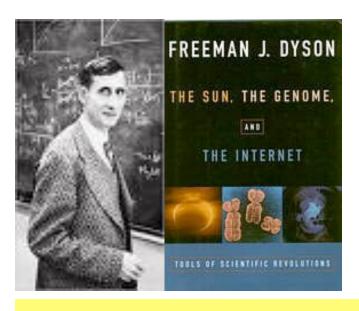


Reading DNA Sequences

	Ge
Search dictyBase	
Learn about Dictyostelium	lt has numt
Pictures/Videos	conju have
Read the dictyNews	belov poss
Submit an Abstract to dictyNews	geno only g
ListServ	via di
Update/Add Colleague	We a shou
Dicty Annual Conference	The f Dece
Laboration the second sec	


Genes with mistaken Genomic Sequence

It has come to our attention that due to a bug in our software, the genomic sequence for a number of genes was mis-reported on the sequence page. This problem occurred in conjuction with our last genome update which happened on December 2, 2005. So, if you have downloaded a genomic sequence in the time since last December, check the page below to see if your gene was affected. If your gene appears on this list and there is any possibility you are using a sequence downloaded since last December, please update any genomic sequences that you may have with the version currently on dictyBase. This affects only genomic sequences for genes on the list and does not affect sequences downloaded via dictyMart, or coding sequences, cDNA or protein sequences.

We apologize for any problems this may have caused. Please do not hesitate to contact us should you have ANY questions or concerns.

The following genes had incorrect genomic sequence reported on the Feature Page from December 2, 2006 to May 5, 2006.

Laptop Genome Sequencer

Freeman Dyson, "Pierre Teilhard de Chardin and Evolution," Marist College in Poughkeepsie, N.Y., on May 14, 2005. *

"I am proposing now to hijack Moore's prediction and apply it to biology. ... The sequencing machines that now exist are marvels of ingenuity, but they are cumbersome and expensive.

"What biology now needs is a singlemolecule sequencer that can handle one molecule at a time and sequence it by physical rather than chemical methods.

"A single-molecule machine could be much cheaper as well as faster than existing machines. It might be as small and convenient as a lap-top computer..." * * * * * *

1000 Rupees Genome

22.67 US\$ for 6 billion bases 135 billion US \$ for the entire human population

Overview: Moore's Law in Biotech

• Miniaturization

- Single Molecule, Single Cell, Nano-scale, Femto-second
- Minute amount of material: Avoid amplification
- Non-Invasive, Asynchronous, Non-Realtime
- Abstraction
 - Multi-disciplinary, yet allow inter-disciplinary abstraction

• Modularity

- Optimal integration of several technologies based on manipulation of single molecules on a surface.
- Order of Emphasis: Computational, Physical, Chemical

• Error Resilience

- How to build "reliable technologies" out of unreliable parts
- 0-1 Laws and experiment design

S[¤]M[¤]A[¤]S[¤]H

Single
Molecule
Approach to
Sequencing-byHybridization

Bud Mishra

Professor of Computer Science, Mathematics and Cell Biology

Ħ

Courant Institute, NYU School of Medicine, Tata Institute of Fundamental Research, and Mt. Sinai School of Medicine

Tools of the trade

Scissors

- Type II Restriction Enzyme
 - Biochemicals capable of cutting the doublestranded DNA by breaking two -O-P-O bridges on each backbone
- Restriction Site:
 - Corresponds to specific short sequences: EcoRI GAATTC
 - Naturally occurring protein in bacteria...
 Defends the bacterium from invading viral
 DNA...Bacterium produces another enzyme
 that methylates the restriction sites of its own
 DNA

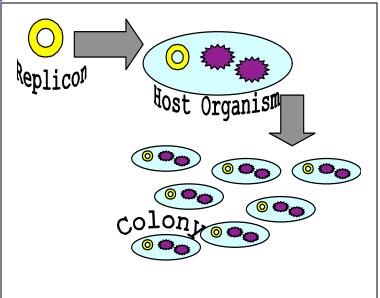
Hae III 5'...GG CC ...3' 3'...CC GG ...5'

- *EcoRI* 5'...GIAATT C ...3' 3'...C TTAAIG...5'
- *Pst* 5'...C TGCAIG ...3' 3'...GIACGT C ...5'

Hpal 5'...GTTAAC ...3' 3'...CAAI TTG ...5'

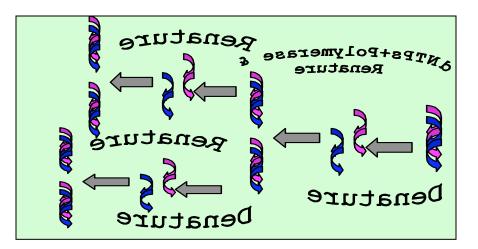
Glue

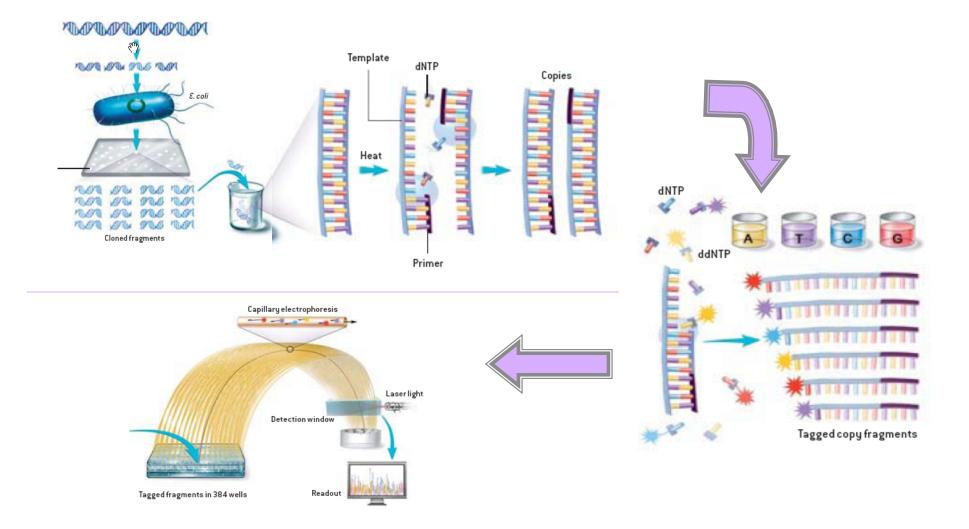
• DNA Ligase

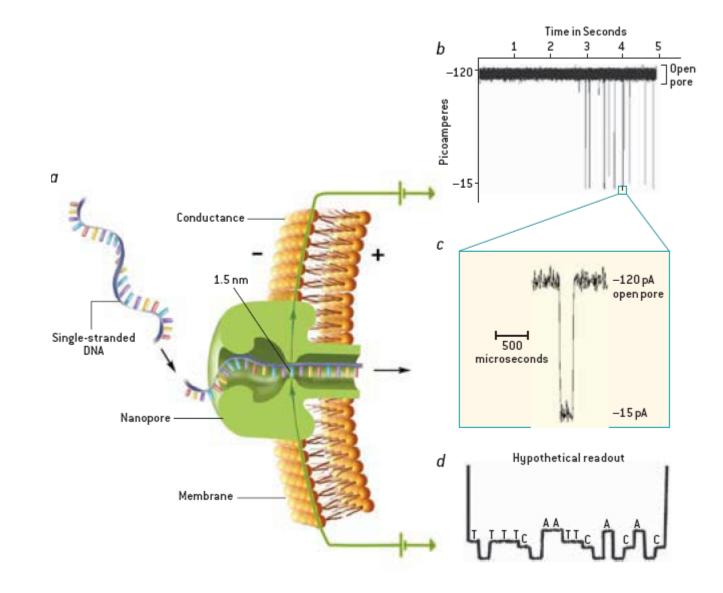

- Cellular Enzyme: Joins two strands of DNA molecules by repairing phosphodiester bonds
- T4 DNA Ligase (E. coli infected with bacteriophage T4)
- Hybridization
 - Hydrogen bonding between two complementary single stranded DNA fragments, or an RNA fragment and a complementary single stranded DNA fragment... results in a double stranded DNA or a DNA-RNA fragment

Copier

• DNA Amplification:


Main Ingredients: Insert (the DNA segment to be amplified), Vector (a cloning vector that combines with an insert to create a replicon), Host Organism (usually bacteria).


