q will again take turns simulating x i.e., p2i,2i+1 = x2i

and q2i±1,2i+1±1 = x2i±1, at the end of each discrete transition.

Consider a state P±
j defined as follows:

• Since p0 ∈ Ij, q flows from q0(∈ some Ii) to q′ = ajp0 + bj.

• q’s flow is q̇ = +1 since q′ > q0 in P+
j . Simplifying ajp0 + bj > q0 yields

q0 < (bj + ajbi)/(1 − aiaj). In P−
j , q′ > q0 and q̇ = −1. These must be

incorporated into the guard of transitions leading to this state.

• p remains stationary i.e., ṗ = 0 in this state, in order to ensure that q flows to

the correct amount.

• The guard for jumping out of this state is that q has reached q′ i.e., q = ajp0 +

bj = ajp+ bj

• The transitions out of this state are of the form P+
j → Q±

k only. In the next

state, q stays fixed at the value computed in this state, while p flows to the next

iterant of x. In particular, the guard for Q+
k will be q = ajp+ bj ∧ q ∈ Ik ∧ p <

(bk + akbj)/(1− ajak) (The last term will be p ≥ if we are jumping to Q−
k).

• The Q±
j states are defined exactly as above, with p and q interchanged.

Clearly, the above HPCD without resets simulates the given PAM. In particular, the

reachability query “ Is xf reachable from x0” is true iff (p = xf , q = xf−1) or (p =

xf−1, q = xf) is reachable from (p = x0, q = x1), where xf−1 is some pre-image of xf .

The proof follows from the fact that if (xf , xf−1) is reachable, then:

223

• xf is the fixed value and xf−1 is the changing value, implying that xf is indeed

reachable.

• xf is an intermediate changing value, while xf−1 is the fixed value. In this case

xf−1 is reachable. But this guarantees that xf can be reached in one more step,

since post-images are unique. Hence, in this case also, xf is reachable.

Note that there can be at most n pre-images of the target xf , and hence we have n

reachability queries that need to be asked. A factor of two crops up, because we never

know if xf requires odd or even iterations to reach (so we do not know if p is going

to reach it, or if q is). 2

Theorem 4.3.4 A 1-dim PAM can be simulated by an initialized PCD with com-

parative guards.

Proof After a discrete transition, the variable carrying the current iterate of x has

to flow at the same rate as it did in the previous state. If it did not, the “initialized”

requirement would force it to be reset to a constant during the transition. So, we need

2n2 states of the form Pij and Qij to simulate the PAM. Using the same trick as

before, we ensure that p2i,2i+1 = Lp2i,2i+1
+ x2i while q2i±1,2i+1±1 = Lq2i±1,2i+1±1

+ x2i±1

at the end of each discrete transition. In state Pij:

• p flows from p0 to p0 + aip0 with ṗ = ai

• q flows from bj to ajp0 + bj with q̇ = aj

• Discrete transitions are of the form Pij → Qjk with guard {(1 + ai)(q − Lj) −

aj(p− Li)− bj(1 + ai) = 0} ∧ q ∈ Ik and reset q′ = q ∧ p′ = bk + Lk. q has its

base at Lj in the next state, while p has its base already corrected to Lk. Clearly,

only variables whose flow changes are initialized. 2

224

Theorem 4.3.5 A 1-dim PAM can be simulated by a 2-dim HPCD with rectangular

guards, i.e., p = 0 ∧ q ∈ Ii instead of ax+ by + c = 0 ∧ q ∈ Ii ∧ p ∈ Ij with constant

or identity resets of the form q′ = aj ∧ p′ = p (rather than affine resets).

Proof The following HPCD with 2n states of the form Pj and Qj simulates the

equivalent positive PAM. The state Pj is defined as follows, with the other states

defined symmetrically:

• While entering this discrete state, p has the current value of x.

• p flows from p0 to 0 with ẋ = −1

• q flows from bj to bj + p0aj with q̇ = aj

• The discrete state transitions are of the form Pj → Qk with guard p = 0∧ q > 0

and reset p′ = bk ∧ q′ = q. Since q is not reset even though its flow changes in

the next state, this HA is not an “initialized” automata. 2

Theorem 4.3.6 A 1-dim bounded PAM can be simulated by a PCD with just clocks

and translation resets when comparative guards are allowed.

Proof The following HPCD with 2n states of the form Pj and Qj simulates the

equivalent positive PAM. The trick is exactly as before: associate a number LPi/Qi

with each discrete state that is separated from every such number by at least L in the

positive and negative directions. The state Pj is defined as follows:

• p flows from LPj
+ p0 to LPj

+ p0 + ajp0 + bj with ṗ = +1

• q flows from LPj
+ 0 to LPj

+ ajp0 + bj with q̇ = +1

225

• The discrete transitions will be of the form Pj → Qk with guard ajp−(1+aj)q+

bj + Lj = 0 ∧ q ∈ Ik and reset p′ = 0 + Lk ∧ q′ = q − Lj + Lk 2

Theorem 4.3.7 A 1-dim PAM can be simulated by a 2-dim HPCD with the simple

reset (x′, y′) = (0, y) or (x, 0) (i.e., one variable is not reset while the other is reset

to 0) and all flows being +1, as long as comparative guards are allowed.

Proof The following HPCD with 2n states of the form Pj and Qj simulates the

equivalent positive PAM. p2i,2i+1 = x2i while q2i±1,2i+1±1 = x2i±1 at the end of each

discrete transition. The state Pj is defined as follows:

• p flows from p0 to p0 + ajp0 + bj with ṗ = +1

• q flows from 0 to ajp0 + bj with q̇ = +1

• The discrete transitions will be of the form Pj → Qk with guard ajp−(1+aj)q+

bj = 0 ∧ q ∈ Ik and reset p′ = 0 ∧ q′ = q 2

Theorem 4.3.9 A 1-dim PAM can be simulated by a 2-dim HPCD without com-

parative guards or affine resets using origin dependent flows.

Proof The following HPCD with 2n states of the form Pj and Qj simulates the

equivalent positive PAM. The state Pj is defined as follows, with other states defined

symmetrically:

• p flows from p0 to 0 with ṗ = −1

• q flows from 0 to ajp0 + bj with q̇ = aj + bj/p0

• Discrete state transitions are of the form Pj → Qk with guard being p = 0∧ q ∈

Ik ∧ q > 0 and no resets 2

226

Theorem 4.4.2 Reachability over HPCDs with zeno-paths (HPCDzeno) is unde-

cidable.

Proof Given an MMM with s states (program-lines) q1, q2, · · · , qs and two coun-

ters m and n, we construct the HPCD Hs
M with two variables x and y as follows:

• A discrete state li (with an associated integer value i) corresponds to the program-

state qi of M

• The value of the counters is captured in state qi as x = i + 2−(m+1) and y =

i+2−(n+1). This bounds the possible values of {x, y} in li to {(i, i+ 1
2
], (i, i+ 1

2
)}

effectively making the rectangles corresponding to the different discrete states

bounded and non-overlapping (not necessary)

• MM computations:

– (qi : m + +, goto qj) corresponds to a transition from li to lj with reset

x′ = (x− i)1
2

+ j

– (qi : m − −, goto qj) corresponds to a transition from li to lj with reset

x′ = (x− i)2 + j

– (qi : If m == 0 goto qj else goto qk) corresponds to a transition from li to

the state lj with guard x = i+ 1
2

and reset x′ = x− i+ j, and a transition

to the state lk with guard x < i+ 1
2

and reset x′ = x− i+ k

The operations on n can be obtained by substituting x with y in the transforma-

tions above.

Clearly the HPCD Hs
M simulates the given (and hence every) 2-counter MM M.

Since reachability is undecidable for the MM, it has to be undecidable for the HPCD

227

as well (if not, an “undecidable” MM can be converted to a HPCD, which can then

be “decided”). 2 Alternate Construction We can also construct a 1-discrete-

state HPCD H1
M where the value of the counters at line li of the MM is captured as

x = i+2−(m+1) and y = i+ 2−(n+1). This bounds the possible values of {x, y} in li to

{(i, i+ 1
2
], (i, i+ 1

2
)} effectively storing the value of the next state (program-line) i in

the value of x (and y).

• The guards are used to find out which instruction of the 2-counter machine we

need to execute next, while the computations are trivially performed using the

resets.

– (qi : m + +, goto qj) corresponds to the self-loop with guard i < x ≤ i+ 1
2

and reset x′ = (x− i)1
2

+ j

– (qi : m−−, goto qj) corresponds to the self-loop with guard i < x ≤ i+ 1
2

and reset x′ = (x− i)2 + j

– (qi : If m == 0 goto qj else goto qk) corresponds to two self-loops: one

with guard x = i + 1
2

and reset x′ = x − i + j, and the other with guard

x < i+ 1
2

and reset x′ = x− i+ k

(substitute y for x to get the rules for n)

Theorem 4.4.3 Reachability over HPCDs with access to the integer-check oracle

in the guards is undecidable.

Proof Given an MMM with s states (program-lines) q1, q2, · · · , qs and two coun-

ters m and n, we construct the HPCD Hs
M with variables x and y as follows:

1. HPCDfn−int

228

• A discrete state li corresponds to the program-state qi of M

• The value of the counters is captured in the variable x as 2m3n while y is a

dummy variable typically flowing from 0 to 1 in each state. Note that the

rectangles corresponding to the different discrete states are bounded (because

of y) but could possibly overlap.

• MM computations:

– (qi : m++, goto qj) corresponds the state li with ẋ = 0 and ẏ = 1, with

a transition to lj with guard y = 1 and reset x′ = 2x ∧ y′ = 0.

– (qi : m−−, goto qj) corresponds the state li with ẋ = 0 and ẏ = 1, with

a transition to lj with guard y = 1 and reset x′ = 1
2
x ∧ y′ = 0.

– (qi : If m == 0 goto qj else goto qk) requires that we check if x/2 is

an integer.

(a) State li1 has ẋ = 0 and ẏ = 1 and jumps to state li2 with guard

y = 1 and reset x′ = 1
2
x

(b) State li2 has ẋ = 0 and ẏ = 1 and jumps to state lj with guard

y = 1 ∧ integer(x) and reset x′ = 2x, and jumps to state lk with

guard y = 1 ∧ ¬integer(x) and reset x′ = 2x

The operations on n are obtained as usual by substituting y for x in the

above rules.

Clearly the HPCD Hs
M simulates the given (and hence any) 2-counter MMM.

Since reachability is undecidable for the MM, it has to be undecidable for the

HPCD as well.

