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Morgagni w

= “...he vomited but little at a time, and
seldom and what he did bring up, was
watery and for the most part, bitter...

= “Besides this he was troubled with a
great thirst and with a kind of frequent
swooning, and in particular, with a
pain, just as if he were torn to
pieces by dogs...”

» This case may have been the first

Giovanni Battista Morgagni reported pancreatic tumor
1682 -1771




Pancreatic Cancer

4th leading cause of cancer death
in the US and Europe

Five-year survival rate is only 4%

Almost no progress in diagnosis ’
and treatment in the past 40 years

Healthy and diseased pancreas cells

New insights into the dynamics of these
deadly diseases are urgently needed!



Why Pancreatic Cancer?

No animal model, so computational
models are needed

Signaling models from cancer experts /== : PO s
at TGEN (Translational Genomics) ; :

We will build new analysis and
verification tools

TGEN collaborators will use tools to
better understand cancer dynamics



Model Checking iﬁ

The Model Checking Problem:
Let M be a state-transition graph
Let f be a formula of temporal logic
e.g., a U b means “a holds true Until b becomes true”
a—ra—ra—a b
Does f hold along all paths that start at initial state of M ?

1 Formula f ‘

Representation of M True or Counterexample




Our Vision w

To launch the next generation of research into
revolutionary, highly scalable, and fully
automated Model Checking and Abstract
Interpretation by extending the reach and
application of these techniques into new areas
of science and engineering.




Our Vision iﬁ

Specifically, to undertake a far-reaching and
transformative investigation to gain
fundamental new insights into the emergent
behaviors of complex embedded and
dynamical applications: namely, in systems
biology (pancreatic cancer and atrial
fibrillation) and in engineering (automotive and
aerospace systems).




Primary Challenge: Scalability M

Key Scalability Issues:

Spatial Distribution
Stochastic Behavior
Highly Nonlinear Behavior
Mixed (Hybrid) Continuous-Discrete Behavior
Vast Numbers of System State Variables & Components

Complex Biological & Embedded Systems can exhibit any
combination of these features



Computation Tree Logic (CTL) hﬁ

= Branching Time temporal logic: interpreted over
an execution tree where branching denotes non-
deterministic actions

= Explicitly quantify over two modes — the path and
the time

= Each time we talk about a temporal property, we
also specify whether it is true on all possible
paths or whether it is true on at least one path -
Path quantifiers

— A = “for all future paths”
— E = “for some future path”






CTL Model-Checking w

» Straight-forward approach: Recursive descent on
the structure of the query formula

= [Label the states with the terms in the formula:

— Proceed by marking each point with the set of valid sub-
formulas

= “Global” algorithm:

— lterate on the structure of the property, traversing the whole
of the model in each step

— Use fixed point unfolding to interpret Until:

E (12 U’ 1) ¢ EX (Y Vs A E(1)s U 1))
AU ) ¢ AX (W01 Vo A A U 91))



Engineers Meet Biology

= What is a biological model?
= Who can provide it?

— No Intelligent Designer
to tell us the design.

= \What is a desired specification?

» What is a biologically important property?
— No Teleological Intent
to guide the evolution.
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Biological Models of Cancer iﬁ

= Cancer as a disease of the genome...

= Cancer as a somatic evolutionary process...

= Cancer as a price of symbiosis (mitochondrial)...

= Cancer as a response to multi-cellularity...

= Cancer as a price of repair/regeneration (stem cells)...

= Cancer as a consequence of energy consumption
(glucose metabolism)...

= Cancer as a response to external stress...

= Cancer as a response to the micro-environment (hyper-
and hypo-methylation)...
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Relevant Biological Processes iﬁ

» Signaling:

— Kinases...

= Proliferation:
— Oncogenes and Tumor Suppressor Genes

Differentiation:
— Stem Cells...

Maintenance and Immortality:
— Autophagy, Necrosis and Apoptosis
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War on Cancer

“...as we know, there are known
knowns; there are things we know we
Know.