Copier


- PCR (Polymerase Chain Reaction):
- Main Ingredients: Primers, Catalysts, Templates, and the dNTPs.

Sanger Chemistry

Nanopore Sequencing

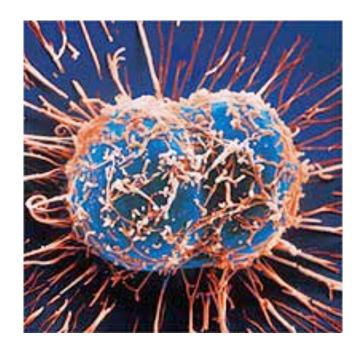
The Middle Way

- Character: Index
- A: 1, 11, ...
- T: 2, 3, 12...
- C: 4, 5, 9, 10, 13 ...
- G: 6, 7, 8,

- Sentences: w/o Index
- ATTCCGGG...
- GGGCCATCGT...
- CGTCATTCC...

ATTCCGGGCCATC

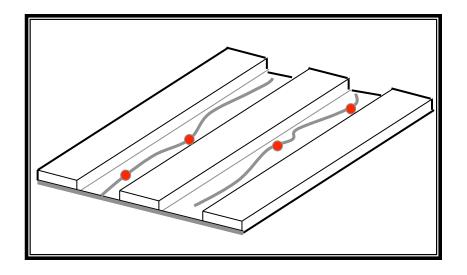
ATTCCGGGCCATC


- Words: w/ approx. Index
- ATTC: [2..4]
- TCGG: [6..8]
- GGGC: [7..9]
- GCCA: [10..12]

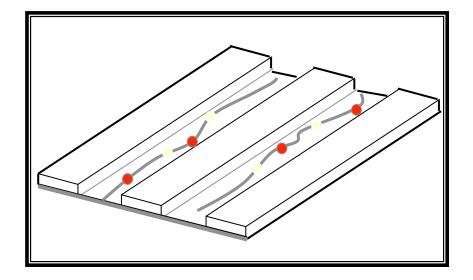
ATTCCGGGGCCA


S*M*A*S*H

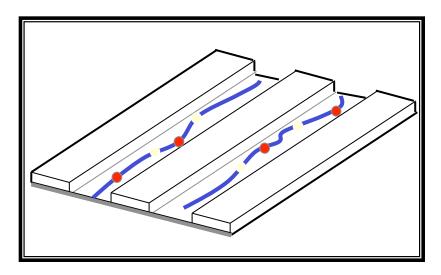
- Sequence a human size genome of about 6 Gb include both haplotypes.
- Integrate:
 - Optical Mapping (Ordered Restriction Maps)
 - Hybridization (with short nucleobase probes [PNA or LNA oligomers] with dsDNA on a surface, and
 - Positional Sequencing by Hybridization (efficient polynomial time algorithms to solve "localized versions" of the PSBH problems)


Fig 1

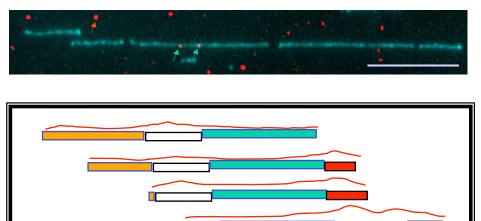
• Genomic DNA is carefully extracted



- LNA probes of length 6 8 nucleotides are hybridized to dsDNA (double-stranded genomic DNA)
- The modified DNA is stretched on a 1" x 1" chip.

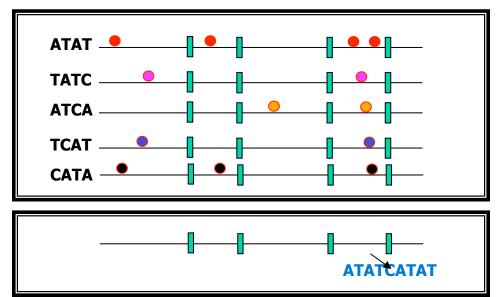

- DNA adheres to the surface along the channels and stretches out.
- Size from 0.3 3 million base pairs in length.
- Bright emitters are attached to the probes and imaged (Fig 3).

- A restriction breaks the DNA at specific sites.
- The cut fragments of DNA relax like entropic springs, leaving small visible gaps

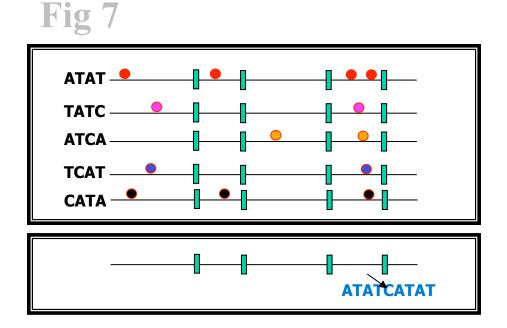

• • • • •

- The DNA is then stained with a fluorogen (Fig 5) and reimaged.
- The two images are combined in a composite image
 - suggesting the locations of a specific short word (e.g., probes) within the context of a pattern of restriction sites.

• • • • • •


Fig 6

The *restriction sites* are represented by a tall rectangle & The *probe sites* by small circles


- The integrated intensity measures the length of the DNA fragments.
- The bright-emitters on probes provides a profile for locations of the probes.

• • • • • • •

- These steps are repeated for all possible probe compositions
 - (modulo reverse complementarity).
- Software assembles the haplotypic ordered restriction maps with approximate probe locations superimposed on the map.

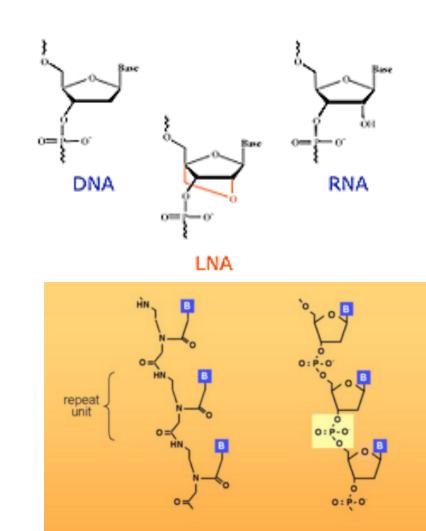
S*M*A*S*H

 Local clusters of overlapping words are combined by our PSBH (positional sequencing by hybridization) algorithm

Science by Coupon Collecting

Sir Ernest Rutherford

"All science is either physics or stamp collecting."

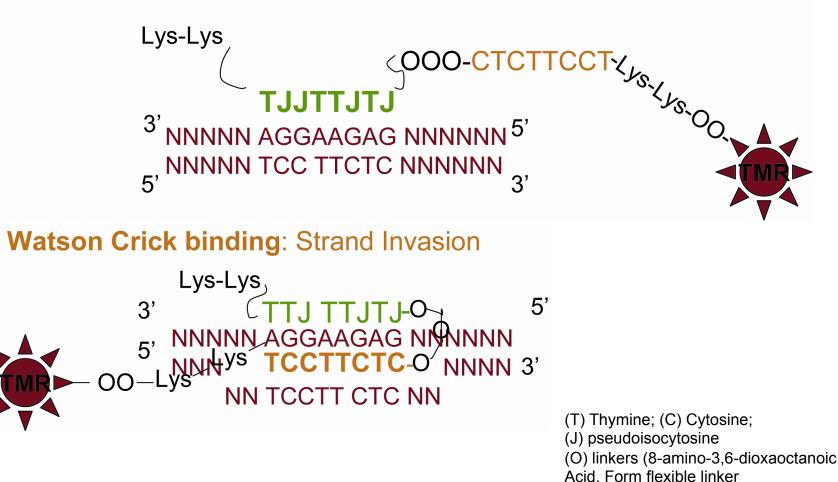


"For Mike's sake, Soddy, don't call it transmutation. They'll have our heads off as alchemists." Rutherford, winner of 1908 Nobel prize for chemistry for cataloging alpha and beta particles...