2. HPCDzeno−int

The only difference is that instead of allowing a function integer(x) in the guard,

229

we allow a zeno-computation that performs this check. To check if x/2 is an

integer:

(a) State li1 has ẋ = 0 and ẏ = 1 and jumps to state li2 with guard y = 1
2
x and

reset x′ = x ∧ y′ = y

(b) State li2 has ẋ = 0 and ẏ = 0 (zeno-state) and has a self-loop with guard

y > 1 and reset y′ = y − 1. It jumps to state lk with guard y = 1 and reset

y′ = 0 ∧ x′ = x, and jumps to state lj with guard y < 1 ∧ 0 ≤ x < 1 and

reset y′ = 0 ∧ x′ = x 2

Alternate Construction Alternatively, the two counters could be stored as

x = m + 2−(1+n). m can be modified by addition and checked for 0 by x < 1. The

fractional part (2−(1+n)) can be accessed by letting y flow (ẏ = +1) from 0 until x

flows down (ẋ = −1) and becomes an integer (guard: integer(x)). Since y now holds

the fractional part, n can be modified by multiplication (y = 0⇒ n = 0). In the next

state, x can flow (ẋ = +1) until y becomes 0 (ẏ = −1).

Lemma 4.5.1 1-dim PAMs that can check if a given number x can be expressed

as p−i where p is a given prime number and i is an unknown positive integer can

simulate a MM.

Proof The idea is to encode the two counters m and n, and the line-number (MM

instruction) l in one real number as x = l + 2−m3−n. Thus when x lies in the range

Il ≡ (l, l + 1], the i-th instruction of the MM needs to be executed. Thus the MM

instructions can be encoded as follows:

• (qi : m+ +, goto qj) corresponds to x′ = (x− i)1
2

+ j, x ∈ Ii

230

• (qi : m−−, goto qj) corresponds to x′ = (x− i)2 + j, x ∈ Ii

• (qi : If m == 0 goto qj else goto qk) corresponds to x′ = x−i+j, x ∈ Ii∧x−l =

3−n and to x′ = x− i+ k, x ∈ Ii ∧ x− l 6= 3−n
2

Theorem 4.5.2 Reachability is decidable for 1-dim oPAMs.

Proof We just have to show how we can verify the reachability query after the par-

titioning algorithm converges. After convergence, we will be left with several “interval-

node-paths” of the form Pi → Pi+1 · · · → Pj → Pj+1 · · · → Pj i.e., a cycle of interval-

nodes possibly preceded by a linear path of interval-nodes. All these interval-node-

paths will clearly be non-overlapping. If the given x0 and xf do not lie on the same

interval-node-path, then xf is unreachable from x0. Otherwise, we just numerically

iterate from x0 until xf is reached. If this does not happen in 2k steps where k is

the length of the interval path containing x0, we can conclude that xf is unreachable

using Lemma 3 above. Hence, xf is reachable iff it is encountered on this 2k-long

path starting at x0. 2

Theorem 4.6.1 A 1-dim PAM is decidable if its PCD-Graph is planar.

Proof A discrete reset operation can be interpreted as a continuous flow operation

if we can connect the starting and initial values by a sequence of convex regions with

constant flow (i.e., a series of PCD states). If we perform this transformation for all

the resets in the system, we get a 2-dim PCD system that simulates the original 1-dim

PAM. This 2-dim PAM is decidable for the reachability query [201]. However, since

the invariants corresponding to the different states cannot overlap, we must be able

to arrange them on a plane without any intersections. Hence the original reset lines

231

have to be planar for the 1-dim PAM to be decidable. While the circular arrangement

captures the fact that the order of the output ports cannot be changed, the central node

prevents the interiors of the different states from overlapping. 2

B. Detailed Proofs for Chapter 7

Theorem 7.2.1 The standard bisimulation partitions are computable for semi-

algebraic hybrid automata.

Proof Each state s (source) needs to be split into two states sd and sd̄ depending

on whether or not the guard of the transition to each d (destination) can ever be

satisfied. Since real quantifier elimination is decidable [276, 151], these partitions

can be computed thus: Inv sd
(X) ≡ ∃h,X ′ 〈s,X〉

h
−→
C
〈s,X ′〉 ∧ Guard s,d(X

′) and

Inv sd̄
(X) ≡ Inv s(X) ∧ ¬Inv sd

(X).

Theorem 7.2.2 There are only a finite number of 1-to-1 coupled linear maps pos-

sible between two sets with finite axes of symmetry.

Proof Consider two sets S1 and S2 between which onto linear maps exist. Maps

of the form x′ = Σaixi+a0 correspond to a rotation, stretch and shift of the coordinate

axes. In other words, S2 has to be a stretched, rotated and shifted image of S1 for

such an onto map to exist. There are 2sl maps possible because of the sl axes of linear

symmetry, on each of the sr axes of rotational symmetry. Hence the total number of

coupled linear onto maps is sr2
sl. 2

Corollary 7.2.1 Given a cycle of n d-dimensional sets with sl axes of linear sym-

metry and sr axes of rotational symmetry each, where each set maps exactly onto its

232

successor, the number of unique successors of any point is at most nsr2
sl.

Proof Let m(= sr2
sl) be the number of possible onto maps between S1 and S2.

Let x1 ∈ S1 map to one of y1, · · · , ym ∈ S2. Let y1 map to one of x1, · · · , xm ∈ S1

(x1 has to appear because the inverse of a linear map is linear). Suppose x2 maps

to ym+1. Since linear maps are closed under composition and retain their ontoness

property, by following the linear maps from x1 → y1≤i≤m → x1≤i≤m → ym+1, we get a

new linear map that takes x1 to ym+1. However, we know from symmetry arguments

that only m linear maps can exist. This contradiction proves that no matter how

many times we compose the two given onto linear maps, we remain within the set of

2n points (for example, rectangles have 8 possible linear onto maps while cubes have

24). Extending this argument to a cycle of n states, each point can have only one of

m different successors in each of the n states. Hence, the length of the biggest cycle

is nm. 2

Theorem 7.2.3 Reachability over a semi-algebraic hybrid system with coupled lin-

ear resets and flows is decidable if the partitioning algorithm converges into states with

finite axes of symmetry.

Proof The continuous evolution can be treated as a linear map from the initial

value to the final value that first satisfies the guard. Further, time does not appear in

the equation as in deterministic systems, an initial value corresponds to a unique final

value. No restriction on the guard is necessary as we assume that there is exactly 1

successor to each discrete state. Thus a cycle of n states corresponds to a cycle of 2n

linear 1-to-1 maps with only the values before and after a reset sufficing to capture

the dynamics. If m is the maximum number of possible onto maps between any two

233

consecutive sets, the number of unique successors is ≤ 2nm. Since x0 has a finite

number of successors, if the target xf is not reached before the system begins to cycle,

we conclude exact unreachability. If xf is eventually reached, then it is indeed exactly

reachable. 2

Theorem 7.2.4 If there exist 1-to-1 monotonic maps between two sets, all points

converge to one of a finite number of fixed points or limit cycles.

Proof Let the sequence be X0, X1 = f(X0), X
′
0 = g(X1) = g(f(X0)), · · · . Since

f and g are monotonic, X will continue to move in the same direction. The process

can continue ad infinitum if X approaches a fixed point (g(f(X)) = X). The other

mathematical alternative is that it approaches a limit cycle (f(g(f(g(..(X)..)))) =

X). Monotonicty ensures progress while ontoness ensures finiteness of the number of

iterations required to reach the neighborhood of a fixed point or a limit cycle. 2

Theorem 7.2.5 The following problem is decidable, independent of the degree of

accuracy needed: Reachability over a semi-algebraic hybrid system with monotonic

resets and flows that converges upon partitioning.

Proof Just as in the linear case, the continuous flow can also be thought of as

a monotonic function from the initial value (from a reset that brought the system to

this state) to the final value (when a guard is first satisfied). Thus any cycle of n

discrete states corresponds to a cycle of 2n monotonic maps (n flow-maps and n reset

maps). Further, from the previous theorem, we know that iterative evolution along

such a cycle of exactly onto maps has to approach a fixed point or a limit cycle. We

can stop iterating when
∧

(|Xi−X ′
i| < ǫi), where X is the d-dimensional value of the

234

system variables, ǫi is the desired accuracy in the i-th dimension and X ′ is the value

after one cycle (reached the neighborhood of a fixed point) or after 2, 3, · · · , d cycles

(reached the neighborhood of a limit cycle) . The monotonic resets guarantee that this

condition will be satisfied eventually in a finite number of steps and that once this

happens, the system cannot escape out of it. 2

C. Symbols and Abbreviations

Abbreviations frequently used in the thesis have been tabulated in Table .1, while the

symbols have been defined in Table .2.

235

Table .1: Abbreviations used in this thesis
Abbreviation Expansion

AAMC Algorithmic Algebraic Model Checking

alg. algorithm

BDD Binary Decision Diagram

BMC Bounded Model Checking

CAD Cylindrical Algebraic Decomposition

defn. definition

dim dimension

FBA Flux Balance Analysis

fig. figure

HA Hybrid Automaton

HPCD Hierarchical Piecewise Constant Derivative System

IDA Independent Dynamics Automata

KMA Kinetic Mass Action

LTL Linear Temporal Logic

MCA Metabolic Control Analysis

MM Minsky Machine

ODE Ordinary Differential Equation

oPAM onto Piecewise Affine Map

PAM Piecewise Affine Map

PCD Piecewise Constant Derivative System

Qepcad Quantifier Elimination by Partial Cylindrical Algebraic Decomposition

SACoRe Semi-Algebraic Constant Reset Automata

sec. section

TCTL Timed Computation Tree Logic

TL Temporal Logic

TM Turing Machine

Tolque TempOral Logic via QUantifier Elimination

236

Table .2: Symbols used in this thesis

Symbol Expansion

F TL Eventually / Future operator

G TL Generally / Henceforth operator

U TL Until operator

⊲ TCTL One-Step Until operator

∀ for all (universal quantifier)

∃ exists (existential quantifier)

¬ Boolean not

∨ Boolean or

∧ Boolean and

∪ set union

∩ set intersection

¯ set complement

t
−→
C

Continuous evolution expression

0
−→
D

Discrete evolution expression

237

Bibliography

[1] Andrew Adams, Martin Dunstan, Hanne Gottliebsen, Tom Kelsey, Ursula Mar-

tin, and Sam Owre. Computer algebra meets automated theorem proving: In-

tegrating maple and pvs. In R.J. Boulton and P.B. Jackson, editors, TPHOLs,

volume 2152 of LNCS, page 2742. Springer-Verlag Berlin, 2001.