“We also know there are known
unknowns; that is to say we know there
are some things we do not know.

“But there are also unknown unknowns
— the ones we don't know we don't know.’

— Ex-US Secretary of Defense, Mr. Donald
Rumsfeld, Quoted completely out of context.




Known Known Biology w

* Theory: “World Where There Are Names for Everything.”
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“Addicted to Death” ﬁ

= Cancer is a progressive switch from apoptotic
(scheduled) to necrotic (unscheduled) tumor cell
death.

= The immunobiology of many intracellular factors
are involved:

— the products of purine metabolism (uric acid, ATP,
and adenosine);

— the nuclear protein HMGB1; the S100 family members;
the heat shock proteins;

= Cancer is the consequence of disordered tumor
cell death rather than cell growth

— Loss of homeostasis
— A condition called "addicted to death.”
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Purine Metabolism

= Purine Metabolism
— Provides the organism with building blocks for the synthesis of
DNA and RNA.
* The entire pathway is almost closed but also quite
complex. It contains
— several feedback loops,
— cross-activations and
— reversible reactions



Simple Model
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Figure 10.2. Second model of purine metabolism without representation of activations and
inhibitions (see text for details).




Biochemistry of Purine

Metabolism
e = The main metabolite in purine
biosynthesis is 5-phosphoribosyl-a-1-
i pyrophosphate (PRPP).
' — A linear cascade of reactions
' converts PRPP into inosine
monophosphate (IMP).

— IMP is transformed into AMP and

Y = v
XMP — NP 1&: AMP GMP
(- = — Guanosine, adenosine and their

SAD
GTP SAM

derivatives are recycled (unless

used elsewhere) into hypoxanthine
(HX) and xanthine (XA).

— XA is finally oxidized into uric acid
(UA).




Purine Metabolism




Queries

= Variation of the initial
concentration of PRPP does
not change the steady state.
(PRPP =10 * PRPP1) implies
steady_state()

Persistent increase in the initial
concentration of PRPP does cause
unwanted changes in the steady
state values of some metabolites.

If the increase in the level of PRPP
is in the order of 70% then the
system does reach a steady state,
and we expect to see increases in
the levels of IMP and of the
hypoxanthine pool in a
“comparable” order of magnitude.

Always (PRPP = 1.7*"PRPP1)
implies steady_state()




Queries

= Consider the following statement: = Counter-example: Model checker
= Eventually shows that the increase in IMP is
(Always (PRPP = 1.7 * PRPP1) about 6.5 fold while the

implies hypoxanthine pool increase is

steady_state() about 60 fold.

and Eventually . = The model “over-predicts” the

an C‘f‘g’laeﬁl(:g’:s ? A?IVJ;\?/I;1)) increases in products by amounts

i that are physiologicall
(hx_pool < 10*hx_pool1))) impossibﬁe}’_ gically

= where IMP1 and hx_pool1 are the
values observed in the unmodified
trace.

= The model should therefore be

= The model checker determines that amended
the above statement is false..




Final Model
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Figure 10.4. Map of the “final” model. Light solid arrows represent activation, while light dashed arrows

=present inhibition. Curved heavy arrows entering or leaving the pathway indicate purine ring and ribose
noieties that balance the stoichiometry of the system.
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XS-Systems:

(AAMC M. et al. 2001-2009)

Canonical Form:
Xl—> X2 Xl.__' Xz
(a) (b)

( n+m n+m 0
v _ | I 8jj | I i
Xi - ai X j /5 i X Jj 1= 1 N Figure 1: Representation of an unmodified and of a reversible reaction.
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Figure 2: Representation of a divergence and of a convergence branch point (the
two processes in each reaction are independent of each other).

=
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Figure 3: Representation of a single splitting reaction generating two products,
Xy and Xjg, in stoichiometric proportions and of a single synthetic reaction
involving two source components, X and X always in stoichiometric propor-
tions.