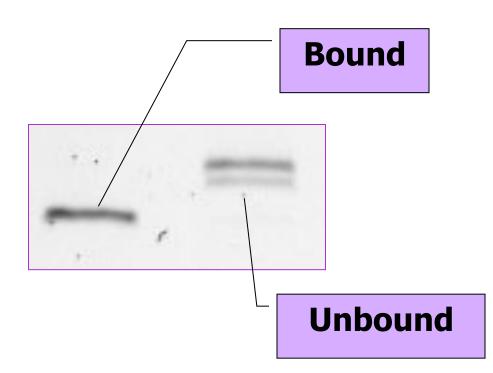
Hybridization

Probes

- LNA
 - Negative backbone with modified sugar moiety
- PNA
 - Neutral backbone made up of pseudopeptide backbone
- Stable complex formation at elevated temp.


PNA

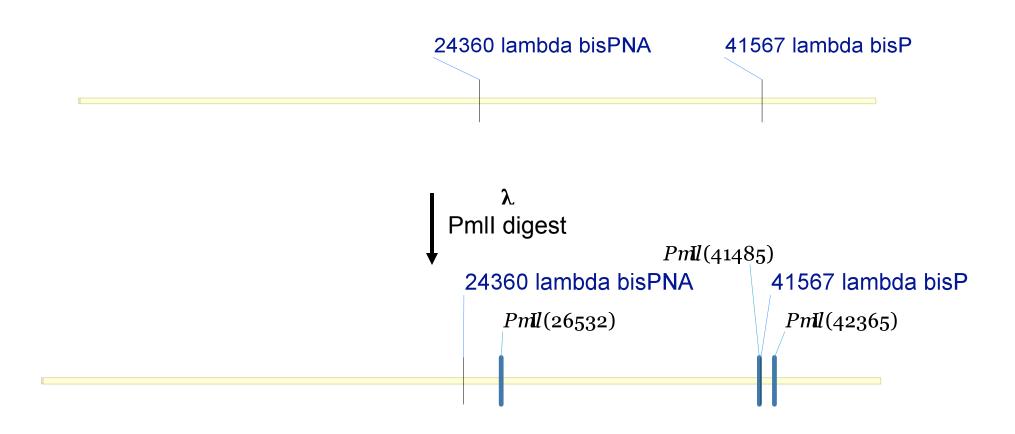
DNA


bisPNA Probe

- TMR-OO-Lys-Lys-TCC-TTC-TC-OOO-JTJ-TTJ-JT-Lys-Lys
- Hoogsteen Binding

•

Experiments with PNA Probes

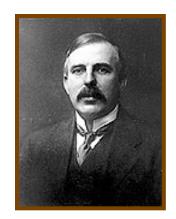


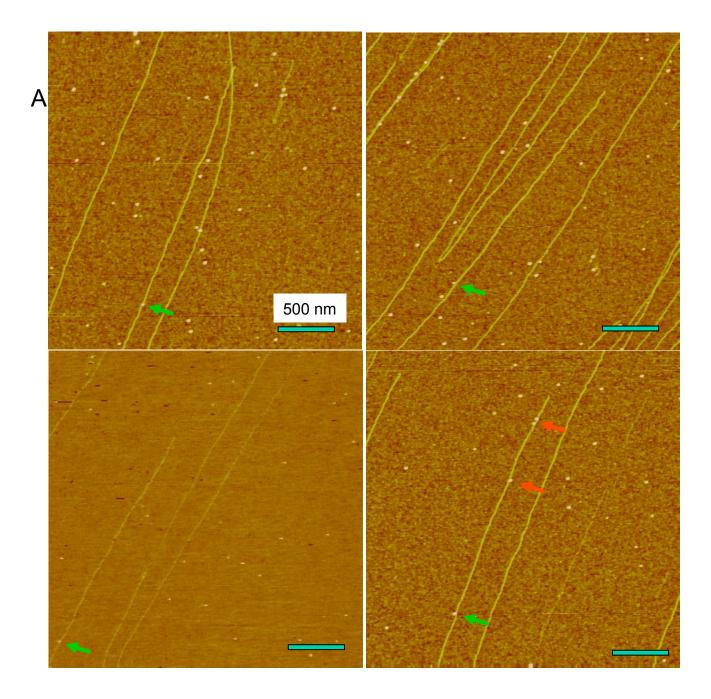
- Calibration using hybridization to lambda DNA molecules.
- Degree of hybridization > 90%.

bisPNA Sequence:

TMR-OO-Lys-Lys-TCC-TTC-TC-OOO-JTJ-TTJ-JT-Lys-Lys

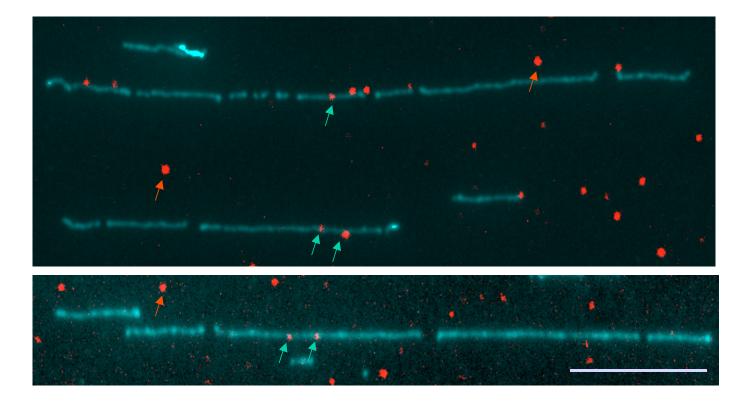
Probe Map (lambda DNA)




Final Probe Map

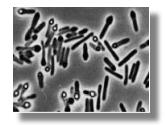
- Consensus map with 2 probe locations
 14.8% and 52.4% of the DNA length.
- In close agreement with the correct map
 - -50.2% and 85.7% (known from the sequence)
- Implied probe hybridization rate = 42%.
 - Significantly better than the needed 30%

Sir Ernest Rutherford


"You should never bet against anything in science at odds of more than about 10¹² to 1."

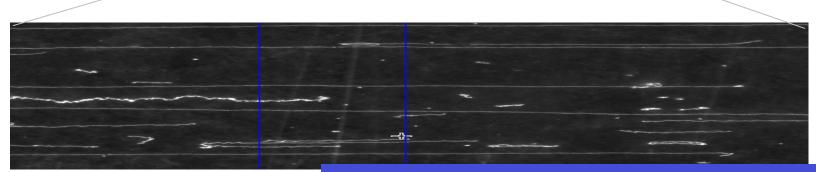
Four AFM images of lambda DNA with PNA probes

E. coli

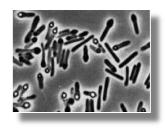


Two optical images of E coli K12 genomic DNA after restriction digestion with 6-cutter restriction enzyme Xho 1 and hybridization with an 8-mer PNA probe. Scale bar shown is 10 micron.

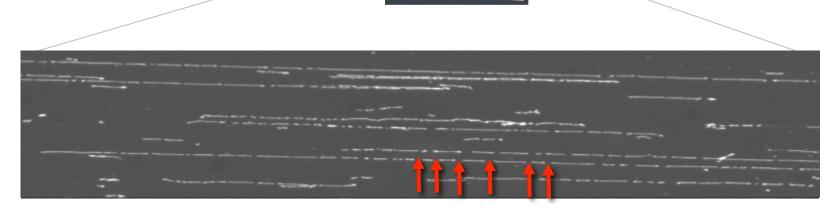
Optical Mapping


Optical Mapping

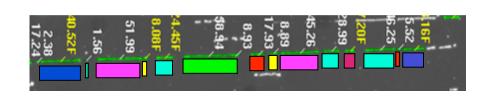
1. Capture and immobilize whole genomes as massive collections of single DNA molecules



Cells gently lysed to extract genomic DNA

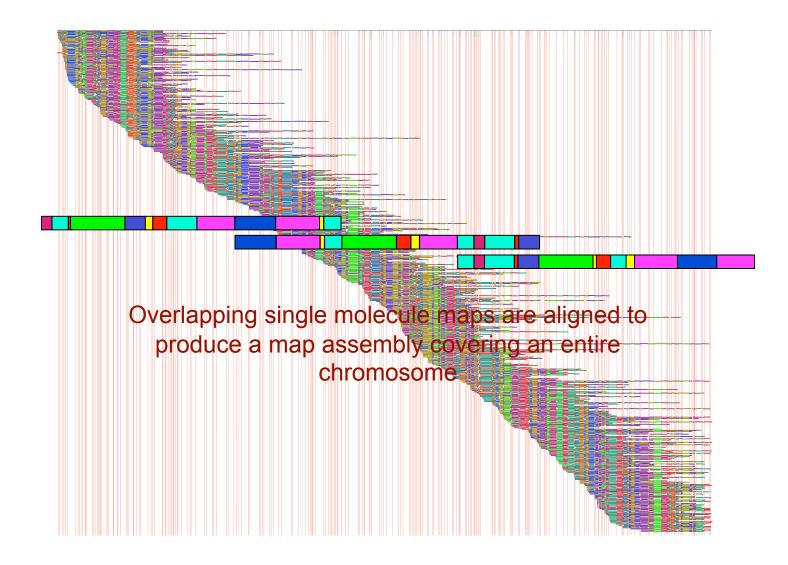

DNA captured in parallel arrays of long single DNA molecules using microfluidic device

Genomic DNA, captured as single DNA molecules produced by random breakage of intact chromosomes



- 2. Interrogate with restriction endonucleases
- 3. Maintain order of restriction fragments in each molecule

Digestion reveals 6-nucleotide cleavage sites as "gaps"


• • • •

 Overlapping single molecule maps are aligned to produce a map assembly covering an entire chromosome

Error Sources

microscopy.