[2] Alan Aderem. Systems biology: Its practice and challenges. Cell, 121(4):511–

513, May 2005.

[3] Participating investigators & scientists of the Alliance for Cellular Signaling

AfCS. Overview of the alliance for cellular signaling. Nature, 420:703–706,

December 2002.

[4] E. Alm and A.P. Arkin. Biological networks. Current Opinion in Structural

Biology, 13:193–202, 2003.

[5] R.E. Altenbaugh, K.J. Kauffman, and J.S. Edwards. Suitability and utility of

computational analysis tools: characterization of erythrocyte parameter varia-

tion. In Pac Symp Biocomput., pages 104–15, 2003.

[6] R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G. J. Pappas, H. Rubin,

and J. Schug. Hybrid Modeling and Simulation of Biomolecular Networks. In

238

Hybrid Systems: Computation and Control, volume 2034 of LNCS, pages 19–32.

Springer, 2001.

[7] R. Alur, C. Courcoubetis, and D. Dill. Model-Checking for Real-Time Systems.

In International Symposium on Logic in Computer Science, 5, pages 414–425.

IEEE Computer Press, 1990.

[8] R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking in dense real-time.

Information and Computation, 104(1):2–34, 1993.

[9] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine. The Algorithmic Analysis of Hybrid

Systems. Theoretical Computer Science, 138:3–34, 1995.

[10] R. Alur, T. Dang, and F. Ivančić. Progress on Reachability Analysis of Hybrid

Systems using Predicate Abstraction. In O. Maler and A. Pnueli, editors, Sixth

International Workshop on Hybrid Systems: Computation and Control (HSCC

2003), volume 2623 of LNCS. Springer, 2003.

[11] R. Alur and D. Dill. The Theory of Timed Automata. In J. W. de Bakker,

C. Huizing, W. P. de Roever, and G. Rozenberg, editors, Real-Time: Theory in

Practice (REX Workshop), volume 600 of LNCS, pages 45–73. Springer-Verlag,

1992.

[12] R. Alur and D.L. Dill. A Theory of Timed Automata. Theoretical Computer

Science, 126:183–235, 1994.

[13] R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuality.

Journal of the ACM, 43:116–146, 1996.

239

[14] R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness.

Information and Computation, 104(1):35–77, 1993.

[15] R. Alur and T. A. Henzinger. A really temporal logic. Journal of the Association

for Computing Machinery, 41(1):181–204, 1994.

[16] R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic Symbolic Verification of

Embedded Systems. IEEE Transactions on Software Engineering, 22:181–201,

1996.

[17] R. Alur, T. A. Henzinger, and Pei-Hsin Ho. Automatic Symbolic Verification

of Embedded Systems. In IEEE Real-Time Systems Symposium, pages 2–11.

IEEE Press, 1993.

[18] Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Kumar, and Insup Lee. Modular

specification of hybrid systems in charon. In Hybrid Systems: Computation

and Control, Proceedings of the Third International Conference, volume 1790

of Lecture Notes in Computer Science, pages 6–19. Springer, 2000.

[19] K. Amonlirdviman, R. Ghosh, J.D. Axelrod, and C.J. Tomlin. A hybrid systems

approach to modeling and analyzing planar cell polarity. In Proceedings of the

3rd International Conference on Systems Biology, 2002.

[20] Hirokau Anai. On solving semidefinite programming by quantifier elimination.

In Proceedings of the American Control Conference, June 1998.

[21] Hirokazu Anai. Algebraic approach to analysis of discrete-time polynomial sys-

tems. In ECC Karlsure (Germany), 1999.

[22] Hirokazu Anai and Volker Weispfenning. Reach set computations using real

quantifier elimination, 2000.

240

[23] Hirokazu Anai and Hitoshi Yanami. Synrac: A maple-package for solving real

algebraic constraints. In International Conference on Computational Science,

volume 2657 of Lecture Notes in Computer Science, pages 828–837. Springer,

2003.

[24] Thomas Anantharaman, Venkatesh Mysore, and Bud Mishra. Fast and cheap

genome wide haplotype construction via optical mapping. In R.B. Altman, A.K.

Dunker, L. Hunter, T.A. Jung, and T.E.Klein, editors, The Pacific Symposium

on Biocomputing: PSB. World Scientific, January 2005.

[25] B.D.O. Anderson and P.J. Moylan. Structure result for nonlinear passive sys-

tems. In Int Symp Operator Theory of Networks and Syst, Montreal, Canada,

Aug 1975.

[26] A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for parametric

reasoning about counter and clock systems. In Computer Aided Verification,

volume 1855. SpringerVerlag Heidelberg, Germany, 2000.

[27] A. Annichini, A. Bouajjani, and M. Sighireanu. Trex: a tool for reachability

analysis of complex systems. In Computer Aided Verification, volume 2102.

SpringerVerlag Heidelberg, Germany, 2001.

[28] M. Antoniotti, P.E. Barbano, W. Casey, J.-W. Feng, N. Ugel, and B. Mishra.

Multiple biological model classification: From system biology to synthetic biol-

ogy. BioConcur’04, 2nd Workshop on Concurrent Models in Molecular Biology,

The Royal Society, London, Transactions on Computational Systems Biology,

2005.

[29] M. Antoniotti, B. Mishra, C. Piazza, A. Policriti, and M. Simeoni. Modelling

241

cellular behavior with hybrid automata: Bisimulation and collapsing. In Inter-

national workshop on Computational Methods in Systems Biology, CMSB’03,

(Ed. C. Priami), volume 2602 of Lecture Notes in Computer Science, pages

57–74. Springer-Verlag, 2003.

[30] M. Antoniotti, B. Mishra, C. Piazza, A. Policriti, and M. Simeoni. Taming the

complexity of biochemical models through bisimulation and collapsing: Theory

and practice. Theoretical Computer Science, 325(1):45–67, 2004.

[31] M. Antoniotti, F. C. Park, A. Policriti, N. Ugel, and B. Mishra. Foundations

of a Query and Simalation System for the Modeling of Biochemical Processes.

In Proceedings of the Pacific Symposium on Biocomputing 2003 (PSB 2003),

January 2003.

[32] M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. XS-systems: eXtended S-

Systems and Algebraic Differential Automata for Modeling Cellular Behavior.

In Proceedigs of the International Confernce on High Performance Computing,

HiPC 2002, Bangalore, India, December 2002.

[33] M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Reasoning about Biochem-

ical Processes. Cell Biochemistry and Biophysics, 38:271–286, 2003.

[34] E. Asarin and A. Bouajjani. Perturbed turing machines and hybrid systems.

In LICS, 2001.

[35] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate Reachability

Analysis of Piecewise-linear Dynamical Systems. In Third International Work-

shop on Hybrid Systems: Computation and Control (HSCC 2000), volume 1790

of LNCS, pages 21–31. Springer-Verlag, 2000.

242

[36] E. Asarin, T. Dang, and O. Maler. d/dt: a Verification Tool for Hybrid Systems.

In Proceedings of the 40th IEEE Conference on Decision and Control. IEEE,

December 2001.

[37] E. Asarin, T. Dang, O. Maler, and O. Bournez. Approximate Reachability

Analysis of Piecewise-Linear Dynamical Systems. In B. Krogh and N. Lynch,

editors, Hybrid Systems: Computation and Control, volume 1790 of LNCS,

pages 20–31. Springer, 2000.

[38] E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical systems

having piecewise-constant derivatives. Theoretical Computer Science, 138:35–

65, 1995.

[39] E. Asarin and G. Schneider. Widening the boundary between decidable and

undecidable hybrid systems. In CONCUR’2002, Brno, Czech Republic, volume

2421 of LNCS, pages 193–208. Springer-Verlag, August 2002.

[40] E. Asarin, G. Schneider, and S. Yovine. On the decidability of the reachability

problem for planar differential inclusions. In In: Hybrid Systems: Computation

and Control, pages 89–104. LNCS 2034, March 2001.

[41] Eugene Asarin, Thao Dang, and Oded Maler. The d/dt tool for verification of

hybrid systems. In D. Brinksma and K. G. Larsen, editors, CAV, volume 2404

of LNCS, page 365370. Springer-Verlag Berlin, 2002.

[42] A.R. Asthagiri and D.A. Lauffenburger. Bioengineering models of cell signaling.

Annu Rev Biomed Eng., 2:31–53, 2000.

[43] George S. Avrunin. Symbolic model checking using algebraic geometry. In Ra-

jeev Alur and Thomas A. Henzinger, editors, Computer Aided Verification, 8th

243

International Conference, volume 1102, pages 26–37. Springer-Verlag, August

1996.

[44] Thomas Ball and Sriram K. Rajamani. The slam project: Debugging system

software via static analysis. In POPL’02, pages 1–3, January 2002.

[45] P. Barbano, M. Spivak, J. Feng, M. Antoniotti, and B. Mishra. A coherent

framework for multi-resolution analysis of biological networks with memory:

Ras pathway, cell cycle and immune system. Proc. National Academy of Science

U S A, 102(18):6245–6250, 2005.

[46] Michael P. Barnett. Computer algebra in the life sciences. SIGSAM Bull.,

36(4):5–32, 2002.

[47] M.P. Barnett, J.F. Capitani, J. Gathen, and J. Gerhard. Symbolic calculation

in chemistry: Selected examples. International Journal of Quantum Chemistry,

100:80–104, 2004.

[48] Clark Barrett, Sergey Berezin, Igor Shikanian, Marsha Chechik, Arie Gurfinkel,

and David L. Dill. A practical approach to partial functions in CVC Lite. In

PDPAR’04 Workshop, Cork, Ireland, July 2004.

[49] Saugata Basu. New results on quantifier elimination over real closed fields and

applications to constraint databases. Journal of the ACM, 46(4):537–555, 1999.

[50] Saugata Basu, Richard Pollack, and Marie-Francoise Roy. On the combinatorial

and algebraic complexity of quantifier elimination. In IEEE Symposium on

Foundations of Computer Science, pages 632–641, 1994.

[51] Saugata Basu, Richard Pollack, and Marie-Franoise Roy. Computing roadmaps

of semi-algebraic sets on a variety (extended abstract). In FoCM ’97: Selected

244

papers of a conference on Foundations of computational mathematics, pages

1–15, New York, NY, USA, 1997. Springer-Verlag New York, Inc.

