DEPARTMENT OF COMPUTER SCIENCE
DOCTORAL DISSERTATION DEFENSE


Candidate: NAOMI SILVER
Advisor: BUD MISHRA


Control of a Dexterous Robot Hand:
Theory, Implementation, and Experiments


10:00 a.m., Thursday, September 10, 1992
12th floor conference rm., 719 Broadway



Abstract

Advanced robotic systems, such as multi-fingered hands are becoming more complex, and, as yet, many of the basic questions involved remain unanswered. What control law should we use? What constitutes a good control law? How should we describe motions? What constitutes a broad, yet efficient description of motions for a grasped object?

In addition to the complexity, robotic systems frequently undergo upgrades, and it is therefore necessary to design the system in an unorganized manner. This includes such things as hierarchical software, system independent descriptions of motion, system independent control laws.

In this thesis, we address these issues for a less complex system. We have focused our attention on describing motions for objects being grasped by a multi-fingered hand. We present a formulation for motion primitives, which allow object manipulation and require limited parameter specification. We have attempted to find a control law which will perform well under adverse conditions. We have built the system and tested it on the NYU Four Finger Manipulator which is a two dimensional hand. Even for this simplified problem, there remains a large degree of complexity and there are as yet no definitive solutions to these problems.