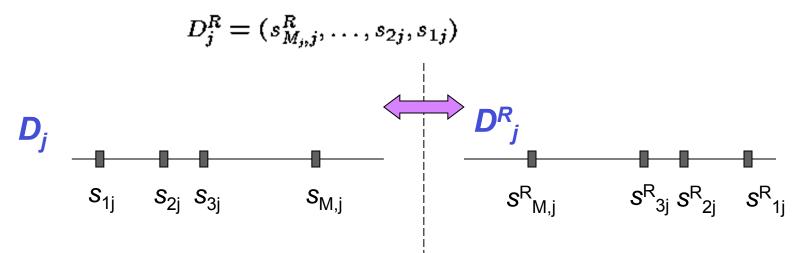
- Sizing Error
 - (Bernoulli labeling, absorption crosssection, PSF)
- Partial Digestion
- False Optical Sites
- Orientation
- Spurious molecules, Optical chimerism, Calibration

Computational Complexity & Feasibility

Complexity Issues

Various combinations of error sources lead to NP-hard Problems

Problem 1	Partial Digestion Optical Cuts Unknown Orientation	NP-hard Inapproximable*
Problem 2	Partial Digestion Optical Cuts Sizing Errors	NP-hard
Problem 3	Partial Digestion Optical Cuts Missing Fragments	NP-hard Inapproximable*
Problem 4	Partial Digestion Optical Cuts Spurious Molecules	NP-hard Inapproximable*


* No Polynomial Time Approximation Scheme (PTAS), if $P \neq NP$.

SMRM (Single Molecule Restriction Map)

• Data: SMRM vectors $D_j = (s_{1j}, s_{2j}, \dots, s_{M_j,j})$

$$0 < s_{1j} < s_{2j} < \cdots < s_{M_j,j} < 1, \quad s_{ij} \in Q.$$

• Reflection: $s^R = 1 - s$.

Given: A collection of data (SMRM vectors)

 D_1, D_2, \ldots, D_m

Compute: A final vector H $H = (h_1, h_2, \dots, h_n)$ "consistent" with each D_j .

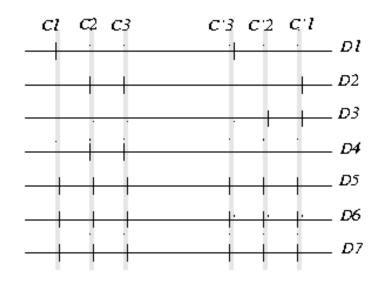
- o dist(H,D_j) ⇐ Reflects "consistency requirement"
- H <u>minimizes</u>

 $\max_{j} \min \left(\operatorname{dist}(H, D_{j}), \operatorname{dist}(H, D_{j}^{R}) \right) + \operatorname{CONSTRAINTS}$

Given: A collection of SMRM vectors

 $D_1, D_2, \ldots, D_l, D_{l+1}, \ldots, D_m$

An approximate solution


 $\bar{H} = (\bar{h}_1, \bar{h}_2, \dots, \bar{h}_n).$

An approximation factor ϵ . A variance upper bound σ^2 . • An admissible alignment (A_k) of the data $D'_1, D'_2, \dots, D'_l, D'_{l+1}, \dots, D'_m$ where $D'_j = \begin{cases} D_j \text{ or } D^R_j, & \text{if } 1 \leq j \leq l; \\ D_j, & \text{if } j > l. \end{cases}$ • Matching Set: Fixed A_{ki} given \overline{h}_i $S_{ijk} = \{s \in D'_j : |s - \overline{h}_i| \leq \epsilon\}, \text{ and}$ $S_{ik} = \biguplus_j S_{ijk},$

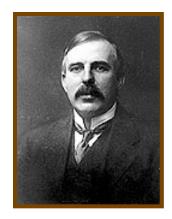
• Define $h_i = \text{mean}(S_{ik})$ and $\sigma_i^2 = \text{var}(S_{ik})$.

Determine: \exists ? admissible alignment A_k s.t. $H = (h_1, h_2, \dots, h_n)$ with $\forall i \sigma_i^2 \leq \sigma^2$.

$C_1 \cdot C_2 \cdot C_3 \\\equiv (x_1 + \overline{x}_2 + \overline{x}_3) (x_2 + \overline{x}_3 + x_4) (\overline{x}_1 + x_2 + x_4).$

- Suppose that the CNF formula has a satisfying assignment such that each clause has at least one true literal and at least one false literal.
- Then choose $(1 \le j \le l)$

$$D'_{j} = \begin{cases} D_{j} & \text{if } x_{j} = \text{True}; \\ D_{j}^{R}, & \text{if } x_{j} = \text{False.} \end{cases}$$


• Then for each i, variance of S_ik is

$$\sigma_i^2 \le \operatorname{var} (0, 0, 0, \epsilon, \epsilon) \\ = (2/5)(3/5)(1/5(n+1))^2 = 6/625(n+1)^2.$$

• Converse, similar.

Sir Ernest Rutherford

"If your experiment needs statistics, you ought to have done a better experiment."

Combinatorial Structure

• Model

- Correct Map: $0 < h_1 < h_2 < \cdots < h_k < 1$.
- Experimental Observations: $0 < s_1 < s_2 < \cdots < s_l < 1$.
- Only error source \mapsto Partial Digestion

$$\forall_{h_j} \Pr[\exists_{s_i} h_j = s_i] = p_c.$$

• Theorem

Let ϵ be a positive constant and $c \ge 1$ be so chosen that $1 - e^{-2e^{-c}} = \epsilon$. Then for

$$n\geq rac{c}{p_c}+rac{\ln k}{p_c}\quad (k\geq 1),$$

with probability at least $1 - \epsilon$, the correct ordered restriction map can be computed in O(nk) time.

When

$$n < rac{\ln k}{p_c(1+p_c)}$$
 ($k \geq 1$ and $0 < p_c < 0.69$),

no algorithm can compute the correct ordered restriction map with probability better than half.

• Intuition: Probability that all k true cut sites appear in the final map

 $[1-(1-p_c)^n]^k \approx e^{-ke^{-p_cn}} \approx e^{-e^{-c}} \Rightarrow p_cn \approx \ln k + c.$

Flips & Flops

• Model

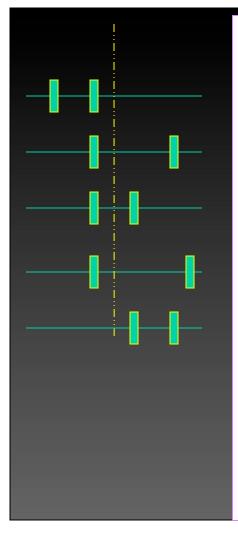
- Correct Map: $0 < h_1 < h_2 < \cdots < h_k < 1$. No symmetric site $\forall_i \forall_{j \neq i} h_i \neq h_j^R$.
- Experimental Observations: $0 < s_1 < s_2 < \cdots < s_l < 1$. Only error source \mapsto Partial Digestion

 $\forall_{h_j} \Pr[\exists_{s_i} h_j = s_i] = p_c.$

• Theorem

Let ϵ be a positive constant and $c \ge 1$ be so chosen that $1 - e^{-3e^{-c}} = \epsilon$. Then for

$$n \geq \max\left[rac{c}{p_c} + rac{\ln k}{p_c}, rac{1}{p_c^2}\ln\left(rac{k}{k - \ln k - c}
ight)
ight],$$


 $(k > c + \ln k)$, with probability at least $1 - \epsilon$, the correct ordered restriction map can be computed.