[52] G. Batt, H. de Jong, J. Geiselmann, and M. Page. Qualitative analysis of genetic

regulatory networks : A model-checking approach. In B. Bredeweg, P. Salles

(eds.), Working Notes of Seventeenth International Workshop on Qualitative

Reasoning, QR-03, pages 31–38, 2003.

[53] Andreas D. Baxevanis. The molecular biology database collection: 2003 update.

Nucleic Acids Res., 31(1):1–12, Jan 2003.

[54] Mustafa Bayram. Computer algebra approaches to enzyme kinetics. Ph.D.

Thesis, School of Mathematical Sciences, University of Bath, England, 1993.

[55] Mustafa Bayram and Ercan Celik. Simultaneous solution of polynomial equa-

tions. Applied Mathematics and Computation, 133:533–538, 2002.

[56] Daniel A. Beard, Shou dan Liang, and Hong Qian. Energy balance for analysis

of complex metabolic networks. Biophysical Journal, 83:79–86, July 2002.

[57] Bernd Becker, Markus Behle, Fritz Eisenbrand, Martin Fraenzle, Marc Herb-

stritt, Christian Herde, Joerg Hoffmann, Daniel Kroening, Bernhard Nebel, Ilia

Polian, and Ralf Wimmer. Bounded model checking and inductive verification

of hybrid discrete-continuous systems. In GI/ITG/GMM Workshop, 2004.

[58] G. Behrmann, A. David, K. Larsen, O. Möeller, P. Petterson, and W. Yi. Up-

paal – Present and Future. In Proceedings of the 40th IEEE Conference on

Decision and Control. IEEE, December 2001.

[59] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal.

In Marco Bernardo and Flavio Corradini, editors, Formal Methods form the

245

Design of Real-Time Systems: 4th International School on Formal Methods

for the Design of Computer, Communication, and Software Systems, SFM-RT

2004, number 3185 in LNCS, pages 200–236. Springer–Verlag, September 2004.

[60] S. Bensalem, V. Ganesh, Y. Laknech, C. M unoz, S. Owre, H. Rueß, J. Rushby,

V. Rusu, H. Säıdi, N. Shankar, E. Singerman, and A. Tiwari. An Overview of

SAL. In C. M. Holloway, editor, Fifth NASA Langley Formal Methods Work-

shop, LFM 2000, 2000.

[61] B. Berard and C. Dufourd. Timed automata and additive clock constraints.

Information Processing Letter, 75(1-2):1–7, 2000.

[62] H.C. Berg. Motile behavior of bacteria. Physics Today, 53(1):24–29, 2000.

[63] U. S. Bhalla and R. Iyengar. Emergent properties of networks of biological

signaling pathways. Science, 283:381–387, 1999.

[64] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58, 2003.

[65] Nikolaj Bjorner, Zohar Manna, Henny Sipma, and Toms Uribe. Deductive veri-

fication of real-time systems using step. Theoretical Computer Science, 253:27–

60, 2001.

[66] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.

Springer-Verlag, 1997.

[67] Alexander Bockmayr and Arnaud Courtois. Using hybrid concurrent constraint

programming to model dynamic biological systems. In 18th International Con-

ference on Logic Programming, ICLP’02, Copenhagen, volume 2401 of LNCS,

pages 85–99. Springer, July 2002.

246

[68] Peer Bork. Is there biological research beyond systems biology? a comparative

analysis of terms. Molecular Systems Biology, May 2005.

[69] Peer Bork and Luis Serrano. Towards cellular systems in 4d. Cell, 121(4):507–

509, May 2005.

[70] O. Botchkarev and S. Tripakis. Verification of hybrid systems with linear dif-

ferential inclusions using ellipsoidal approximations. In HSCC, volume 1790 of

LNCS, pages 73–88. Springer, 2000.

[71] O. Bournez, O. Maler, and A. Pnueli. Orthogonal Polyhedra: Representation

and Computation. In F. Vaadrager and J. van Schuppen, editors, Hybrid Sys-

tems: Computation and Control (HSCC 1999), volume 1596 of LNCS, pages

19–30. Springer-Verlag, 1999.

[72] M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing Finite Kripke

Structures in Propositional Temporal Logic. Theoretical Computer Science,

59:115–131, 1988.

[73] B. Buchberger. Grobner bases: An algorithmic method in polynomial ideal

theory. Recent Trends in Multidimensional Systems Theory, pages 184–232,

1985.

[74] A. Casagrande, C. Piazza, and B. Mishra. Semi-Algebraic Constant Reset

Hybrid Automata - SACoRe. In Proceedings of the 44rd Conference on Decision

and Control and European Control Conference (CDC-ECC’05), pages 678–683,

Seville, Spain, December 2005. IEEE Computer Society Press.

[75] Alberto Casagrande, Venkatesh Mysore, Carla Piazza, and Bud Mishra. Inde-

pendent dynamics hybrid automata in system biology. In Proceedings of the

247

First International Conference on Algebraic Biology, Tokyo, (Japan), 28-30

November, 2005.

[76] M. Cascante, L.G. Boros, B. Comin-Anduix, P. de Atauri, J.J. Centelles, and

P.W.-N. Lee. Metabolic control analysis in drug discovery and design. Nature

Biotechnology, 20:243–249, 2002.

[77] E. Celik, E. Karaduman, and M. Bayram. Numerical method to solve chemical

differential-algebraic equations. International Journal of Quantum Chemistry,

89(5):447–451, 2002.

[78] Ercan Celik and Mustafa Bayram. Application of grobner basis techniques to

enzyme kinetics. Applied Mathematics and Computation, 153:97–109, 2004.

[79] N. Chabrier, M. Chiaverini, V. Danos, F. Fages, and V. Schächter. Modeling

and querying biochemical interaction networks. Theoretical Computer Science,

325(1):25–44, September 2004.

[80] N. Chabrier and F. Fages. Symbolic model checking of biochemical networks.

In Proceedings of the First International Workshop on Computational Methods

in Systems Biology, pages 149 – 162, 2003.

[81] Ming Chen and Ralf Hofestdt. Quantitative petri net model of gene regulated

metabolic networks in the cell. In Silico Biology, 3(3):347–65, 2003.

[82] A. Chutinan and B. Krogh. Verification of Polyhedral-Invariant Hybrid Au-

tomata Using Polygonal Flow Pipe Approximations. In F. W. Vaandrager and

J. H. van Schuppen, editors, Hybrid Systems: Computation and Control, volume

1569 of LNCS, pages 76–90. Springer, 1999.

248

[83] Alongkrit Chutinan and Bruce H. Krogh. Computational techniques for hybrid

system verification. IEEE Trans. Automatic Control, 48(1):64–75, 2003.

[84] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,

R. Sebastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for

Symbolic Model Checking. In Proc. International Conference on Computer-

Aided Verification (CAV 2002), volume 2404 of LNCS, Copenhagen, Denmark,

July 2002. Springer.

[85] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a New Symbolic

Model Checker. STTT International Journal on Software Tools for Technology

Transfer, 2:410–425, 2000.

[86] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg, and

M. Theobald. Abstraction and counterexample-guided refinement in model

checking of hybrid systems. International Journal of Foundations of Computer

Science (IJFCS) special issues on Verification and Analysis of Infinite State

Systems, 2003.

[87] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,

1999.

[88] CoCoATeam. CoCoA: a system for doing Computations in Commutative Alge-

bra. Available at http://cocoa.dima.unige.it, 2005.

[89] J. R. Collier, N. A. M. Monk, P. K. Maini, and J. H. Lewis. Pattern Formation

by Lateral Inhibition with Feedback: a Mathematical Model of Delta-Notch

Intercellular Signalling. Journal of Theor. Biology, 183:429–446, 1996.

[90] G. E. Collins. Quantifier Elimination for the Elementary Theory of Real Closed

249

Fields by Cylindrical Algebraic Decomposition. In Proceedings of the Second GI

Conference on Automata Theory and Formal Languages, volume 33 of LNCS,

pages 134–183. Springer-Verlag, 1975.

[91] A. Cornish-Bowden. Fundamentals of Enzyme Kinetics (3rd edn.). Portland

Press, London, 2004.

[92] A. Cornish-Bowden and M. L. Cardenas. Metabolic analysis in drug design. C.

R. Biologies, 326:509–515, 2003.

[93] A. Cornish-Bowden and M.L. Cardenas. Systems biology may work when we

learn to understand the parts in terms of the whole. Biochemical Society Trans-

actions, 33(3), 2005.

[94] A. Cornish-Bowden and J.-H. S. Hofmeyr. Enzymes in context: Kinetic char-

acterization of enzymes for systems biology. The Biochemist, 27:11–14, 2005.

[95] Athel Cornish-Bowden, Jan-Hendrik S. Hofmeyr, and Mara Luz Crdenas. Sto-

icheiometric analysis in studies of metabolism. Biochem. Soc. Trans., 30:43–46,

2002.

[96] Patrick Cousot, Radhia Cousot, Jrme Feret, Laurent Mauborgne, Antoine Min,

David Monniaux, and Xavier Rival. The astre analyser. In M. Sagiv, editor,

In ESOP 2005 – The European Symposium on Programming, volume 3444 of

Lecture Notes in Computer Science, pages 21–30. Springer, 2005.

[97] M. Curti, P. Degano, C. Priami, and C.T. Baldari. Modelling biochemical

pathways through enhanced pi-calculus. Theoretical Computer Science, 2003.

[98] J.H. Davenport and J. Heintz. Real quantifier elimination is doubly exponential.

Journal of Symbolic Computation, 5:29–35, 1988.

250

[99] E.H. Davidson, J.P. Rast, P. Oliveri, A. Ransick, C. Calestani, C.H. Yuh, T. Mi-

nokawa, G. Amore, V. Hinman, C. Arenas-Mena, O. Otim, C.T. Brown, C.B.

Livi, P.Y. Lee, R. Revilla, A.G. Rust, Z. Pan, M.J. Schilstra, P.J. Clarke, M.I.

Arnone, L. Rowen, R.A. Cameron, D.R. McClay, L. Hood, and H. Bolouri. A

genomic regulatory network for development. Science, 295(5560):1669–78, Mar

2002.

[100] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In Hybrid

Systems III, Verification and Control, volume 1066 of LNCS, pages 208–219.

Springer-Verlag, 1996.

[101] H. de Jong. Modeling and simulation of genetic regulatory systems: A literature

review. Journal of Computational Biology, 9(1):69 – 105, 2002.