X X X

3 3 4
X— X Xg’X

1 2 2
(s) (®

Figure 4: The conversion of X; into X is modulated (stimulation or inhibition
is represented by the sign of the arrow) by X3. The reaction between X; and
Xs requires coenzyme Xg, which in the process is converted into Xy4.




The activation of Casp9 needs w
APAF1 and cytochrome c

| Pro-casp3

Active holoenzyme
Active cagrﬁ

V

Cleave downstream
cellular proteins to kill cell

DNA damage
Z

nucleus . )
Active site



dATP binds to APAF eyte

&

APAF Deyte/dATP

The formation of holoenzyme

APAF leyte/dATP/pC9

Activation of holoenzyme

APAF leyte/dATP/casp9

Dissociation of holoenzyme

Holoenzyme cleave pCasp3

Activated casp3 cleave DEVD-Afc



Simpathica recapitulate the
holoenzyme formation process
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Decreasing [APAF-1] Kill
Caspase Activity
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here to modify the model in
impathica?
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Xy and Xjg, in stoichiometric proportions and of a single synthetic reaction
involving two source components, X and X always in stoichiometric propor-
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Figure 4: The conversion of X; into X is modulated (stimulation or inhibition
is represented by the sign of the arrow) by X3. The reaction between X; and
Xs requires coenzyme Xg, which in the process is converted into Xy4.




Formal Definition of S-system m

Definition 1 (S-system). An S-system is a quadruple S = (DV IV | DE, C)
where:

— DV ={Xy,...,X,} is a finite non empty set of dependent variables ranging
over the domains Dy, ..., D,, respectively;

— IV = {Xny1,..., Xntm} is a finite set of independent variables ranging

over the domains Dy q,..., Dnyn,, respectively;
— DE is a set of differential equations, one for each dependent variable, of the
form
n+4m n+m

X,;:O!i H X;;;ij —18,; H X;“j
7=1 =1

with a;, 3; = 0 called rate constants;
— C is a set of algebraic constraints of the form
n+m

Ci(Xt, ..o, Xngm) = > (3 [] X1 =0
k=1

with y; called rate constraints.




Verifying temporal properties of
a reactive system

Step 1. Formally encode the behavior of the
system as a semi-algebraic hybrid
automaton

Step 2. Formally encode the properties of
interestin TCTL

Step 3. Automate the process of checking
if the formal model of the system
satisfies the formally encoded properties
using quantifier elimination




Solution

» Bounded Model Checking

» Constrained Systems
— Linear Systems
— O-minimal
— SACoRe (Semi algebraic Constrained Reset)
— IDA



Subway Map of Cancer
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Is this View of Cancer Necessarily
Accurate ?

“If | said yes, that would then
suggest that that might be the only
place where it might be done which
would not be accurate,
necessarily accurate.

= “lt might also not be inaccurate,
.. but I'm disinclined to mislead
anyone.”

— Ex-US Secretary of Defense, Mr.
Donald Rumsfeld, Once again quoted
completely out of context.




Known Unknown Biology w

» Reality: “"World Where There Are No Names of Anything.”

39



The New Synthesis m

Genome

Selection
Evolution
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C
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Transcription Translation




Cancer Initiation and
Progression

Mutations, Translocations,
Amplifications, Deletions

Epigenomics (Hyper & Hypo-
Methylation)

Alternate Splicing

Cancer Initiation and Progression

Proliferation, Motility,
Immortality,
Metastasis, Signaling,
Microenvironment

(autophagy)



Amplifications & Deletions

Tumor suppressor
genes: APC, DCC, p53

Oncogene: ras

.