When

$$n < \max\left[rac{\ln k}{p_c(1+p_c)}, rac{1}{p_c^2(1+p_c^2)}\lnrac{k}{k-1}
ight],$$

 $(k > 1 \text{ and } 0 < p_c < 0.69)$, no algorithm can compute the correct ordered restriction map with probability better than half.

Intuition

- Phase 1
 - $f : (0,1) \to (0,1/2) \\ \vdots \quad x \mapsto \begin{cases} x & \text{if } x \in (0,1/2); \\ x^R & \text{if } x \in (1/2,1). \end{cases}$
- Compute $\{f(h_1), f(h_2), \dots, f(h_k)\}$, from $\{f(s_{i1}), f(s_{i2}), \dots, f(s_{il_i})\}$, $i = 1, \dots, n$.

• Phase 2

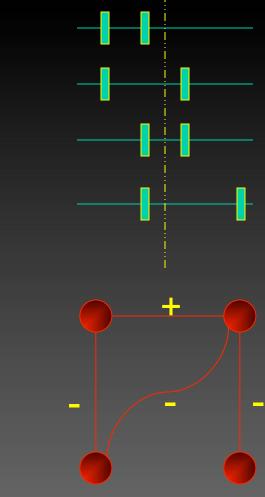
$$\begin{array}{rcl} \widehat{f} & : & (0,1/2) \times \{+1,-1\} \to (0,1) \\ & : & (f(h_j),sgn) \mapsto \left\{ \begin{array}{ll} f(h_j) & \text{if } sgn = +1; \\ f(h_j)^R & \text{if } sgn = -1. \end{array} \right. \end{array}$$

Define a graph G = (V, E),

$$V = \{f(h_1), f(h_2), \dots, f(h_k)\}$$

$$E \subset V \times V, e = [f(h_i), f(h_j)] \in E$$

if and only if


$$\exists_{s_{i'},s_{i'}} f(s_{i'}) = f(h_i) \text{ and } f(s_{j'}) = f(h_j).$$

Sign Label

$$sgn(e) = sgn[(1/2 - s_{i'})(1/2 - s_{j'})]$$

• Note: If the graph is connected then its vertices can be labeled uniquely (up to multiplication by -1) and the correct map can be created.

$$p_e = 1 - (1 - p_c^2)^n pprox 1 - e^{-\ln(k/k - \ln k - c)} pprox rac{\ln k}{k} + rac{c}{k}$$

Other Error Sources

Symmetric Sites

• Optical False Cuts: –Poisson Process with parameter λ_f

- $\begin{aligned} \Pr[\# \text{ false cuts} \in [x, x + \delta x] = 1] &= \lambda_f \delta x, \\ \Pr[\# \text{ false cuts} \in [x, x + \delta x] \geq 2] &= o(\delta x). \end{aligned}$
- Oracle to distinguish two cuts:

$$egin{array}{rcl} x &pprox_{\delta} & y & x \in [y-\delta,y+\delta], \ x &<_{\delta} & y & x < y-\delta, \ x &>_{\delta} & y & x > y+\delta. \end{array}$$

Essentially the previous analysis works mutatis mutandis.

Discretization

• Model Parameters

- k = # Cuts
- m = # Symmetric Cuts
- L = Length of the Clone in bps
- Δ = Length of the Discretized Subintervals in bps
- p_c = Partial Digestion Rate
- λ_f = Spurious Cut, Poisson Parameter
- p_E = Cutting Rate of the Enzyme

• Theorem

Assume that the sizing error $\sigma = 0$.

Let ϵ be a positive constant and $c\geq 1$ be so chosen that $1-e^{-12e^{-c/2}}=\epsilon.$ Then for

$$n \ge \frac{18}{p_c} \max\left[c + 2\ln(k+m), \frac{c+\ln m}{p_c}, \frac{1}{p_c}\ln\left(\frac{k}{k-\ln k-c}\right)\right]$$
$$(c + \ln(L/2\Delta - k-m)), \frac{c+2\ln k}{p_c}, \frac{1}{p_c}$$

 $(k > c + \ln k, m \ge 1, L > 2\Delta$ and $\lambda_f < p_c L/5\Delta$), with probability at least $1 - \epsilon$, the correct ordered restriction map can be computed in $O(nk^2)$ time.

When

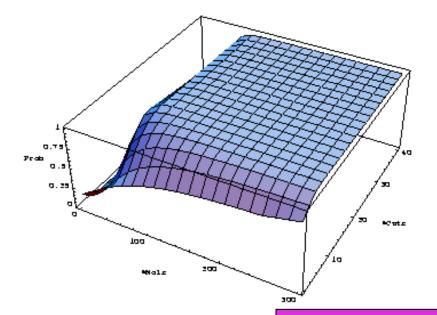
$$n < \max\left[\frac{\ln(k+m)}{p_c(1+p_c)}, \frac{1}{p_c^2(1+p_c^2)} \max\left[\ln m, \ln \frac{k}{k-1}\right], \frac{\ln(L/\Delta)}{\ln(L/\lambda_f \Delta)}\right]$$

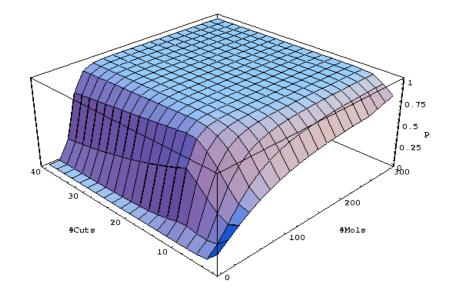
 $(k > 1, m > 1, L > \Delta$ and $0 < p_c < 0.69$, no algorithm can compute the correct ordered restriction map with probability better than half.

Sizing Error

o What happens when you introduce

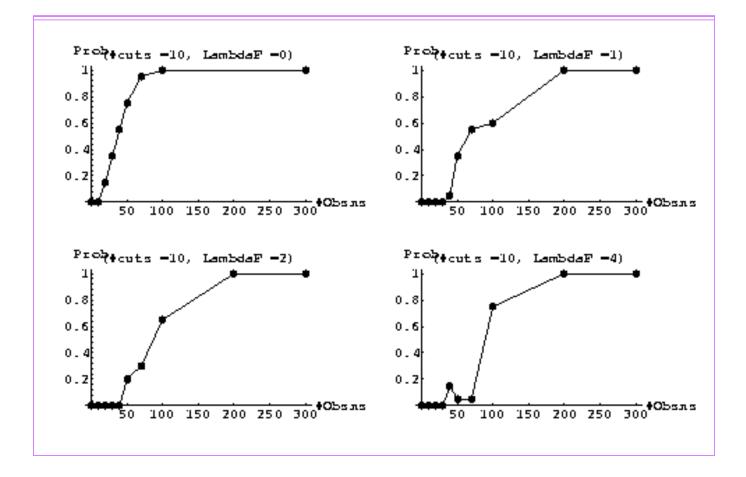
SIZING ERROR?


- Discretization: FAILS!!!
- Continuous Models
- Sizing Error


In order to be able to compute the map with high probability, we need to satisfy the condition

$$\sigma \leq \frac{\ln 2}{2k(k-1)p_E}.$$

For BAC's $\sigma \leq 0.89 \ bp$; For cosmids $\sigma \leq 60 \ bp$.

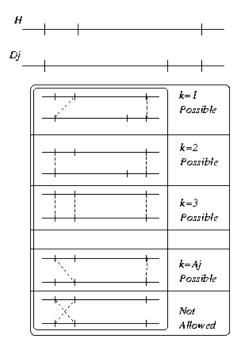

Prediction

The probability of successfully computing the correct restriction map as a function of the number of cuts in the map and number of molecules used in creating the map...