[102] H. de Jong. Modeling and simulation of genetic regulatory networks. Lectures

Notes in Control and Information Sciences, 294:111–118, 2003.

[103] Leonardo de Moura, Sam Owre, Harald Rue, John Rushby, N. Shankar, Maria

Sorea, and Ashish Tiwari. Sal 2. In Tool description presented at CAV, Boston

MA, volume 3114 of LNCS, pages 496–500. Springer Verlag, July 2004.

[104] E. Demir, O. Babur, U. Dogrusoz, A. Gursoy, A. Ayaz, G. Gulesir, G. Nisanci,

R. Cetin-Atalay, and M. Ozturk. Patika: Pathway analysis tool for integration

and knowledge acquisition. In Poster Presentation in ISMB 2003, Brisbane,

Australia, 2003.

[105] Yves Deville, David Gilbert, Jacques van Helden, and Shoshana Wodak. An

overview of data models for the analysis of biochemical pathways. Briefings in

Bioinformatics, 4(3):246 – 259, 2003.

251

[106] P.K. Dhar, Hao Zhu, and S.K. Mishra. Computational approach to systems bi-

ology: from fraction to integration and beyond. NanoBioscience, IEEE Trans-

actions on, 3(3):144– 152, Sept. 2004.

[107] Dolzmann, Gloor, and Sturm. Approaches to parallel quantifier elimination. In

ISSAC: Proceedings of the ACM SIGSAM International Symposium on Sym-

bolic and Algebraic Computation (formerly SYMSAM, SYMSAC, EUROSAM,

EUROCAL) (also sometimes in cooperation with the Symbolic and Algebraic

Manipulation Groupe in Europe (SAME)), 1998.

[108] A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimination in

practice. Technical Report MIP9720, FMI, Universitat Passau, D-94030 Passau,

Germany, December 1997.

[109] Andreas Dolzmann and Thomas Sturm. REDLOG: Computer algebra meets

computer logic. SIGSAM Bulletin (ACM Special Interest Group on Symbolic

and Algebraic Manipulation), 31(2):2–9, 1997.

[110] Matthew B. Dwyer, John Hatcliff, Matthew Hoosier, and Robby. Building your

own software model checker using the bogor extensible model checking frame-

work. In In the Proceedings of 17th Conference on Computer-Aided Verification

(CAV 2005), 2005.

[111] Jeremy S. Edwards and Bernhard O. Palsson. Metabolic flux balance analysis

and the in silico analysis of escherichia coli k-12 gene deletions. BMC Bioinfor-

matics, 1(1), 2000.

[112] J.S. Edwards, R.U. Ibarra, and B.O. Palsson. In silico predictions of escherichia

252

coli metabolic capabilities are consistent with experimental data. Nat Biotech-

nol., 19(2):125–30, Feb 2001.

[113] S. Efroni, D. Harel, and I.R. Cohen. Toward rigorous comprehension of bi-

ological complexity: modeling, execution, and visualization of thymic t-cell

maturation. Genome Research, 13(11):2485–97, Nov 2003.

[114] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, and K. Sonmez.

Pathway logic: Symbolic analysis of biological signaling. In Proceedings of the

Pacific Symposium on Biocomputing, pages 400–412, January 2002.

[115] M. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional

regulators. Nature, 409(18):391–395, Jan 2001.

[116] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, volume B, pages 995–1072. MIT Press, 1990.

[117] Damien Eveillard, Delphine Ropers, Hidde de jong, Christiane Branlant, and

Alexander Bockmayr. A multi-site constraint programming model of alternative

splicing regulation. INRIA Technical Report, May 2003.

[118] J.R. Faeder, M.L. Blinov, B. Goldstein, and W.S. Hlavacek. Rule-based mod-

eling of biochemical networks. Complexity, 10:22–41, 2005.

[119] D. A. Fell. Understanding the Control of Metabolism. Portland Press, London,

1997.

[120] J. Fisher, N. Piterman, E.J.A. Hubbard, M. Stern, and D. Harel. Computa-

tional insights into c. elegans vulval development. Proc. Natl. Acad. Sci. USA,

102:1951–1956, 2005.

253

[121] Martin Fränzle. Analysis of hybrid systems: An ounce of realism can save an

infinity of states. In Jörg Flum and Mario Rodŕıguez-Artalejo, editors, Com-

puter Science Logic (CSL’99), volume 1683 of LNCS, pages 126–140. Springer,

1999.

[122] Martin Fränzle. What will be eventually true of polynomial hybrid automata?

In Naoki Kobayashi and Benjamin C. Pierce, editors, Theoretical Aspects of

Computer Software, 4th International Symposium, TACS 2001, Sendai, Japan,

October 29-31, 2001, Proceedings, volume 2215 of Lecture Notes in Computer

Science, pages 340–359. Springer, 2001.

[123] Martin Fränzle and C. Herde. Efficient proof engines for bounded model check-

ing of hybrid systems. In FMICS, 2004.

[124] Goran Frehse. Phaver: Algorithmic verification of hybrid systems past hytech.

In Manfred Morari and Lothar Thiele, editors, Hybrid Systems: Computation

and Control, 8th International Workshop, HSCC 2005, Zurich, Switzerland,

March 9-11, 2005, Proceedings, volume 3414 of Lecture Notes in Computer

Science, pages 258–273. Springer, 2005.

[125] R. Ghosh, A. Tiwari, and C. Tomlin. Automated Symbolic Reachability Anal-

ysis; with Application to Delta-Notch Signaling Automata. In O. Maler and

A. Pnueli, editors, Hybrid Systems: Computation and Control, HSCC 2003,

volume 2623 of LNCS, pages 233–248. Springer, 2003.

[126] R. Ghosh and C. Tomlin. Lateral Inhibition through Delta-Notch signaling: A

Piecewise Affine Hybrid Model. In M. D. D. Benedetto and A. Sangiovanni-

Vincentelli, editors, Int.l Workshop on Hybrid Systems: Computation and Con-

trol, volume 2034 of LNCS, pages 232–246. Springer, 2001.

254

[127] R. Ghosh and C. Tomlin. Symbolic reachable set computation of piecewise

affine hybrid automata and its application to biological modelling: Delta-notch

protein signalling. Syst. Biol., 1(1), June 2004.

[128] Ronojoy Ghosh, Keith Amonlirdviman, and Claire J. Tomlin. A hybrid system

model of planar cell polarity signaling in drosophila melanogaster wing epithe-

lium. In Proceedings of the 41st IEEE Conference on Decision and Control, Las

Vegas, December 2002.

[129] D. Gillespie. Exact stochastic simulation of coupled chemical reactions. The

Journal of Physical Chemistry, 8(1):2340–2361, 1977.

[130] M.L. Giuseppin and N.A. van Riel. Metabolic modeling of saccharomyces cere-

visiae using the optimal control of homeostasis: a cybernetic model definition.

Metab Eng., 2(1):14–33, 2000.

[131] Gene Ontology Consortium GOC. The gene ontology (go) database and infor-

matics resource. Nucleic Acids Research (Database issue), 32, 2004.

[132] I. Goryanin, T.C Hodgman, and E. Selkov. Mathematical simulation and analy-

sis of cellular metabolism and regulation. Bioinformatics, 15(9):749–758, 1999.

[133] Daniel R. Grayson and Michael E. Stillman. Macaulay 2, a soft-

ware system for research in algebraic geometry. Available at

http://www.math.uiuc.edu/Macaulay2/.

[134] Mark R. Greenstreet and Ian Mitchell. Reachability analysis using polygonal

projections. In HSCC’99, volume 1569 of Lecture Notes in Computer Science,

1999.

255

[135] Iva Greenwald. Lin-12/notch signaling: lessons from worms and flies. Genes

and Development, 12(12):1751–1762, June 1998.

[136] Dima Grigoriev. Complexity of deciding tarski algebra. Journal of Symbolic

Computation, 5:65–108, 1988.

[137] C. C. Guet, M. B. Elowitz, W. Hsing, and S. Leibler. Combinatorial synthesis

of genetic networks. Science, 296(5572):1466–1470, 2002.

[138] Esfandiar Haghverdi, Paulo Tabuada, and George J. Pappas. Bisimulation

relations for dynamical, control, and hybrid systems. Theoretical Computer

Science, November 2003.

[139] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.

Programm., 8:231–274, 1987.

[140] E. Harel, O. Lichtenstein, and A. Pnueli. Explicit-clock temporal logic. In

Fifth Annual Symposium on Logic in Computer Science, pages 402–413. IEEE

Computer Society Press, 1990.

[141] J. Heintz, M. Roy, and P. Solerno. Sur la complexit du principe de tarski-

seidenberg. Bull. Soc. Math. France, 118:126, 1990.

[142] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A Model Checker for

Hybrid Systems. In Software Tools for Technology Transfer, volume 1, pages

110–122. Springer-Verlag, 1997.

[143] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking

for Real-time Systems. In 7th Annual IEEE Symposium on Logic in Computer

Science, pages 394–406. IEEE, IEEE Computer Society Press, June 1992.

256

[144] T.A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s Decidable about

Hybrid Automata. In Symposium on the Theory of Computing (STOC), pages

373–382, 1995.

[145] Thomas A. Henzinger, Benjamin Horowitz, Rupak Majumdar, and Howard

Wong-Toi. Beyond hytech: Hybrid systems analysis using interval numerical

methods. In N. Lynch and B. Krogh, editors, HSCC, volume 1790 of LNCS,

page 130144. Springer-Verlag Berlin Heidelberg, 2000.

[146] Thomas A. Henzinger, Joerg Preussig, and Howard Wong-Toi. Some lessons

from the hytech experience. In Proceedings of the 40th Annual Conference on

Decision and Control (CDC), pages 2887–2892. IEEE Press, 2001.

[147] Thomas A. Henzinger and Shankar Sastry. Hybrid Systems-Computation and

Control: Proceedings of the First International Workshop, HSCC ’98. Lecture

Notes in Computer Science 1386. Springer-Verlag, 1998.

[148] U.S. Department of Energy Human Genome Program HGP. Genomics and

its impact on science and society: The human genome project and beyond.

http://www.ornl.gov/sci/techresources/Human Genome/publicat/primer2001,

March 2003.

[149] J-HS. Hofmeyr. Metabolic control analysis in a nutshell. In Proceedings of the

Second International Conference on Systems Biology, pages 291–300, 2001.

[150] Gerard Holzmann. The Spin Model Checker: Primer and Reference Manual.

Addison-Wesley, September 2003.

