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Abstract

Software technology that can be used to validate the logical correctness of mathematical
proofs has attained a high degree of power and sophistication; extremely difficult and complex
mathematical theorems have been verified. This paper discusses the prospects of doing some-
thing comparable for elementary physics: what it would mean, the challenges that would have
to be overcome; and the potential impact, both practical and theoretical.

Memories of Jonathan Borwein

I knew Jon Borwein only briefly and slightly, but my few interactions were extremely memorable.

I first encountered Jon in connection with a collection of essays on the ontology of mathematics
that my late father, Philip Davis, and I were putting together. Jeremy Avigad recommended him
to me as a contributor, writing that “he has a lot to say about lots of things”, which was certainly
true. Jon and David Bailey agreed to write a chapter, and contributed a marvelous essay (Bailey
and Borwein, 2015), spanning the world of experimental mathematics from computations of the
partition function, to reciprocal series for π, to Ising integrals, to protein structure, to chimera
states in oscillator arrays. Being a rather fussy editor, I asked for revisions, and then for more
revisions, until on the third go-around Jon informed me, politely but firmly, that this was the final
version.

Some time later, Jon generously invited me to present a talk at the 2016 meeting of ACMES. I
didn’t know how I fit in, since I barely do mathematics at all, and certainly don’t do experimental
mathematics, but Jon was very encouraging, and I ended up giving a talk which was an early version
of the paper below.

The highlight of my visit to ACMES was certainly my dinner with Jon, Judi, and friends that
evening. Jon, as his friends know much better than I, was in person an ebullient, larger-than-life
character and a wonderful raconteur; the conversation wandered from tales of mathematicians to
the cleverness of octopi. It was worth going out to London, Ontario just for that evening.

In the months following, I had a couple of pleasant email exchanges with Jon: one about whether
mathematicians worked through the proofs of the theorems they use, one about a historical point
— a supposed medieval invention of a random number generator. (It proved to be fictitious.) I very
much looked forward, then, to further interactions with him. I wish that I had had the chance to
know him much better and much longer.
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1 Mathematical proof verification software

One of the major accomplishments of late nineteenth and early twentieth century mathematics
was the determination that essentially every rigorous mathematical proof can in principle be fully
formalized as symbolic logical inference over set theory. To be precise, there are three statements
here:

1. Practically1 every mathematical concept can be defined in set-theoretic terms; and therefore
every mathematical proposition can be formulated as a proposition in set theory.

2. Practically every mathematical proposition that has been rigorously proved, when cast into
set theory, can be proved from standard axiomatizations of set theory using first-order logic.

3. Proofs in first-order logic can be characterized purely in terms of rules for manipulating strings
of symbols; no understanding of the symbols, or mathematical intuition, or anything of the
kind, is required.

The central landmark in establishing these facts was Whitehead and Russell’s Principia Math-
ematica, though many other mathematicians, logicians, and philosophers both before and after were
involved. The validity of a proof expressed in this symbolic form can be checked by a simple com-
puter program that verifies that the sequence of assertions in the proof conforms to a set of rules
for manipulating symbols. The verification program need understand nothing about the content of
the proof, and the identical verification program will work for proofs in virtually every subfield of
mathematics.

The software instantiation of this logical theory has been the development of mathematical proof
verification systems. Over the past fifty years, software environment such as Isabelle/HOL (Nipkow,
Paulson, and Wenzel, 2002), and others have been developed, which allow a user to formulate
symbolic encodings of proofs of mathematical theorems, which the software can then check for
correctness. Substantial libraries of basic theorems and lemmas to draw on have been created, and
some number of advanced, difficult proofs of major theorems have been formally verified, including:

• The prime number theorem, both using the analytical proof based on the zeta-function (Har-
rison, 2009) and the “elementary” proof due to Selberg and Erdős (Avigad, Donnelly, Gray,
& Raff, 2007).

• The Feit-Thompson theorem that every simple group of odd order is cyclic (Gonthier et al.
2013).

• The Kepler optimal packing theorem (Hales et al. 2015).