Experimental Results

Gentig: Bayesian Approach

 Model or Hypothesis H Prior distribution of the evidence $Pr[D_i|H]$ Assume pair-wise conditional independence of the events D_i 's $Pr[D_i|D_i,\ldots,D_i,H] = Pr[D_i|H]$ Posterior distributions leads to a log-likelihood cost function $\log\left(\frac{Pr[H|D_1,\ldots,D_m]}{Pr[H]}\right)$ = Bias terms + $\sum_{i} \log \left(\frac{Pr[D_j|H]}{Pr[D_j]} \right)$ Derive a cost function Optimize over a set of hypotheses

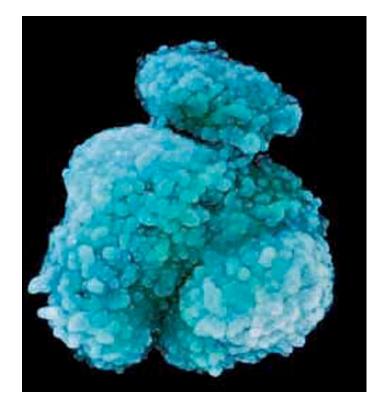

Bayesian Model

$$\circ \mathcal{L} = \sum_{j} \log \left[p_{b} e^{-\lambda_{n}} \lambda_{n}^{M_{j}} + \frac{1-p_{b}}{2} \sum_{k} Pr_{jk} \right],$$

• Where

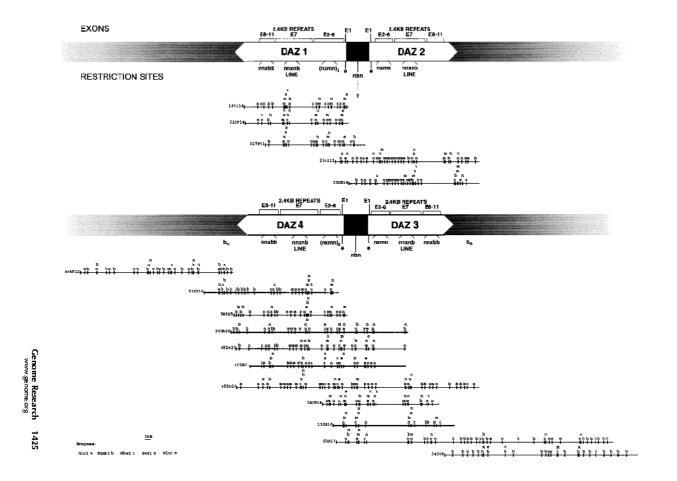
$$Pr_{jk} = \left[\prod_{i=1}^{N} \left(p_{c_i} \frac{e^{-(s_{ijk} - h_i)^2 / 2\sigma_i^2}}{\sqrt{2\pi}\sigma_i} \right)^{m_{ijk}} \right]$$
$$\times \left[\prod_{i=1}^{N} (1 - p_{c_i})^{(1 - m_{ijk})} \right]$$
$$\times e^{-\lambda_f} \lambda_f^{F_{jk}}.$$

Multiple Alignment

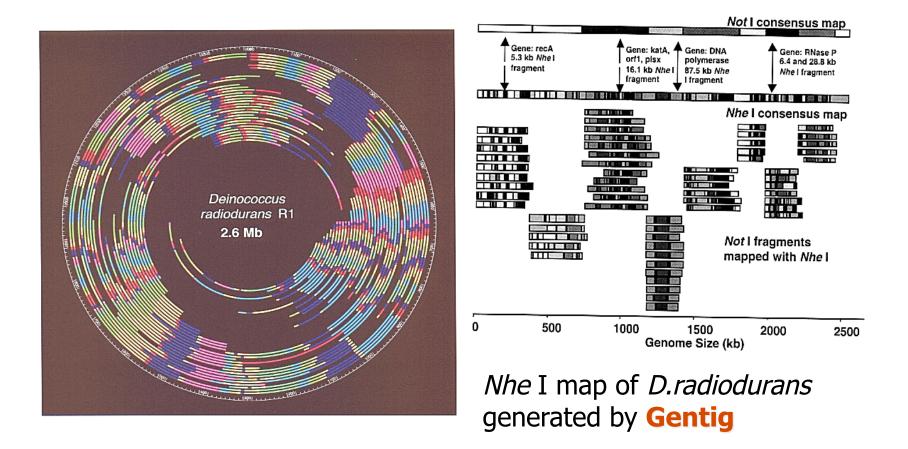


- Various alignments of cuts have to be considered.
- Fast computation is possible...
 via Dynamic Programming and additional heuristics
 - -Key to our fast implementation.

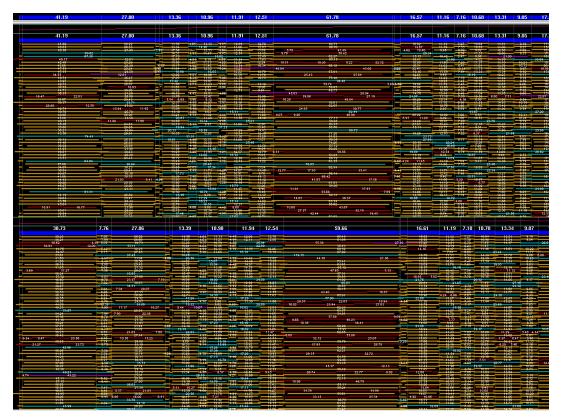
Robustness


- BAC Clones with 6-cutters
 - Average Clone size = 160 Kb; Average Fragment Size
 = 4 Kb, & Average Number of Cutsites = 40.
- Parameters:
 - Digestion rate can be as low as 10%
 - Orientation of DNA need not be known.
 - 40% foreign DNA
 - 85% DNA partially broken
 - Relative sizing error up to 30%
 - 30% spurious randomly located cuts...

Y

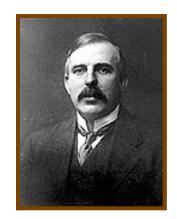


- "From a gene's point of view, reshuffling is a great restorative...
- "The Y, in its solitary state disapproves of such laxity. Apart from small parts near each tip which line up with a shared section of the X, it stands aloof from the great DNA swap. Its genes, such as they are, remain in purdah as the generations succeed. As a result, each Y is a genetic republic, insulated from the outside world. Like most closed societies it becomes both selfish and wasteful. Every lineage evolves an identity of its own which, quite often, collapses under the weight of its own inborn weaknesses.
- "Celibacy has ruined man's chromosome."
 - Steve Jones, Y: The descent of Men, 2002.


Mapping the DAZ locus on Y Chromosome

Gentig Map *Deinococcus radiodurans*

Single Molecule Hapoltyping: Candida Albicans



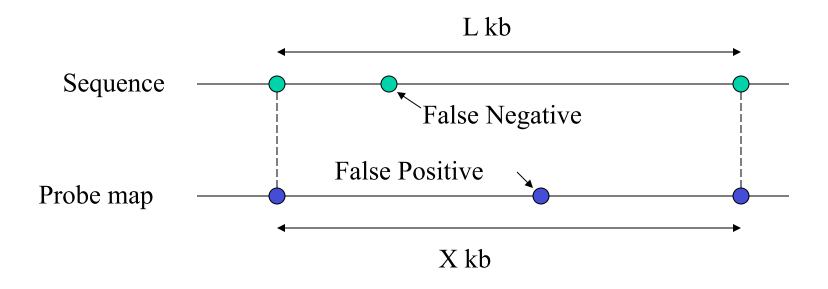
- The left end of chromsome-1 of the common fungus Candida Albicans (being sequenced by Stanford).
- Three polymorphisms:
 - (A) Fragment 2 is of size
 41.19kb (top) vs 38.73kb
 (bottom).
 - (B) The 3rd fragment of size
 7.76kb is missing from the top haplotype.
 - (C)The large fragment in the middle is of size 61.78kb vs 59.66kb.

Sequencing

Sir Ernest Rutherford

"We haven't the money, so we've got to think."

Problem to Solve...


- Given probe maps of some small region of the genome for all N-bp hybridization probes (e.g. all 2080 probes of 6-bp).
- With known error rates (false positive, false negatives and sizing errors).
- Can we reconstruct the complete sequence ?