[151] H. Hong. Quantifier elimination in elementary algebra and geometry

257

by partial cylindrical algebraic decomposition, version 13. WWW site

www.eecis.udel.edu/∼saclib, 1995.

[152] Hoon Hong, Richard Liska, and Stanly Steinberg. Testing stability by quantifier

elimination. J. Symbolic Computation, 24:161–187, 1997.

[153] Jianghai Hu, Wei-Chung Wu, and Shankar Sastry. Modeling subtilin produc-

tion in bacillus subtilis using stochastic hybrid systems. In Rajeev Alur and

George J. Pappas, editors, Hybrid Systems: Computation and Control, 7th In-

ternational Workshop, HSCC 2004, Philadelphia, PA, USA, March 25-27, 2004,

Proceedings, volume 2993 of Lecture Notes in Computer Science, pages 417–431.

Springer, 2004.

[154] M. Hucka, A. Finney, Herbert M. Sauro, H. Bolouri, J. Doyle, and H. Kitano.

The erato systems biology workbench: Enabling interaction and exchange be-

tween software tools for computational biology. In In The Proceedings of the

Pacific Symposium on Biocomputing, 2002.

[155] Inseok Hwang, Hamsa Balakrishnan, Ronojoy Ghosh, and Claire Tomlin.

Reachability analysis of delta-notch lateral inhibition using predicate abstrac-

tion. Lecture Notes in Computer Science, 2552:715–724, Jan 2002.

[156] T. Ideker and D. Lauffenburger. Building with a scaffold: emerging strategies

for high- to low-level cellular modeling. Trends in Biotechnology, 21(6):255–62,

Jun 2003.

[157] Trey Ideker, Timothy Galitski, and Leroy Hood. A new approach to decoding

life: Systems biology. Annual Review of Genomics and Human Genetics, 2:343–

372, September 2001.

258

[158] B. P. Ingalls. A control theoretic interpretation of metabolic control analysis.

http://www.math.uwaterloo.ca/ bingalls/Pubs/con.pdf (submitted), 2005.

[159] Nobuyoshi Ishii, Martin Robert, Yoichi Nakayama, Akio Kanai, and Masaru

Tomita. Toward large-scale modeling of the microbial cell for computer simu-

lation. Journal of Biotechnology, 113:281–294, 2004.

[160] S. James, P. Nilson, G. James, S. Kjellenberg, and T. Fagerstrom. Luminescence

control in the marine bacterium vibrio fischeri: An analysis of the dynamics of

lux regulation. J Mol Biol, 296(4):11271137, March 2000.

[161] Dorina Jibetean. Algebraic optimization with applications to system theory.

PhD Thesis, Department of Mathematics, Vrije University, Amsterdam, 2003.

[162] Mats Jirstrand. Nonlinear control system design by quantifier elimination. J.

Symbolic Computation, 24:137–152, 1997.

[163] N. Kam, D. Harel, H. Kugler, R. Marelly, A. Pnueli, J. A. Hubbard, and M. J.

Stern. Formal modelling of c. elegans development: A scenario-based approach.

Modelling in Molecular Biology, pages 151–173, 2004.

[164] Na’aman Kam, Irun R. Cohen, and David Harel. The immune system as a reac-

tive system: Modeling t cell activation with statecharts. In IEEE 2001 Symposia

on Human Centric Computing Languages and Environments (HCC’01), 2001.

[165] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. The kegg

resources for deciphering the genome. Nucleic Acids Res., 32:277–280, 2004.

[166] K. Kappler, R. Edwards, and L. Glass. Dynamics in high dimensional model

gene networks. Signal Processing, 83:789–798, 2002.

259

[167] P.D. Karp, S. Paley, and P. Romero. The pathway tools software. Bioinformat-

ics, 18(1):225–232, 2002.

[168] J.P. Keener and J. Sneyd. Mathematical Physiology. Springer, New York, 1998.

[169] R.D. King, K.E. Whelan, F.M. Jones, P.G.K. Reiser, C.H. Bryant, S.H. Mug-

gleton, D.B. Kell, and S.G. Oliver. Functional genomic hypothesis generation

and experimentation by a robot scientist. Nature, 427:247 – 252, 2004.

[170] Marc W. Kirschner. The meaning of systems biology. Cell, 121(4):503–504,

May 2005.

[171] H. Kitano. Computational systems biology. Nature, Nov 2002.

[172] Hiroaki Kitano. International alliances for quantitative modeling in systems

biology. Molecular Systems Biology, 1(1), 2005.

[173] Kauffman K.J., P. Prakash, and J.S. Edwards. Advances in flux balance anal-

ysis. Curr. Opin. Biotechnol., 14:491–496, 2003.

[174] Steffen Klamt and Jrg Stelling. Stoichiometric analysis of metabolic networks.

In Tutorial at the 4th International Conference on Systems Biology, 2003.

[175] Kurt W. Kohn. Molecular Interaction Map of the Mammalian Cell Cycle Con-

trol and DNA Repair Systems. Mol. Biol. Cell, 10(8):2703–2734, 1999.

[176] Kurt W. Kohn, Mirit I. Aladjem, John N. Weinstein, and Yves Pommier. Molec-

ular Interaction Maps of Bioregulatory Networks: A General Rubric for Systems

Biology. Mol. Biol. Cell, 17(1):1–13, 2006.

[177] Pascal Koiran. My favourte problems. http://perso.ens-

lyon.fr/pascal.koiran/problems.html, 1999.

260

[178] S. A. Kripke. Semantical Considerations in Modal Logic. Acta Philosophica

Fennica, 16:83–94, 1963.

[179] Srikanta P. Kumar and Jordan C. Feidler. Biospice: A computational infrastruc-

ture for integrative biology. OMICS: A Journal of Integrative Biology, 7(3):225–

225, Sep 2003.

[180] A.B. Kurzhanski and P. Varaiya. On ellipsoidal techniques for reachability

analysis. part i: External approximations. Optimization Methods and Software,

17(2):177–206(30), January 2002.

[181] A.B. Kurzhanski and P. Varaiya. On ellipsoidal techniques for reachability

analysis. part ii: Internal approximations box-valued constraints. Optimization

Methods and Software, 17(2):207–237(31), January 2002.

[182] A.B. Kurzhanski and P. Varaiya. Reachability under uncertainty. In IEEE

Conference on Decision and Control, August 2002.

[183] A.B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for hybrid dynamics:

the reachability problem. In Proc. MTNS, 2005.

[184] G. Lafferiere, G. J. Pappas, and S. Sastry. O-minimal Hybrid Systems. Math-

ematics of Control, Signals, and Systems, 13(1):1–21, March 2000.

[185] G. Lafferiere, G. J. Pappas, and S. Yovine. A New Class of Decidable Hy-

brid Systems. In Proceedings of the 2nd International Workshop on Hybrid

Systems: Computation and Control, volume 1569 of LNCS, pages 137–151.

Springer-Verlag, 1999.

[186] Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. Symbolic reachability

261

computation for families of linear vector fields. J. Symb. Comput., 32(3):231–

253, 2001.

[187] Galit Lahav, Nitzan Rosenfeld, Alex Sigal, Naama Geva-Zatorsky, Arnold J

Levine, Michael B Elowitz, and Uri Alon. Dynamics of the p53-mdm2 feedback

loop in individual cells. Nature Genetics, 36:147 – 150, 2004.

[188] R. Lanotte and A. Maggiolo-Schettini. Monotonic hybrid systems. Journal of

Computer and System Sciences, 2004.

[189] R. Lanotte and S.Tini. Taylor Approximation for Hybrid Systems. In M. Morari

and L. Thiele, editors, Hybrid Systems: Computation and Control (HSCC’05),

volume 3414 of LNCS, pages 402–416. Springer, 2005.

[190] D.A. Lauffenburger and J.J. Linderman. Receptors: Models for Binding, Traf-

ficking, and Signalling. Oxford University Press, 365 pgs. (1993); 2nd printing

(1996), 1996.

[191] Dong-Yup Lee, Young gyun Oh, Hongseok Yoon, Sang Yup Lee, and Sunwon

Park. Exploring flux distribution profiles for switching pathways using multi-

objective flux balance analysis. Genome Informatics, 13:363–364, 2002.

[192] D.Y. Lee, H. Yun, S. Park, and S.Y. Lee. Metafluxnet: the management of

metabolic reaction information and quantitative metabolic flux analysis. Bioin-

formatics, 19(16):2144–6, Nov 1 2003.

[193] E. Lee, A. Salic, R. Krüger, R. Heinrich, and M.W. Kirschner. The roles of apc

and axin derived from experimental and theoretical analysis of the wnt pathway.

PLoS Biol, 1(1), 2003.

262

[194] Ben Lehner, Julia Tischler, and Andrew G. Fraser. Systems biology: where it’s

at in 2005. Genome Biology, 6:338, 2005.

[195] P. Lincoln and A. Tiwari. Symbolic systems biology: Hybrid modeling and

analysis of biological networks. In R. Alur and G. Pappas, editors, Hybrid

Systems: Computation and Control HSCC, volume 2993 of LNCS, pages 660–

672. Springer, March 2004.

[196] P. Lindskog. Methods, Algorithms and Tools for System Indentification Based

On Prior Knowledge, PhD Thesis. Department of Electrical Engineering,

Linkoping University, Sweden, 1996.

[197] Edison T. Liu. Systems biology, integrative biology, predictive biology. Cell,

121(4):505–506, May 2005.

[198] Catherine M. Lloyd, Matt D. B. Halstead, and Poul F. Nielsen. Cellml: its

future, present and past. Progress in Biophysics and Molecular Biology, 85(2-

3):433–450, 2004.

[199] R. Mahadevan and C.H. Schilling. The effects of alternate optimal solutions in

constraint-based genome-scale metabolic models. Metabolic Engineering, 5:264–

276, 2003.

[200] Radhakrishnan Mahadevan, Jeremy S. Edwards, and Francis J. Doyle-III. Dy-

namic flux balance analysis of diauxic growth in escherichia coli. Biophysical

Journal, 83:1331–1340, September 2002.

[201] O. Maler and A. Pnueli. Reachability analysis of planar multi-linear systems. In

C. Courcoubetis, editor, Computer Aided Verification: Proc. of the 5th Interna-

tional Conference CAV’93, pages 194–209, Berlin, Heidelberg, 1993. Springer.

263

[202] B. Mandelbrot. The Fractal Geometry of Nature. Freeman Co., San Francisco,

1982.

[203] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems. Springer-Verlag, 1992.