More or less, it seems safe to claim that;

• Any proof that is standardly taught in undergraduate math courses either already has been
verified with this technology or could be a fairly small amount of work.

• Practically any theorem in the mathematical literature that has been proved could be verified
with this technology; however, any given theorem might well require very substantial amounts
of expert labor. This obviously does not apply to exceptionally complex proofs, such as

1I do not know to what extent the experts agree on which, if any, kinds of theorems lie outside generalizations (1)
and (2). As far as I know, there is essentially universal agreement that (1) and (2) are valid across most subfields in
mathematics. Whether set theory is the best foundation for mathematics, or whether it is important for mathematics
to have foundations at all, are separate questions.
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the categorization of finite simple groups, which presumably would require truly impossible
amounts of expert labor, or the proof of Mochizuki’s ABC theorem, which, as of the time of
writing, is not fully understood by anyone other than Mochizuki himself.

The question I wish to explore in this paper is this:

Can a software technology comparable to mathematical proof technology be constructed
that would allow the expression and validation of arguments in elementary physics, par-
ticularly those that connect theory and observation?

It will be convenient, for purpose of reference, to give this hypothetical project a name; I will dub
it Pavel.

Disclaimer: this paper is exploratory and discursive; it neither presents established results nor
constructs a tight argument. Moreover, my own limitations for carrying out this kind of investigation
will soon become all too obvious to the reader; I do not know as much philosophy of science as I
should for this purpose, and my knowledge of physics is altogether inadequate. The reason that the
discussion in this paper is limited to elementary physics is that that’s all the physics I know. (I
will briefly discuss more advanced physics in section 3.8.1, relying entirely for my information on
(Laughlin and Pines, 2000).) However, to paraphrase Donald Rumsfeld, at 61 years old, one largely
does analysis with the knowledge and abilities that you have, and not those that one would like to
have.

The paper will proceed as follows. Section 2 will further discuss aspects of formal mathematical
proof and of proof verification software further, since those are our primary comparanda and starting
points. Section 3, which is the bulk of this paper, discusses the Pavel project: What it would look
like, and what it might accomplish. As part of this discussion, we will set up a straw man as a
proposed architecture for Pavel; the process of knocking down that straw man will help clarify
what Pavel should look like. Section 4 present a formalization of a simple word problem of the
kind that might be used in Pavel. Section 5 review the history of related ideas and proposals.
Section 6 discusses possible impact of a successful implementation of Pavel on the philosophy of
science. Section 7 will summarize and will discuss directions forward.

2 Formal proof and proof technology in mathematics

To begin with, let us consider the case of mathematics in more depth. We will discuss briefly
the value of the logic-based theory of mathematical proof and of proof-verification technology and
their limitations; this will be useful as a point of comparison for discussing the potential value and
limitations of pursuing these in the context of physics.

Logic-based analysis of mathematical concepts and proofs provides a normative model for rigor-
ous argumentation in mathematics, which is perfectly well-defined, and which applies to practically
every proof throughout the discipline. We will note some limits on the significance of this below;
however, those limits do not make this finding any less significant or astonishing.

Moreover, logic-based analysis of mathematics led to the development of mathematical logic, a
field that is of enormous inherent interest; provides results important for other areas of mathematics,
e.g. the unsolvability of Diophantine equations; and is central to computation theory. The practical
consequences throughout computer technology are incalculable.

It is certainly important to keep in mind the limits of logical analysis as a characterization of
mathematics. It is presumably of little or no value in developing a cognitive theory of mathematical
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understanding and reasoning; that is, a psychological theory of how professional mathematicians,
lay people, children, or animals understand mathematical concepts and arguments (Dehaene, 1997).
In historical studies, the twentieth-century logical analysis is treacherous to use as a framework; it
can lead one to a “Whig history” point of view in which, let us say, Newton’s conception of a point
at infinity or Euler’s conception of a function is viewed as a defective version of our own perfect
understanding. Even as regards contemporary mathematics, it has been argued that the logical sense
of proof does not encompass all that we mean by proof, and that the formulation of mathematical
concepts in set-theoretic terms does not encompass all that we mean by those concepts (P.J. Davis,
1993). The formal viewpoint omits the social role of proofs; proofs are one form of communication
among mathematicians. But, again, these limitations do not negate the enormous importance of
this kind of analysis.