- Estimated Error rates for consensus probe maps from 40x data redundancy :
 - False Negative rate = 2%
 - False Positive rate = 0.006/kb (2.4% ratio for 6-bp probes)
 - Gaussian error sd = 60bp

Basic reconstruction algorithm

- Keep track of multiple sequence assemblies.
- Initialize with all possible 5-bp sequences.
- Try all 4 possible extensions of each sequence.
- Check if probe is present in corresponding map : if not add a penalty score to the sequence involved.
- Periodically delete sequences with high penalty.
- Stop when missing probe rate jumps significantly from False Negative rate (2%) to (100% - false extension rate) = 55%.
- Return highest scoring sequence.

Aligned probe pair

Likelihood computation

Let:

Pc = 1 - False Negative Rate

 λ = False Positive Rate per kb

 $\sigma\sqrt{L}$ = standard deviation of probe interval when sequence = L kb Then the log-likelihood term for each aligned probe pair :

$$LL = \log(Pc) - 0.5\log(2\pi\sigma^2 L) - \frac{(X-L)^2}{2\sigma^2 L} + FP\log(\lambda) + FN\log(1-Pc)$$

where:

X = measured distance between aligned probes

FP = Number of false positives between aligned probes

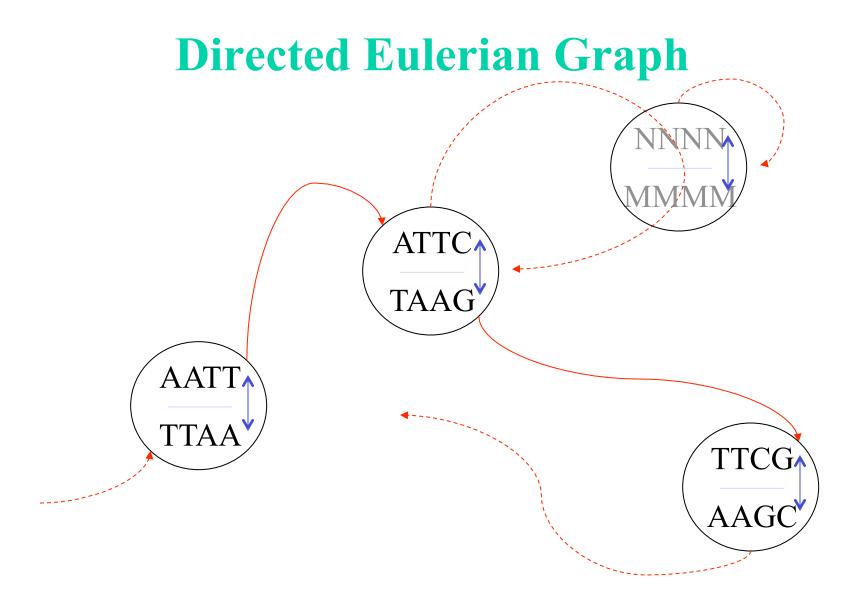
FN = Number of false negatives between aligned probes

Anomalies

- Irresolvable Ambiguities:
 - From assemblies based on 6bp probes

Assembly:...tcgccCCCTAAC ggcga... || || || || Correct :...tcgccGTTAGGGGggcga...

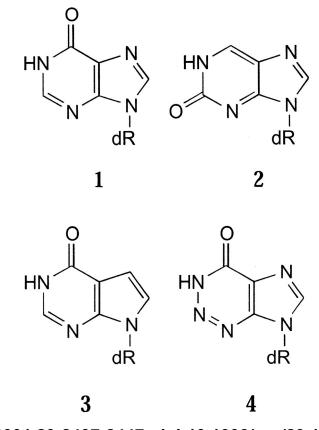
- Error Pattern : s w s^{RC}
- Correct Pattern : s w^{RC} s^{RC}
 - \Box s = tcgcc (any 5 bases)
 - □ s^{RC}=ggcga (Reverse compliment of X)
 - \Box w = CCCCTAAC (any short sequence under 50bp)
 - \Box w^{RC}= GTTAGGGG (Reverse compliment of Y)


 Irresolvable Ambiguities & Unavoidable Error Patterns

- Most common: $\sigma \omega \sigma^{RC}$ vs $\sigma \omega^{RC} \sigma^{RC}$
- Also common: $\sigma \omega \sigma \tau \sigma vs. \sigma \tau \sigma \omega \sigma$
- Many more rare/complicated patterns

 σ = any K-1 bp sequence

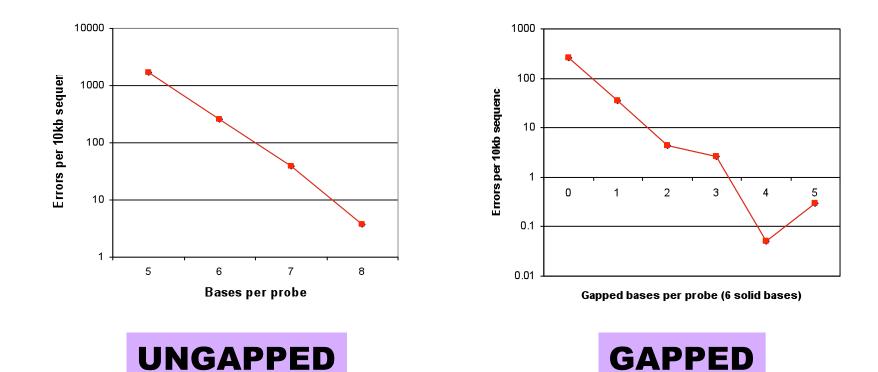
 $\omega, \tau =$ any short sequence under 50bp


• The probabilities of such patterns can be reduced exponentially with "gapped probes" without increasing the costs.

- Mixing 'solid' bases with `wild-card' bases:
 - E.g., xx-x-x-xx (9-mers) or xxx- -x- -xxx (14 mers)
- An 'inert' base
 - Universal: In terms of its ability to form base pairs with the other natural DNA/RNA bases.
- Examples:
 - The naturally occurring base hypoxanthine, as its riboor 2'-deoxyribonucleoside; 2'-deoxyisoinosine; 7deaza-2'-deoxyinosine; 2-aza-2'-deoxyinosine

2'-Deoxyinosine derivatives

 2'-Deoxyinosine derivatives can be used as universal DNA analogues.


Loakes, D. Nucl. Acids Res. 2001 29:2437-2447; doi:10.1093/nar/29.12.2437

Nucleic Acids Research

Gapped Probes

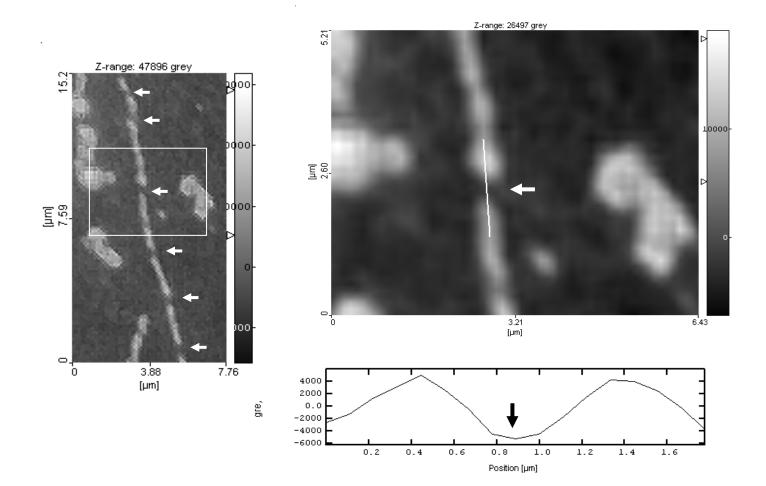
- Gapped probes have inert wild-card bases.
- Patterns simulated include: xxx-xxx (6 normal, 1 gapped base) xx-xx-xx (6 normal, 2 gapped bases) xx-x-x-xx (6 normal, 3 gapped bases) xx-x--x-xx (6 normal, 4 gapped bases) xx--x-xx (6 normal, 5 gapped bases)