[204] Dinesh Manocha and John F. Canny. Multipolynomial resultant algorithms. J.

Symbolic Computation, 15:99–122, 1993.

[205] G. Marnellos and E.Mjolsness. A gene network approach to modeling early

neurogenesis in drosophila. In PSB’98, 1998.

[206] C.J. Marshall. Specificity of receptor tyrosine kinase signaling: transient versus

sustained extracellular signal-regulated kinase activation. Cell, 80(2):179–85,

1995.

[207] Mantsika Matooane. Parallel systems in symbolic and algebraic computa-

tion. Technical Report UCAM-CL-TR-537, Computer Laboratory, University

of Cambridge, June 2002.

[208] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[209] P. Mendes. Biochemistry by numbers: simulation of biochemical pathways with

gepasi 3. Trends in Biochemical Sciences, 22:361–363, 1997.

[210] M. Minimiari and M.P. Barnett. Solving polynomial equations for chemical

problems using grobner bases. Molecular Physics, 102(23-24):2521–2535, 2004.

[211] M.L. Minsky. Recursive unsolvability of post’s problem of tag and other topics

in theory of turing machines. Ann. of Math., 74:437–455, 1961.

[212] B. Mishra. Algorithmic Algebra. Springer-Verlag, New York, 1993.

264

[213] B. Mishra. A Symbolic Approach to Modeling Cellular Behavior. In S. Sahni,

V. K. Prasanna, and U. Shukla, editors, High Performance Computing, volume

2552 of LNCS, pages 725–732. Springer, 2002.

[214] B. Mishra. Computational Real Algebraic Geometry, pages 740–764. CRC Press,

Boca Raton, FL, 2004.

[215] B. Mishra, M. Antoniotti, S. Paxia, and N. Ugel. Simpathica: A computational

systems biology tool within the valis bioinformatics environment. Computa-

tional Systems Biology, 2005.

[216] B. Mishra and E. M. Clarke. Hierarchical Verification of Asynchronous Circuits

Using Temporal Logic. Theoretical Computer Science, 38:269–291, 1985.

[217] B. Mishra, R. Daruwala, Y. Zhou, N. Ugel, A. Policriti, M. Antoniotti, S. Paxia,

M. Rejali, A. Rudra, V. Cherepinsky, N. Silver, W. Casey, C. Piazza, M. Sime-

oni, P. Barbano, M. Spivak, J-W. Feng, V. Mysore, O. Gill, F. Cheng, B. Sun,

I. Ioniata, T.S. Anantharaman, E.J.A. Hubbard, A. Pnueli, D. Harel, V. Chan-

dru, R. Hariharan, M. Wigler, F. Park, S.-C. Lin, Y. Lazebnik, F. Winkler,

C. Cantor, A. Carbone, and M. Gromov. A sense of life: Computational &

experimental investigations with models of biochemical & evolutionary pro-

cesses. OMICS - A Journal of Integrative Biology (Special Issue on BioCOMP),

7(3):253–268, 2003.

[218] Pradyumna Mishra and George J. Pappas. Requiem: a mathematica notebook

for exact symbolic reachability computation. http://www.seas.upenn.edu/ hy-

brid/requiem.html, 2001.

265

[219] Nicholas A. M. Monk. Oscillatory expression of hes1, p53, and nf-kappab driven

by transcriptional time delays. Current Biology, 13(16):1409–1413, August 2003.

[220] John A. Morgang and David Rhodes. Mathematical modeling of plant metabolic

pathways. Metabolic Engineering, 4:80–89, 2002.

[221] V. Mysore and B. Mishra. Algorithmic Algebraic Model Checking III: Approxi-

mate Methods. In Infinity 2005 – The 7th International Workshop on Verifica-

tion of Infinite-State Systems, volume 149(1) of Electronic Notes in Theoretical

Computer Science, pages 61–77, February 2006.

[222] V. Mysore, C. Piazza, and B. Mishra. Algorithmic Algebraic Model Checking II:

Decidability of Semi-Algebraic Model Checking and its Applications to Systems

Biology. In Doron A. Peled and Yih-Kuen Tsay, editors, Automated Technology

for Verification and Analysis: Third International Symposium, ATVA 2005,

Taipei, Taiwan, October 4-7, 2005. Proceedings, volume 3707 of LNCS, pages

217–233. Springer-Verlag, Oct 2005.

[223] V. Mysore and A. Pnueli. Refining the undecidability frontier of hybrid au-

tomata. In FSTTCS 2005: Foundations of Software Technology and Theoretical

Computer Science: 25th International Conference, Hyderabad, India, December

15-18, 2005. Proceedings, volume 3821 of Lecture Notes in Computer Science,

pages 261 – 272, Dec 2005.

[224] Venkatesh Mysore, Alberto Casagrande, Carla Piazza, and Bud Mishra. Tolque

– A Tool for Algorithmic Algebraic Model Checking. In The Ninth International

Workshop on Hybrid Systems Computation & Control (HSCC06) Poster Ses-

sion, March 2006.

266

[225] Venkatesh Mysore and Bud Mishra. Algorithmic Algebraic Model Checking IV:

Metabolic Networks. Journal of Mathematical Biology (to be submitted), 2006.

[226] M. Nagasaki, A. Doi, H. Matsuno, and S. Miyano. Genomic object net: a

platform for modeling and simulating biopathways. Applied Bioinformatics,

2003.

[227] A.A. Namjoshi and R. Doraiswami. A cybernetic modeling framework for anal-

ysis of metabolic systems. Computers & chemical engineering, 29(3):487 – 498,

2005.

[228] J.D. Navarro, V. Niranjan, S. Peri, C.K. Jonnalagadda, and A. Pandey. From

biological databases to platforms for biomedical discovery. Trends in Biotech-

nology, 21(6):263–8, June 2003.

[229] A. Noack. Ein zbdd-paket fuer effizientes model checking von petri netzen /

btu cottbus. Studienarbeit, 1999.

[230] Denis Noble. Modeling the Heart–from Genes to Cells to the Whole Organ.

Science, 295(5560):1678–1682, 2002.

[231] Maureen A. O’Malley and John Dupré. Fundamental issues in systems biology.

BioEssays, 27(12):1270–1276, 2005.

[232] J. S. Ostroff. Temporal Logic of Real-Time Systems. Research Studies Press,

1990.

[233] Sam Owre and N. Shankar. Writing PVS proof strategies. In Myla Archer,

Ben Di Vito, and César Muñoz, editors, Design and Application of Strate-

gies/Tactics in Higher Order Logics (STRATA 2003), NASA Conference Pub-

267

lication, pages 1–15, Hampton, VA, September 2003. NASA Langley Research

Center.

[234] Pablo Parrilo and Sanjay Lall. Semidefinite programming relaxations and al-

gebraic optimization in control. European Journal of Control, 9(2-3):307–321,

2003.

[235] Anita S.-R. Pepper, Darrell J. Killian, and E. Jane Albert Hubbard. Genetic

analysis of caenorhabditis elegans glp-1 mutants suggests receptor interaction

or competition. Genetics, 163(1):115–132, 2003.

[236] S. Petitjean. Algebraic geometry and computer vision: Polynomial systems, real

and complex roots. Journal of Mathematical Imaging and Vision, 10:191–220,

1999.

[237] Andrew Phillips and Luca Cardelli. A graphical representation for the stochastic

pi-calculus. In BioConcur, 2005.

[238] James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad

Tajkhorshid, Elizabeth Villa, Christophe Chipot, Robert D. Skeel, Laxmikant

Kalé, and Klaus Schulten. Scalable molecular dynamics with namd. Journal of

Computational Chemistry, 26(16):1781–1802, 2005.

[239] C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, and B. Mishra.

Algorithmic Algebraic Model Checking I: The Case of Biochemical Systems and

their Reachability Analysis. In Kousha Etessami and Sriram K. Rajamani, ed-

itors, Computer Aided Verification: 17th International Conference, CAV 2005,

Edinburgh, Scotland, UK, July 6-10, 2005. Proceedings, volume 3576 of LNCS,

pages 5–19. Springer-Verlag, 2005.

268

[240] Ute Platzer and Hans-Peter Meinzer. Simulation of genetic networks in mul-

ticellular context. In D , Kim J. und Martinez T Polani (ed.), Fifth German

workshop on Artificial Life: Abstracting and Synthesizing the Principles of Liv-

ing Systems, pages 43–51. Akad. Verl.-Ges., 2002.

[241] A. Puri and P. Varaiya. Decidebility of hybrid systems with rectangular differ-

ential inclusions. Computer Aided Verification, pages 95–104, 1994.

[242] R. Puzone, B. Kohler, P. Seiden, and F. Celada. Immsim, a flexible model for

in machina experiments on immune system responses. Future Gener. Comput.

Syst., 18(7):961–972, 2002.

[243] Stefan Ratschan and Zhikun She. Safety verification of hybrid systems by con-

straint propagation based abstraction refinement. In HSCC, 2005.

[244] Aviv Regev, William Silverman, and Ehud Y. Shapiro. Representation and

simulation of biochemical processes using the pi-calculus process algebra. In

Pacific Symposium on Biocomputing, pages 459–470, 2001.

[245] J. Renegar. On the computational complexity and geometry of the first-order

theory of the reals, parts i-iii. Journal of Symbolic Computation, 13:352, 1992.

[246] C. Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos.

CRC Press, Boca Raton, 1995.

[247] E. Rodriguez-Carbonell and A. Tiwari. Generating polynomial invariants for

hybrid systems. In M. Morari and L. Thiele, editors, Hybrid Systems: Compu-

tation and Control, HSCC 2005, LNCS. Springer, March 2005.

[248] L. Rubel and M. Singer. A differentially algebraic elimination theorem with

269

applications to analog computatbility in the calculus of variations. American

Mathematical Society, 94(4):635–658, 1985.

[249] T. Rus and E. Van Wyk. Algebraic Implementation of Model Checking. In

Proceedings of the 3rd AMAST Workshop on Real-Time Systems, Salt lake City,

UT, U.S.A., 1996.

[250] Karen Sachs, David Gifford, Tommi Jaakkola, Peter Sorger, and Douglas A.

Lauffenburger. Bayesian network approach to cell signaling pathway modeling.

In Sci. STKE, 2002.

[251] A. Saito and K. Kaneko. Inaccessibility and undecidability in computation,

geometry and dynamical systems. Physica D, 155:1–33, 2001.

[252] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Constructing in-

variants for hybrid systems. Formal Methods in System Design, July 2004.

