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Sequence Assembly Problem

Definition [Genome Sequence Assembly Problem] Given a set of
fragments/reads F = {fi, fo,..., fn} find a reconstruction R and a
valid layout of the reads L such that the following set of properties
(oracles) are satisfied :

e The observed distribution of fragment reads start point, D ., has
the minimum deviation from the source distribution Dy,

e The distance between mated reads must be consistent with the size
of the fragments generated.

e The observed distribution of restriction enzyme sites, C ¢ IS con-
sistent with the distribution of experimental optical map data C,..
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History and Motivations

1. Single Molecule Methods such as Optical Mapping.
2. Next Generation Sequencers.

3. SMASH (Single Molecule Approach to Sequencing by Hybridiza-
tion) combining:
(a) Optical Mapping
(b) Binary Maps (with PNA probes)
(c) Positional Sequencing by Hybridization (using a Beam Search Al-
gorithm)

SUTTA provides a more general approach for haplotypic whole
genome sequencing.

SUTTA assembler

Main Ingredients

e Exhaustive

— Not a greedy algorithm.
— Avoid getting stuck with a locally best solution

Implementation

e Use Branch-and-Bound (or Beam-Search) algorithm to improve al-

gorithmic complexity.

—Provide bounds and allow pruning of unpromising re-

gions/directions.

— Implement by “dove-tailing” between local (short sequence-reads)

and global (long-range maps and haplotypic) information.

— Tune heuristically (e.g., size of a priority queue) to get the best
computational complexity and resource consumption for a spe-

cific error parameters and required accuracy
— Exploit underlying 0-1 laws
— Parallelize in a straight-forward way

Scoring

e Use a “score” function to choose the best global solution.

— Achieve high accuracy

— Model the “error processes” in the score, consisting of Bayesian
likelihood and penalty functions

— Use side-information (e.g., optical maps, mated pairs, base-
content, homologous reference sequences, diluted sequencing,
low complexity representation, etc.) to sharpen the score func-
tion

— Use empirical-Bayes method to decide the statistics (null-model,
threshold, p-values, base- or sequence-quality)

— Agnostic to the underlying short- and long-range technologies,
while being able to mix-and-match technologies

Pseudo-Code

Algorithm 1 : SUTTA - pseudo code
Input : Set of NV reads
Output : Set of contigs

1 F = ©; [ Forest of trees =/
2 C =, [+ Set of contigs */
s B= " Ri; [~ Al'l the avail able reads =/
+ while (B # ©) do
5 R = B.getNextRead();
6 If ("R.isUsed() && "R.isContained() ) then
7 DT .= create _double tree(R);
8 F.add(D7),
9 Contig C7 G .= create_contig(D7);
10 C.add(C7TG);
11 CT G.layout(); / * Conpute | ayout of the contig =/
12 B .= B\ {C7TG.reads}; /| * Renmove used reads =/
13 else

[+ junp to next avail able read */
14 end
15 end
16 return C

Node expansion

1. Start with a random read (It will be the root of a tree; Use only the
read that has not been “used” in a contig yet, or that is not “con-
tained”)

2. Create RIGHT Tree: Start with an unexplored leaf node (a read)
with the best score-value; Choose all its non-contained “right”-
overlapping reads and expand the node by making them its chil-
dren; Compute their scores. (Add the “contained” nodes along the
way, while including them in the computed scores; Check that no
read occurs repeatedly along any path of the tree). STOP when the
tree cannot be expanded any further.

3. Create LEFT Tree: Symmetric to previous step.

Contig Construction

e The expand node routine is applied twice to generate LEFT and
RIGHT trees for the start read.

e Next, the best LEFT path is concatenated with the root and the best
RIGHT path to create a globally optimal contig.
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Overlap Score

¢ “Weighted transitivity” score that formulates the following intuition: if
read A overlaps read B, and read B overlaps read C', we will score
those overlaps strongly if in addition A and C also overlap. This
scoring approach implicitly assumes that the coverage is higher
than 3.

if(T‘-(A,B>AW(B,C))then{Sﬂ'(A,B,C) - S?T(A,B)+S7T(B,0)+<7T(A,C)?S7T(A,0) - 0)}
(1)
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¢ A simple generalization for higher coverage is obvious.

e This score cannot resolve repeats or haplotypic variations. Solu-
tion: augment the score with information for optical map alignment
or mated-pair distances to put an appropriate reward/penalty term.

Dynamic Coverage Score

e Observation : compressed (expanded) regions are characterized
by an increase (decrease) in the depth of coverage compared to
the expected average coverage of the shotgun process.

e Idea: penalize solutions whose observed coverage deviates from
the expected coverage of the shotgun process.
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Optical Map Score

e Observation : restriction enzymes cut at precise locations in the
genome. Let < ay, a9, ...,ay > be the restriction map obtained by a

restriction enzyme digestion process.

e Idea: Organize the restriction sizes a; into n-tuples. Build a hash
table according to:

H(a,by,...,bn) =< {EX&J,{@X&J,..., b—nxon > (2)

a a a

store a In the corresponding slot (with possible collisions).

e Create an in-silico map of the candidate solution and score it ac-
cording to the number of hits that its n-tuples have in the hash table.
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Streptococcus suis strain P1/7

Shotgun data from Sanger Institute (2,007,491 bp)

Streptococcus Suis (2,007,491 bp) Streptococcus Suis (2,007,491 bp)
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Figure 1. Queue size analysis
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Figure 2. DotPlot
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