
G22.1170: Fundamental Algorithms
Problem Set 0

(Due Monday, Oct 2 2000)

The first three problems require knowledge of discrete mathematics, and
the last two involve the use of PASCAL and UNIX. The problems are meant
to help you review the material, and should not require too much time. For
each problem involving programming, please turn in a printed copy of the
file containing the program and its output on some test runs. Write on it,
attach to it, or include as comments a short prose paragraph describing what
you have done.

Problem 0.1 Prove the following identities for all positive n.

(a) 1 + 2 + 3 + · · ·+ n = n(n+1)
2

(b) 13 + 23 + 33 + · · ·+ n3 = (1 + 2 + 3 + · · ·+ n)2

Problem 0.2 For all m > 0, we define H(m) as follows:

H(m) = 1 + 1
2

+ 1
3

+ · · ·+ 1
m

=
∑

m

i=1
1
i

Show that
1 +

n

2
≤ H(2n) ≤ 1 + n

Problem 0.3 (Optional) You are given a 2N × 2N checkerboard with one
of the corner squares missing. Here N is some positive integer. Show that
this mutilated checkerboard can be completely tiled by a set of L-trominoes.
(L-trominoes are L-shaped tiles made of three squares. The figure 1 shows a
mutilated checkerboard and an L-tromino.)

1



(N = 3)

L-tromino

Mutilated Checker Board

Figure 1: L-tromino

Problem 0.4 (Optional) The Juggernaut-Harakiri, Inc. has perfected the
art of suicide. In particular, they have come up with an algorithm, which,
given N people (numbered 1 through N) and one gun, ensures that all but one
(numbered J(N)) of them end up dead. They proceed as follows: Arrange
the N members in a circle such that (j + 1) mod N and (j − 1) mod N are,
respectively, the left and right neighbours of j. Start with the gun in 1’s
hand. At any instant, a member with the gun shoots the living member
immedaitely to his left, and passes the gun to the next living member to his
left. This continues until one person J(N) survives.

Can you sketch a method to compute J(N) efficiently?

Problem 0.5 Leonardo da Pisa filio Bonaccio (alias Fibonacci) has defined
the following sequence:

F (1) = 1,
F (2) = 1,
F (i) = F (i− 1) + F (i− 2), for all i > 2.

For all other values of i, F (i) = 0.
Here are two different PASCAL programs to compute the Fibonacci Se-

quence:

2



Program.1

program fib1(input,output);

var N: integer;

function fibonacci(N: integer): integer;

begin

if N < 1 then fibonacci := 0

else if N <= 2 then fibonacci := 1

else fibonacci := fibonacci(N-1) + fibonacci(N-2)

end;(*fibonacci*)

begin

while not eof do begin

readln(N);

writeln(fibonacci(N))

end

end.

Program.2

program fib2(input,output);

var N: integer;

function fibonacci(N: integer): integer;

var A, B, I: integer;

begin

if N < 1 then fibonacci := 0

else if N <= 2 then fibonacci := 1

else begin

A := 1; B := 1;

for I := 1 to (N div 2) - 1 do begin

A := A + B; B := B + A;

end;

if odd(N) then B := B + A;

fibonacci := B

end

end;(*fibonacci*)

begin

3



while not eof do begin

readln(N);

writeln(fibonacci(N))

end

end.

Your job is to type these two programs into two files (say fib1.p and
fib2.p), compile and run them on a set of input values. You should go
through the documents describing C-Shell and the display editor Vi. These
will help you to understand how to login, organize and edit your files. After
you have entered the programs in the files, compile them by typing

% pc <filename>

The <filename>, in this case, is either fib1.p or fib2.p. This will produce
a file a.out that can be run by simply typing

% a.out

Your next task is to profile the programs in order to get some idea about
their time complexity . To do this, you have to first compile the programs
with the -p flag, for example

% pc -p fib1.p

When you run the program (by typing a.out, as before), the program will
leave a file called mon.out of data to be interpreted by the profiling program
prof. Now if you type

% prof

you will get a table showing the amount of time spent in different portions
of the program. The heading of the table will look something like this:

%time cumsecs #call ms/call name

For each routine (given by name), the table shows (i) %time: the percentage
of time spent executing the routine, (ii) cumsecs: a running sum of the
amount of time in seconds accounted for by this routine and those above it,
(iii) #calls: the number of time the routine is called, and (iv) ms/call: the
number of milliseconds per call.

4



Using prof, find out how much time fib1 and fib2 spend for each input
value in the range of 1. .25. Plot the amount of time spent against the input
values.
Warning: The time taken by (fib2) may be so small that no significant
digit will appear in the table created by prof. One simple way to remedy
this problem is to introduce a for loop in the main part of the program
that will call the function fibonacci several times (say 100 times). The
time spent in one single execution of the program can be determined by
appropriately scaling the readings.

Problem 0.6 a. Assume you are given the type declaration

type digitset = set of 0..9;

Write a PASCAL procedure symdiff that takes two input arguments X and
Y of type digitset and writes to a var paramter named Z, also of type
digitset. The parameter Z is to receive the symmetric difference of the two
sets X and Y. An element is in the result set (Z), if it is in either input set (X
or Y) but not in both sets. You may of course use the built-in operations on
sets provided by PASCAL, such as intersection (*) and union (+).

Use your program to find the symmetric differences of the following pairs
of sets

1. {0, 2, 4, 6, 8}, {1, 3, 5, 7, 9}

2. {0, 2, 4, 6, 8}, {0, 2, 4, 6, 8}

3. {0, 1, 2, 3, 4, 5}, {4, 5, 6, 7, 8, 9}

b. Again assume you are given the type declaration

type digitset = set of 0..9;

Write a PASCAL procedure powerset that takes an argument X of type
digitset and writes to a var parameter named Z. One would like Z to
be of type set of digitset, but PASCAL does not allow that, so let Z

be presented as an array of type array[0..1023] of digitset. (Because
the input set has at most ten elements, the result will be a set of at most
210 = 1024 elements.) If the argument X has n elements (0 ≤ n ≤ 10), then
all subsets of that set should be stored into the first 2n elements of the array
Z; you need not write into any elements after the first 2n of them.

Use your program to find the power sets of the following of sets

5



1. ∅, the empty set.

2. {0, 2, 4, 6, 8}

3. {0, 1, 2, 3, 4, 5}

6