—— Normal colon cells

, APC gene loss

~ 7 Increased cell growth

; DNA hypomethylation

~— _~ Adenoma class 1

ras gene mutation
Y

Adenoma class II

. DCC gene loss

" Adenoma class II1
| ., P53 gene loss

( f:" —1 .
vl . Carcinoma

, Other gene losses

| €

08 = .
1% x ¥ Metastasis
A, —

Mutation in a TSG

Epigenomics

Conversion of a
Proto-Oncogene

Deletion of a TSG

Deletion of a TSG



Karyotyping




Microarray Analysis of Cancer
Genome

= Representations are
reproducible samplings of

Normal DNA Tumor DNA DNA populations in which
@ @ the resulting DNA has a
reduced complexity.
Normal LCR Tumor LCR — Array probes derived from low

complexity representations of
@7 ' the normal genome
— We measure differences in
gene copy number between
@ Hybridize normal and tumor samples
ratiometrically



Daruwala et al. (PNAS, 2004) w
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Allelic Frequencies: Cancer & Normal

(Anantharaman et al. unpublished)
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Treatment Resistant Cell
Subpopulations

a MDR cells




Cell Stress: Glycosylation ﬁ

= Some tumor-specific conditions (e.g., hypoxia, low pH and
low level of glucose) commonly cause the glucose-
regulated stress response of cancer cells.

= One can induce various stress responses in cancer cells
artificially, and study them experimentally.

= For example, Tunicamycin induces (gylycosylation)
stress:
— It blocks the synthesis of all N-linked glycoproteins (N-glycans)
— And causes cell cycle arrest in G1 phase.
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Rapid Mass Change Detectable

Reed et al. (unpublished)
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Treated Examples

Treatment Duration (hr)



What is going on? Cell Death

Fraction of cells
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Apoptosis via Interferometry + Fluorescence



ATF6p90

Selective
proteolysis l
Y elF2a
e ATF6p50 phosphorylation
Upregulation
of XBPT mRNA Selective
\ translation
XBPI mRNA
splicing

Protective Deleterious

Duration of UPR

Nature Reviews | Genetics
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What is going on? m

0 2 6 8 12 24 hours XBP-1
—

m (tovgm) [ ——
L

peak 8 hr

XBP-1
splice
variant

Transcription factor: XBP-1



Dunno w

“‘Learn to say ‘|l don't know.’
= “If used when appropriate, it will

be often.”

— Ex-US Secretary of Defense, Mr.
Donald Rumsfeld.




Sampling Problem

Tumor Unaffected 6uM thick tissue section;
kidney biomarker + (?)
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What to Do Next? w

= Single Cell Molecular Profiling via RT-PCR

XBP-1 — stress response  36B4 - reference gene

Cell #

| ——
C——
—
e
—
_——
—
A

= Not so easy!



Concept
(M. et al. 2006-2009)

PolyA cDNAs in solution 6&

| Shear Flow
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Image Processing, Pattern Matching

Reed, et al., Nanotechnology, 2007



Single Molecule Restriction Map w
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Microfluidic Device + Fast AFM



AFM vs Sequence

870 x 1,500 nm



Identify and Count




Histogram of Transcript m
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IBM Millipede

MILLIPEDE L TD48-1 =
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Models that are Concepty w

24 == “Pm not into this detail stuff.
T s “I'm more concepty.’

— Ex-US Secretary of Defense, Mr.
Donald Rumsfeld, Once again quoted
completely out of context.




Hidden Kripke Model ﬁ

* “Hidden Kripke Model”

— Reconstruction via ontology based redescription of
time-sliced clusters of time-course measurements
(arrays)

— Information Bottle Neck: Parsimony

» Example: Kripke Models

— Spellman’s Yeast Cell Cycle

— SEB host-pathogen data from WRAIR

— P. falciparum dataset [Bozdech et al, 1(1):085]

— Genome Module Map dataset [Segal et al]




Lossy Compression iﬁ

= Kripke Model as a compressed representation of the true
dynamics

» Rate Distortion Theory of Shannon & Kolmogorov (ca.
1948)

— Trade-off between “rate” (succinctness/compressibility) vs.
“distortion”



Information Bottleneck

= Construct the Hidden Kripke Model using the following:
— the clusters and cluster-edges must optimize the mutual
information terms:
minimize:
I(D;; X;) - B4 1(O]X;; OIX,,4) - B, 1(O]X;; O[X;.1)

= Notice that, conditional on D;, O is independent of X.. Blahut-Arimoto
reduces to EM-style alternating algorithm

— First cluster each D,, identify connections across clusters in
neighboring time points

— Use these connections to derive new constraints on clustering,
and re-cluster.



