('
™~

NY U Bioinformatics Lab

10th Floor, 715 Broadway
New York, NY 10012

SUTTA

Scoring-and-Unfolding Trimmed Tree Assembler

Bud Mishra and Giuseppe Narzis

Courant Institute of Mathematical Sciences, New York University
March 2009

Courant Institute of Mathematical Sciences

New York University
251 Mercer St., New York, NY 10012

Sequence Assembly Problem

Definition [Genome Sequence Assembly Problem] Given a set of
fragments/reads F = {fi, fo,..., fn} find a reconstruction R and a
valid layout of the reads L such that the following set of properties
(oracles) are satisfied :

e The observed distribution of fragment reads start point, D ., has
the minimum deviation from the source distribution Dy,

e The distance between mated reads must be consistent with the size
of the fragments generated.

e The observed distribution of restriction enzyme sites, C ¢ IS con-
sistent with the distribution of experimental optical map data C,..

0z
T

J

\
N

AN
/

History and Motivations

1. Single Molecule Methods such as Optical Mapping.
2. Next Generation Sequencers.

3. SMASH (Single Molecule Approach to Sequencing by Hybridiza-
tion) combining:
(a) Optical Mapping
(b) Binary Maps (with PNA probes)
(c) Positional Sequencing by Hybridization (using a Beam Search Al-
gorithm)

SUTTA provides a more general approach for haplotypic whole
genome sequencing.

SUTTA assembler

Main Ingredients

e Exhaustive

— Not a greedy algorithm.
— Avoid getting stuck with a locally best solution

Implementation

e Use Branch-and-Bound (or Beam-Search) algorithm to improve al-

gorithmic complexity.

—Provide bounds and allow pruning of unpromising re-

gions/directions.

— Implement by “dove-tailing” between local (short sequence-reads)

and global (long-range maps and haplotypic) information.

— Tune heuristically (e.g., size of a priority queue) to get the best
computational complexity and resource consumption for a spe-

cific error parameters and required accuracy
— Exploit underlying 0-1 laws
— Parallelize in a straight-forward way

Scoring

e Use a “score” function to choose the best global solution.

— Achieve high accuracy

— Model the “error processes” in the score, consisting of Bayesian
likelihood and penalty functions

— Use side-information (e.g., optical maps, mated pairs, base-
content, homologous reference sequences, diluted sequencing,
low complexity representation, etc.) to sharpen the score func-
tion

— Use empirical-Bayes method to decide the statistics (null-model,
threshold, p-values, base- or sequence-quality)

— Agnostic to the underlying short- and long-range technologies,
while being able to mix-and-match technologies

Pseudo-Code

Algorithm 1 : SUTTA - pseudo code
Input : Set of NV reads
Output : Set of contigs

1 F = ©; [Forest of trees =/
2 C =, [+ Set of contigs */
s B= " Ri; [~ Al'l the avail able reads =/
+ while (B # ©) do
5 R = B.getNextRead();
6 If ("R.isUsed() && "R.isContained()) then
7 DT .= create _double tree(R);
8 F.add(D7),
9 Contig C7 G .= create_contig(D7);
10 C.add(C7TG);
11 CT G.layout(); / * Conpute | ayout of the contig =/
12 B .= B\ {C7TG.reads}; /| * Renmove used reads =/
13 else

[+ junp to next avail able read */
14 end
15 end
16 return C

Node expansion

1. Start with a random read (It will be the root of a tree; Use only the
read that has not been “used” in a contig yet, or that is not “con-
tained”)

2. Create RIGHT Tree: Start with an unexplored leaf node (a read)
with the best score-value; Choose all its non-contained “right”-
overlapping reads and expand the node by making them its chil-
dren; Compute their scores. (Add the “contained” nodes along the
way, while including them in the computed scores; Check that no
read occurs repeatedly along any path of the tree). STOP when the
tree cannot be expanded any further.

3. Create LEFT Tree: Symmetric to previous step.

Contig Construction

e The expand node routine is applied twice to generate LEFT and
RIGHT trees for the start read.

e Next, the best LEFT path is concatenated with the root and the best
RIGHT path to create a globally optimal contig.

8_’3 Start node
s O
-

o

O

e

g

" H....HO..—.—H—Q—Q—Q—*
ad

s ¢
o

®

;

nd

Overlap Score

¢ “Weighted transitivity” score that formulates the following intuition: if
read A overlaps read B, and read B overlaps read C', we will score
those overlaps strongly if in addition A and C also overlap. This
scoring approach implicitly assumes that the coverage is higher
than 3.

if(T‘-(A,B>AW(B,C))then{Sﬂ'(A,B,C) - S?T(A,B)+S7T(B,0)+<7T(A,C)?S7T(A,0) - 0)}
(1)

SN &
> A

T ' &
¢ A simple generalization for higher coverage is obvious.

e This score cannot resolve repeats or haplotypic variations. Solu-
tion: augment the score with information for optical map alignment
or mated-pair distances to put an appropriate reward/penalty term.

Dynamic Coverage Score

e Observation : compressed (expanded) regions are characterized
by an increase (decrease) in the depth of coverage compared to
the expected average coverage of the shotgun process.

e Idea: penalize solutions whose observed coverage deviates from
the expected coverage of the shotgun process.

AN <~ ep
1 -_.
SeP @&x&\\&\\\\\\&\&}\\.ﬁ 2

P3 |

sp

SONNN \\5C\§\s$t\ ‘\\\ C\\QF\ E#)3
&\\\\\\\\\\\\\\ -
NN

5 N\ O\ 5

Pe IINANY NN\ €g
NN\

P, ep,

SO

coverage 3 5 4 3 3 2 1

Optical Map Score

e Observation : restriction enzymes cut at precise locations in the
genome. Let < ay, a9, ...,ay > be the restriction map obtained by a

restriction enzyme digestion process.

e Idea: Organize the restriction sizes a; into n-tuples. Build a hash
table according to:

H(a,by,...,bn) =< {EX&J,{@X&J,..., b—nxon > (2)

a a a

store a In the corresponding slot (with possible collisions).

e Create an in-silico map of the candidate solution and score it ac-
cording to the number of hits that its n-tuples have in the hash table.

2 =7 a a 2
LA | |
I \\\\\{\m\\gﬁ B,
NN |
NN
DML
N F

NN 6,

Streptococcus suis strain P1/7

Shotgun data from Sanger Institute (2,007,491 bp)

Streptococcus Suis (2,007,491 bp) Streptococcus Suis (2,007,491 bp)

1040 T T T T T T 6600

T
6500 r e e e R VA444+4//

6400 ~

1020

1000

6300
980
6200 -

N50 contig size

960

total number of contigs

6100 -

940 | 6000 |

920 ! ; ; ! ; ; 5900
0

Figure 1. Queue size analysis

T ST e

N

i
il
AL R
e B
i

........ WAg
i

i

e

}
|

Figure 2. DotPlot

References

[1] Sun Kim, Haixu Tang and Elaine R. Mardis. Genome Sequencing
Technology and Algorithms. Artech House Publishers,, 1 edition
(October 31, 2007).

[2] Kececioglu and Myers. Combinatorial algorithms for DNA se-
guence assembly. Algorithmica (1995) vol. 13 (1-2) pp. 7-51

[3] Adam M Phillippy et al. Genome assembly forensics: finding the
elusive mis-assembly. Genome Biology (2008) vol. 9 (3) pp. R55