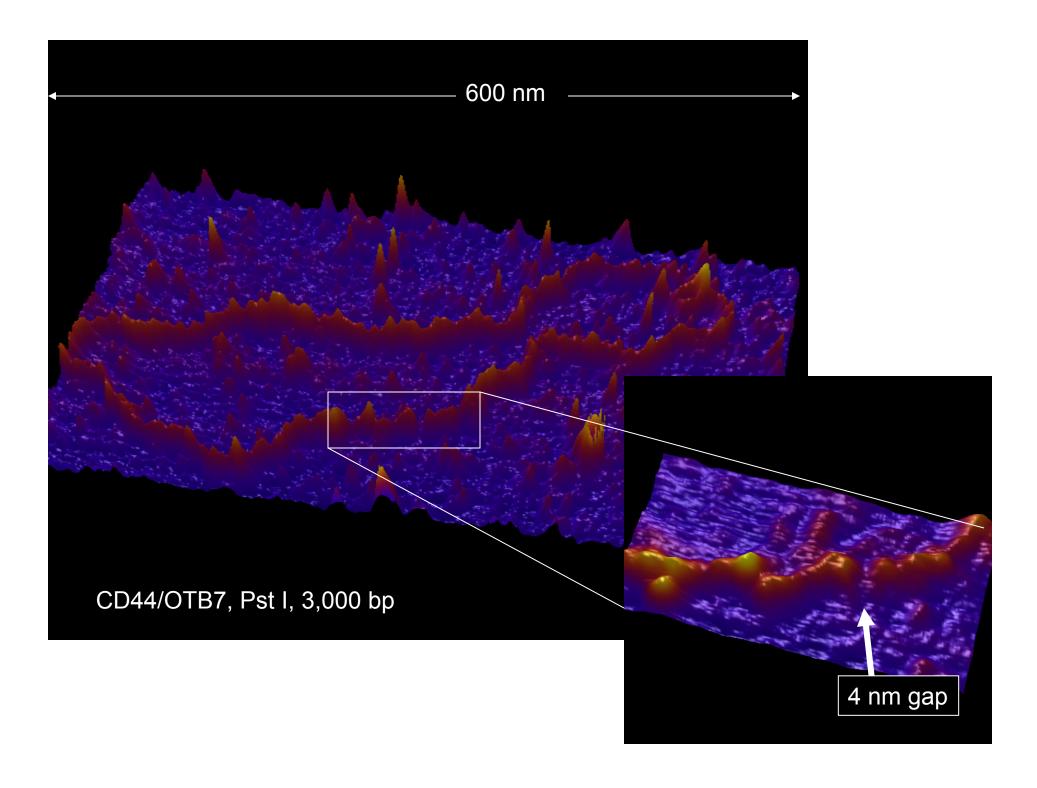
Simulation Results (Random Sequence)

Future

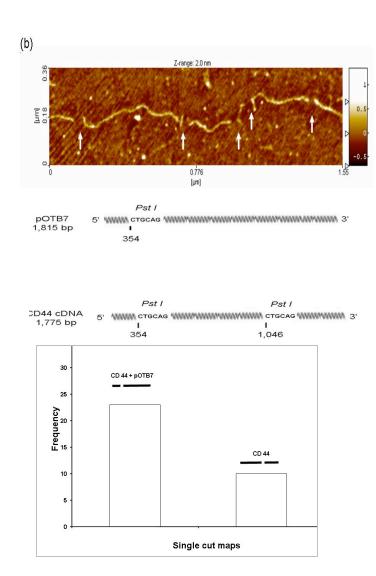
- Sequence Millions of Humans (about 0.05% of the entire Population) Haplotypically
 - with Accurate Characterization of SNP, Indel & Rearrangement Polymorphisms
- Create an Island-Coalescent Model to Characterize Genomics of Human Population
 - Mutations, Duplications, Gene Conversion, Recombination & Migration
 - Population Bottlenecks
 - Positive Selection and Genesweeps
 - Negative Selection and Rare Variants

- Novel Algorithms to Stochastically Model Population Structures
 - Nonparametric Models
 - diFenetti's Idea of Exchangeability
 & Nonparametric Models
 - Algorithms to Estimate the Stochastic Process
- Association Studies
 - Find Disease Markers
 - Origin and Progression of Diseases
 - Individualized Medicine

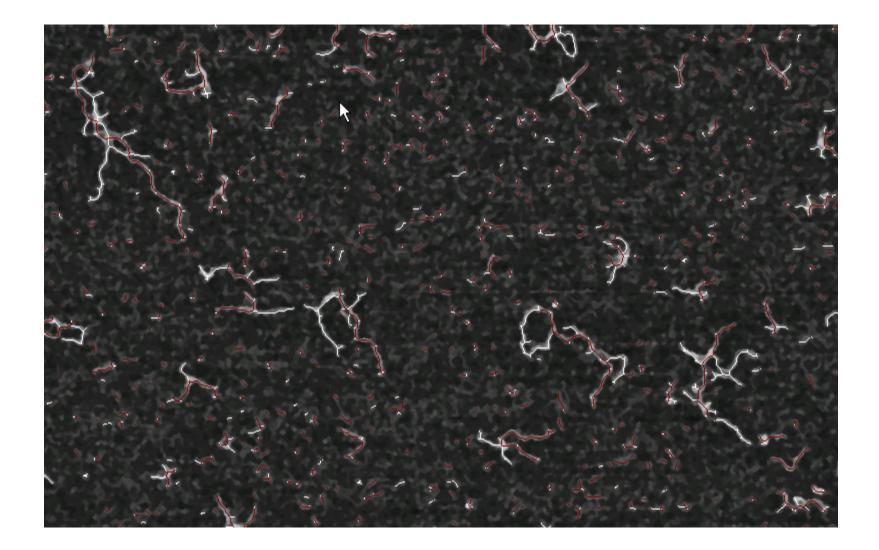

Translational Biotechnology


- Cheap and fast technologies for
 - Genomics
 - Epigenomics
 - Transcriptomics
 - Proteomics
- Are the currently leading technologies aiming at the correct solution?
 - Roche/454
 - Illumina/Solexa
 - ABI/Agencourt

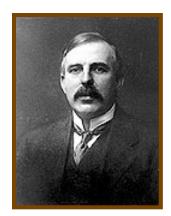
Whole Genomics Sequencing


- Gap free sequences:
 - Think about rearrangements, copy-numbers, translocations, etc.
- Genotypes or Haplotypes:
 - Think about SNP's, LOH, etc.
- Short Repeats:
 - Think how to count copy number "accurately"
- Homopolymers:
 - Think about frame-shifts, etc.

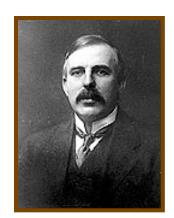
Initial Experiments

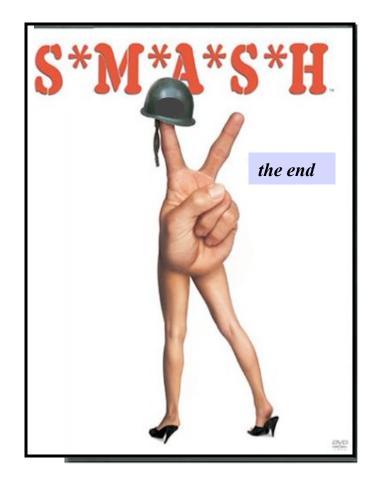


Single Molecule DNA Profiling


• Applications:

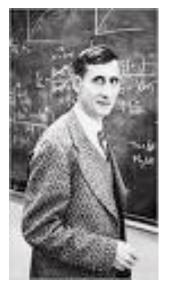
- Quantitation of a mixture of CDNAs from genes (with isoforms)
 - The human CD44 gene encodes an 80 kD, 742 amino acid cell-surface glycoprotein involved in cell-cell interaction and tumor metastasis.
 - CD44 protein is expressed as multiple isoforms in hematopoietic, lymphoid and epithelial tissues.
 - Individual mRNA isoforms of CD44 may signal tumor progression and their detection in surgical biopsies has been postulated as a biomarker for metastatic potential.
- A binary mixture containing one part cDNA from the human CD44 gene and one part DNA plasmid pOTB7.


Sir Ernest Rutherford


- "I have become more and more impressed by the power of the scientific method of extending our knowledge of nature.
- Experiment, directed by the imagination of either an individual, or still better of a group of individuals of varied mental outlook is able to achieve results which far transcend the imagination alone of the greatest natural philosopher."

Sir Ernest Rutherford

"Experiment without imagination, or imagination without recourse to experiment, can accomplish little. But for effective progress, a happy blend of these powers is necessary"



Laptop Genome Sequencer

"What biology now needs is a singlemolecule sequencer ...

*

"A single-molecule machine could be much cheaper as well as faster than existing machines. It might be as small and convenient as a lap-top computer..."