State-Labeling

» Simultaneously test N null hypotheses, one for each gene
ontology labeling

— Hj: no association between the state of the Kripke Model and an
associated gene ontology label

— Because there are many ontology process labels, there is a large
multiplicity issue

— Brad Efron’s Empirical Bayes FDR



GOALIE: GO Algorithmic Logic for

Invariant Extraction
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AAT87343 - - (GO:0008202 GO:0006766 GO:0006623 GO:0006031 GD:UDUBH_[_VJ 30 sulfur metabolism GO:0050878 regulation of t AAT
<] il \ 2 28 cell motility \ £

— 19 cell death —
GO Tem | Description I 03 amine metabolism | GO
G0:0001501 skeletal development A 19 amine biosynthesis GO:
G0:0006091 energy pathways u 01 programmed cell death GO:
G0:0006461 protein complex assembly 30 energy derivation by oxid. GO:
G0:0006766 vitamin metabolism 49 cell growth GO:
G0:0006873 cell ion homeostasis 3 52 carbohydrate catabolism GO:
G0:0007160 cell-matrix adhesion 3 55 death GO:
G0:0007596 blood coagulation 35 cytolysis GO:
G0:0007599 hemostasis 18 negative regulation of ¢ :

GO categories
describing “source”
cluster but not
“destination”



Unknown Unknown Biology m




Pathologist’s View

Healthy and diseased pancreas cells

73



A Challenge ﬁ

= “At present, description of a recently diagnosed
tumor in terms of its underlying genetic lesions
remains a distant prospect. Nonetheless, we look
ahead 10 or 20 years to the time when the diagnosis
of all somatically acquired lesions present in a tumor
cell genome will become a routine procedure.”

— Douglas Hanahan and Robert Weinberg
= Cell, Vol. 100, 57-70, 7 Jan 2000




Blast from the Past w

—- '?}r; = “| would not say that the future is
4 necessarily less predictable than
the past. | think the past was not
predictable when it started.”

— Ex-US Secretary of Defense, Mr
Donald Rumsfeld.




Foci

= Measurements
— Single Cell Single Molecule Experiments

Modeling & Model Checking

— Phenomenological & Mechanistic Models
= Mining
— Hypotheses

Manipulation
— Diagnostics and Therapeutics
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Translational Systems Biology

= “A Sense of Life: Computational & Experimental Investigations with Models of
Biochemical & Evolutionary Processes,” (with R. Daruwala, Y. Zhou, N. Ugel, A.
Policriti, M. Antoniotti, S. Paxia, M. Rejali, A. Rudra, V. Cherepinsky, N. Silver, W.
Casey, C. Piazza, M. Simeoni, P. Barbano, M. Spivak, J-W. Feng, O. Gill, M.
Venkatesh, F. Cheng, B. Sun, I. loniata, T.S. Anantharaman, E.J.A. Hubbard, A.
Pnueli, D. Harel, V. Chandru, R. Hariharan, M. Wigler, F. Park, S.-C.. Lin, Y. Lazebnik,
F. Winkler, C. Cantor, A. Carbone, and M. Gromov), OMICS - A Journal of Integrative
Biology, (Special Issue on BioCOMP, Ed.: S. Kumar), 7(3): 253-268, 2003.

=  “From Bytes to Bedside: Computational Biology for Biomedical Translational
Research,” (with J.P. Mathew, A. Chinnaiyan, G. Bader, S. Pyarajan, B. Taylor, M.
Antoniotti, C. Sander and S.J. Burakoff), PLoS Computational Biology, 3(2): 1-12,
2007.

= “Metamorphosis: The Coming Transformation of Translational Systems Biology,” (with
S. Kleinberg), ACM Queue 20009.
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Models of Apoptosis

“Mathematical Modeling of the formation of Apoptosome in Intrinsic Pathway of
Apoptosis,” (with S. Ryu et al.), Systems and Synthetic Biology Journal, 2009.