[253] C. Sansom. Systems biology: Will it work? Systems Biology, IEE, 2(1):1–4,

March 2005.

[254] B. D. Saunders, H. R. Lee, and S. K. Abdali. A parallel implementation of

the cylindrical algebraic decomposition algorithm. In ISSAC ’89: Proceedings

of the ACM-SIGSAM 1989 international symposium on Symbolic and algebraic

computation, pages 298–307, New York, NY, USA, 1989. ACM Press.

[255] Herbert M. Sauro. The computational versatility of proteomic signaling net-

works. Current Proteomics, 1:67–81, 2004.

[256] C.H. Schilling, J.S. Edwards, D. Letscher, and B.O. Palsson. Combining path-

way analysis with flux balance analysis for the comprehensive study of metabolic

systems. Biotechnol Bioeng., 71(4):286–306, 2000-2001.

270

[257] C.H. Schilling, S. Schuster, B.O. Palsson, and R. Heinrich. Metabolic pathway

analysis: Basic concepts and scientific applications in the post-genomic era.

Biotechnol. Prog., 15:296–303, 1999.

[258] Christophe H. Schilling, Markus W. Covert, Iman Famili, George M. Church,

Jeremy S. Edwards, and Bernhard O. Palsson. Genome-scale metabolic model

of helicobacter pylori. Journal of Bacteriology, 184(16), Aug. 2002.

[259] Gerardo Schneider. Algorithmic Analysis of Polygonal Hybrid Systems. Ph.D.

thesis. VERIMAG - UJF, Grenoble, France, 2002.

[260] Daniel Segre, Dennis Vitkup, and George M. Church. Analysis of optimal-

ity in natural and perturbed metabolic networks. PNAS, 99(23):15112–15117,

November 12 2002.

[261] Natarajan Shankar. Combining theorem proving and model checking through

symbolic analysis. In C. Palamidessi, editor, CONCUR, volume 1877 of LNCS,

page 116. Springer-Verlag Berlin, 2000.

[262] David E. Shaw. A fast, scalable method for the parallel evaluation of distance-

limited pairwise particle interactions. Journal of Computational Chemistry,

26(13):1318–1328, 2005.

[263] T. Shlomi, O. Berkman, and E. Ruppin. Constraint-based modelling of per-

turbed organisms: A room for improvement. In ISMB, 2004.

[264] I. Shmulevich, I. Gluhovsky, R.F. Hashimoto, E.R. Dougherty, and W. Zhang.

Steady-state analysis of genetic regulatory networks modelled by probabilistic

boolean networks. Comparative and Functional Genomics, 4:601–608, 2003.

271

[265] B. I. Silva, K. Richeson, B. H. Krogh, and A. Chutinan. Modeling and Verifi-

cation of Hybrid Systems Using CheckMate. In ADPM, 2000.

[266] B. I. Silva, O. Stursberg, B. H. Krogh, and S. Engell. An Assessment of the

Current Status of Algorithmic Approaches to the Verification of Hybrid Sys-

tems. In Proceedings of the 40th IEEE Conference on Decision and Control.

IEEE, December 2001.

[267] M. Sirava, T. Schfer, M. Eiglsperger, M. Kaufmann, O. Kohlbacher,

E. Bornberg-Bauer, and H. P. Lenhof. Biominer - modeling, analyzing, and

visualizing biochemical pathways and networks. Bioinformatics, 18(2), 2003.

[268] Boris M. Slepchenko, James C. Schaff, Ian Macara, and Leslie M. Loew. Quanti-

tative cell biology with the virtual cell. Trends in Cell Biology, 13(11):570–576,

November 2003.

[269] P. A. Spiro, J. S. Parkinson, and H. G. Othmer. A model of excitation and

adaptation in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA, 94:72637268,

July 1997.

[270] David Van Der Spoel, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E. Mark,

and Herman J. C. Berendsen. Gromacs: Fast, flexible, and free. Journal of

Computational Chemistry, 26(16):1701–1718, 2005.

[271] T. Sturm. Quantifier elimination-based constraint logic programming. Tech-

nical Report MIP-0202, Fakultät für Mathematik und Informatik, Universität

Passau, 2002.

[272] Thomas Sturm. Real quadratic quantifier elimination in risa/asir. Research

272

Memorandum ISIS-RM-5E, ISIS, Fujitsu Laboratories Limited, 1-9-3, Nakase,

Mihama-ku, Chiba-shi, Chiba 261, Japan, September 1996.

[273] Paulo Tabuada and George J. Pappas. Model checking ltl over controllable linear

systems is decidable. Hybrid Systems : Computation and Control, Lecture Notes

in Computer Science, 2623, April 2003.

[274] Paulo Tabuada and George J. Pappas. Linear temporal logic control of linear

systems. IEEE Transactions on Automatic Control, February 2004.

[275] K. Takahashi, N. Ishikawa, Y. Sadamoto, H. Sasamoto, S. Ohta, A. Shiozawa,

F. Miyoshi, Y. Nakayama, and M. Tomita. E-cell2: Multi-platform e-cell simu-

lation system. Bioinformatics, 19(13):1727–1729, 2003.

[276] A. Tarski. A Decision Method for Elementary Algebra and Geometry. University

of California Press, second edition, 1948.

[277] Gerald Teschl. Ordinary differential equations and dynamical systems. Lecture

Notes from http://www.mat.univie.ac.at/ gerald/ftp/book-ode/index.html,

2004.

[278] A. Tiwari and G. Khanna. Series of Abstraction for Hybrid Automata. In

C. J. Tomlin and M. Greenstreet, editors, Hybrid Systems: Computation and

Control, volume 2289 of LNCS, pages 465–478. Springer, 2002.

[279] Ashish Tiwari. Approximate reachability for linear systems. In In the Proceed-

ings of Hybrid Systems: Computation and Control, HSCC, 2003.

[280] Ashish Tiwari and Gaurav Khanna. Nonlinear systems: Approximating reach

sets. In HSCC 2004, Univ. of Pennsylvania, Philadelphia. Springer-Verlag,

March 2004.

273

[281] Alan Turing. On computable numbers, with an application to the entscheidungs

problem. Proceedings of the London Mathematical Society, 2(42):230–265, 1936.

[282] J. J. Tyson and B. Novak. Regulation of the eukaryotic cell cycle: Molecu-

lar antagonism, hysteresis, and irreversible transitions. Journal of Theoretical

Biology, 210:249–263, 2001.

[283] P. Uetz and C.S. Vollert. Protein-protein interactions. Encyclopedic Reference

of Genomics and Proteomics in Molecular Medicine, 2004.

[284] David W. Ussery and Lars Juhl Jensen. Systems biology: in the broadest sense

of the word. Environmental Microbiology, 7(4):482, April 2005.

[285] Frits W. Vaandrager and Jan H. van Schuppen. Hybrid Systems: Computa-

tion and Control, Second International Workshop, HSCC’99, Berg en Dal, The

Netherlands. Springer-Verlag, 1999.

[286] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to auto-

matic program verification. In Proc. First IEEE Symp. on Logic in Computer

Science, pages 322–331, 1986.

[287] A. Varma and B.O. Palsson. Stoichiometric flux balance models quantitatively

predict growth and metabolic by-product secretion in wild-type escherichia coli

w3110. Appl Environ Microbiol., 60(10):3724–31, Oct 1994.

[288] Diana Visser, Rene van der Heijden, Klaus Mauch, Matthias Reuss, and Sef

Heijnen. Tendency modeling: A new approach to obtain simplified kinetic mod-

els of metabolism applied to saccharomyces cerevisiae. Metabolic Engineering,

2:252–275, 2000.

274

[289] E. O. Voit. Computational Analysis of Biochemical Systems. A Pratical Guide

for Biochemists and Molecular Biologists. Cambridge University Press, 2000.

[290] E. O. Voit and M. Savageau. Equivalence between S-systems and Volterra

systems. Mathematical Biosciences, 78:47–55, 1986.

[291] Aaron Wallack, Ioannis Z. Emiris, and Dinesh Manocha. MARS: A

MAPLE/MATLAB/c resultant-based solver. In International Symposium on

Symbolic and Algebraic Computation, pages 244–251, 1998.

[292] F. Wang and H.-C. Yen. Reachability solution characterization of parametric

real-time systems. Theoretical Computer Science, 2003.

[293] Jrg R. Weimar. Cellular automata approaches to enzymatic reaction networks.

In ACRI, pages 294–303, 2002.

[294] V. Weispfenning. Quantifier elimination for real algebra – the cubic case. In

International Symposium on Symbolic and Algebraic Computation, pages 258–

263, 1994.

[295] V. Weispfenning. Quantifier elimination for real algebra – the quadratic case

and beyond. AAECC, 8:101, 1997.

[296] Volker Weispfenning. Simulation and optimization by quantifier elimination. J.

Symb. Comput., 24(2):189–208, 1997.

[297] H. Steven Wiley, Stanislav Y. Shvartsman, and Douglas A. Lauffenburger. Com-

putational modeling of the egf-receptor system: a paradigm for systems biology.

Trends in Cell Biology, 13(1):43–50, 2003.

275

[298] F. Winkler. Polynomial Algorithms in Computer Algebra. Springer-Verlag,

Wien, New York, 1996.

[299] P.J. Woolf and J.J. Linderman. Untangling ligand induced activation and de-

sensitization of g-protein-coupled receptors. Biophysical Journal, 84(1):3–13,

Jan 2003.

[300] Hitoshi Yanami and Hirokazu Anai. Development of synrac. In Computer

Algebra Systems and Applications, CASA, 2005.

[301] Tau-Mu Yi, Pablo Iglesias, and Brian Ingalls. Control theory in biology: From

mca to chemotaxis. In Tutorial at ICSB, 2003.

[302] N. Yildirim. Use of symbolic and numeric computation techniques in analysis of

biochemical reaction networks. International Journal of Quantum Chemistry,

2005.

[303] S. Yovine. Kronos: A verification tool for real-time systems. International

Journal of Software Tools for Technology Transfer, 1(1/2):123–133, October

1997.

[304] K. Yugi, Y. Nakayama, and M. Tomita. A hybrid static/dynamic simulation

algorithm: Towards large-scale pathway simulation. In Proceedings of the Third

International Conference on Systems Biology, page 232, December 2002.

[305] Y. Zhestkov, M. Eleftheriou, A. Rayshubskiy, F. Suits, T. J. C. Ward, and

B. G. Fitch. Early performance data on the blue matter molecular simulation

framework by r. s. germain. IBM Journal of Research and Development, 49(2/3),

2005.

276