“The Apoptotic Machinery As A Biological Complex System: Analysis Of Its Omics And
Evolution, Identification Of Candidate Genes For Fourteen Major Types Of Cancer And

Experimental Validation in CML And Neuroblastoma,” (with C. Di Pietro et al.), BMC
Medical Genomics, 2009.
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Model Checking in Biology

= “%xS-systems: eXtended S-systems and Algebraic Differential Automata for Modeling
Cellular Behavior,” (with M. Antoniotti, A. Policriti and N. Ugel), High Performance
Computing--HiPC 2002, (Eds. S. Sahni, V.K. Prasanna & U. Shukla), LNCS
2552:431-442, Springer-Verlag, December 2002.

=  “Model Building and Model Checking for Biochemical Processes,” (with M. Antoniotti, A.
Policriti and N. Ugel), Cell Biochemistry and Biophysics (CBB), 38(3): 271-286,
Humana Press, June, 2003.

=  “Taming the Complexity of Biochemical Models through Bisimulation and Collapsing:
Theory and Practice,” (with M. Antoniotti, C.Piazza, A. Policriti and M. Simeoni),
Theoretical Computer Science, 325(1): 45-67, 2004.

=  “Simpathica: A Computational Systems Biology Tool within the Valis Bioinformatics
Environment,” (with M. Antoniotti, S. Paxia and N. Ugel), Computational Systems
Biology, (Ed. E. Eiles and A. Kriete), Elsevier, 2005.

=  “A Coherent Framework for Multi-resolution Analysis of Biological Networks with
Memory: RAS pathway, Cell Cycle and Immune System,” (with P. Barbano, M. Spivak,
J. Feng, and M. Antoniotti), Proc. National Academy of Science U S A, 102(18):
6245-6250, 2005.

79



Algorithmic Algebraic Model
Checking

= “Algorithmic Algebraic Model Checking I: Challenges from Systems Biology,” (with C.
Piazza, M. Antoniotti, V. Mysore, A. Policriti, and F. Winkler), 717th International
Conference on Computer Aided Verification, (The University of Edinburgh, Scotland,
UK, July 6 - 10 , 2005), CAV 2005:5-19, 2005.

= “Algorithmic Algebraic Model Checking Il: Decidability of Semi-Algebraic Model
Checking and its Applications to Systems Biology,” (with V. Mysore and C. Piazza),
Automated Technology for Verification and Analysis: (Taipei, Taiwan, October 4 - 7,
2005), ATVA 2005: 217-233, 2005.

= “Algorithmic Algebraic Model Checking lll: Approximate Methods,” (with V. Mysore), 7th
International Workshop on Verification of Infinite-State Systems, INFINITY 05, San
Francisco, California, USA, August 27, 2005. Electr. Notes Theor. Comput. Sci.,
149(1):61-77, 2006.

= “Algorithmic Algebraic Model Checking IV: Characterization of Metabolic
Networks,” (with V. Mysore), Algebraic Biology, AB '2007, Linz, Austria, July 2007.

= “Intelligently Deciphering Unintelligible Designs: Algorithmic Algebraic Model Checking
in Systems Biology,” (Invited Paper), Interface: Journal of the Royal Society, 20009.
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Optical Mapping

=  “Mapping the Genome One Molecule at a Time -- Optical Mapping,” (with A.H. Samad
et al.), Nature, 378:516-517, 1995

= “Genomics via Optical Mapping Il: Ordered Restriction Maps,” (with T.S. Anantharaman
and D.C. Schwartz), Journal of Computational Biology, 4(2):91-118, 1997.

= “Genomics via Optical Mapping lll: Contiging Genomic DNA and Variations,” (with T.S.
Anantharaman and D.C. Schwartz), Proceedings 7th Intl. Cnf. on Intelligent Systems
for Molecular Biology: ISMB '99 |, 7:18-27, AAAI Press, 1999.

=  “Optical Mapping and Its Potential for Large-Scale Sequencing Projects,” (with C. Aston
and D.C. Schwartz), Trends in Biotechnology, 17:297-302, 1999.

=  “Optical Mapping,” Encyclopedia of the Human Genome, 4: 448-453, Nature Publishing
Group, Macmillan Publishers Limited, London, UK, June, 2003.
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Copy Number Fluctuations

= “Detecting Gene Copy Number Fluctuations in Tumor Cells by Microarray Analysis of
Genomic Representations,” (with R. Lucito et al.), Genome Research, 10(11):
1726-1736, 2000.

=  “Comparing Genomes,” Special issue on "Biocomputation:" Computing in Science and
Engineering. , pp 42-49, January/February 2002.

= “A Versatile Statistical Analysis Algorithm to Detect Genome Copy Number
Variation,” (with R.-S. Daruwala, A. Rudra, H. Ostrer, R. Lucito, and M. Wigler), Proc.
National Academy of Science U S A, 101(46): 16292-7, 2004.

= “Mapping Tumor Suppressor Genes using Multipoint Statistics from Copy-Number
Variation Data,” (with I. lonita and R. Daruwala), American Journal of Human Genetics,
79(1):13-22, July 2006.

= “Copy Number Variant Analysis of Human Embryonic Stem Cells,” (with H. Wu et al.),
Stem Cells, 26(6):1484-9, June 2008.
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Single Molecule/Single Cell
Nanotechnology

=  “Single Molecule Transcription Profiling with AFM,” (with J. Reed, B. Pittenger, S.
Magonov, J. Troke, M.A. Teitell, and J.K. Gimzewski), Nanotechnology, 18, 1-15, 2007.

=  “Atomic Force Microscope Observation of Branching in Single Transcript Molecules
Derived from Human Cardiac Muscle,” (with J. Reed, C. Hsueh and J. Gimzewski),
Nanotechnology, 19 384021 (8pp), 2008.

= “Image Analysis of Single Molecule Transcription Profiles with AFM,” (with A.
Sundstrom et al.), Submitted, 2009.
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Ontology: GOALIE

= “Discovering Relations among GO-annotated Clusters by Graph Kernel Methods,” (with
|. Zoppis, D. Merico, M. Antoniotti, G. Mauri), 2007 International Symposium on
Bioinformatics Research and Applications, ISBRA '07, Atlanta, GA, 2007.

=  “Systems Biology via Redescription and Ontologies (I): Finding Phase Changes with
Applications to Malaria Temporal Data,” (with S. Kleinberg and K. Casey), Systems and
Synthetic Biology Journal (SSB), 1(4): 197-205, 2008.

= “Systems Biology via Redescription and Ontologies (I1): A Tool for Discovery in
Complex Systems,” (with S. Kleinberg et al.), Proceedings of the International
Conference on Complex Systems, 2008.

= “Systems Biology via Redescription and Ontologies (l1): Protein Classification using
Malaria Parasite's Temporal Transcriptomic Profiles,” (with A. Mitrofanova et al.), 2008
IEEE International Conference on Bioinformatics and Biomedicine, BIBM'08, 2008.

=  “Simultaneously Segmenting Multiple Gene Expression Time Courses by Analyzing
Cluster Dynamics,” (with S. Tadepalli, N. Ramakrishnan, L.T. Watson, and R.F. Helm),
(Invited Paper) Journal of Bioinformatics and Computational Biology (JBCB), 7(2):
339-356, 20009.

» “The Temporal Logic of Causal Structures,” (with S. Kleinberg), Uncertainty in Artificial
Intelligence, UAI 2009, Montreal, Quebec, Canada, 20009.
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Answer to Cancer w
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';'r'; = “If | know the answer I'll tell you
* | the answer, and if | don't, I'll just
respond, cleverly.”

— Ex-US Secretary of Defense, Mr.
Donald Rumsfeld.




The end