Moreover, thus far the impact of either the theory or the technology on the daily labors of the
mass of professional mathematicians, working in, say, partial differential equations, or homology
theory, or ideal theory, has been much less than the notoriety of mathematical logic and of theorems
such as those of Gödel’s in popular mathematics and among philosophers of mathematics might
suggest. Few, if any, undergraduate math majors at American universities require a course in
mathematical logic; and more than one well-regarded math department does not offer any regular
course in mathematical logic. As for proof verification software, most mathematicians are probably
only dimly aware that it exists at all.

The impact of the technology of proof verification systems has been enormously less than the
theory of mathematical logic. Still, it has had a significant impact in certain areas, and may well
have greater impact in the future. Perhaps its greatest impact to date is as part of a wide range
of activities in implementing logical reasoning on computer systems. This body of work in gen-
eral has had many practical applications, including logic-based programming languages, automated
software and hardware verification, knowledge-based artificial intelligence (AI) reasoners and expert
systems. Broadly speaking, these kinds of systems lie along a spectrum, with different trade-offs of
the expressivity and depth of the representation, on the one hand, versus efficiency of inference, on
the other. Mathematical proof verification lies on the extreme end of favoring expressivity at the
expense of efficiency; nonetheless, technical developments here have impact on similar project with
more directly practical applications.

In particular, proof verification is closely related to logic-based software and hardware verifica-
tion. Much more work has been invested in software and hardware verification than in mathematical
proof verification because of its direct practical significance. The goal of these kinds of verification
system can range from limited verification, determining that the software is free from specific kinds
of bugs, to complete verification that the program works correctly in all respects. Bug-checking
verification is currently a very powerful technology which can be applied to enormous, complex
programs such as operating systems, and complex hardware architectures, such as state-of-the-art
CPUs.

Complete verification of software correctness is much more difficult. A major obstacle is that
it is extremely hard even to state complete specifications for what a complex program should do;
the specification statement ends up being almost as long, and much less intelligible, than the pro-
gram. Therefore, verification of a formal specification works best for functionalities where the
logical specification of the desired functionality is much simpler than its implementation, such as
mathematically-oriented software. For example, Harrison (2006) carried out the formal verification
of library functions that do floating-point computation of trigonometric functions; the verification
raised some interesting subtle issues of correctness beyond what is usually considered in numerical
analysis.

In the long term, we can hope to see other kinds of impact on mathematical practice:
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• Confidence in highly complex proofs can be increased.

• The development of representation might be a step toward content-based search for theorems
in the mathematical literature. Currently, it is often easier to reprove a lemma than to find it
in the literature.

• Ultimately, this is a step toward a “general AI mathematician”; an AI that carry out all, or
many, of the activities of a research mathematician, either by itself or in partnership with a
human.

2.1 What hasn’t been done for math

A number of limitations of the technology should be noted.

Obviously, we do not have AI programs that can generate proofs of a general kind in advanced
math or even in college-level math. The technology for symbolic manipulation, in systems like
Maple and Matlab has become extraordinarily sophisticated (Bailey & Borwein, 2015) this will
suffice for most proofs in high-school and some fraction of proofs in some areas of math. Beyond
that, a handful of interesting original proofs have been generated by computers, either using gen-
eral theorem-proving technology (e.g. the Robbins conjecture (McCune, 1997)) or using programs
specifically written for a particular case (e.g. the four-color theorem (Appel & Haken, 1977).) But
we are far from having a program that can generate the kinds of proofs required of undergraduate
math majors.

We are nowhere near having an AI program that can read the mathematical literature and
“understand” it, in the sense of translating it to a formal representation, or even a program that can
do most of this with occasional assistance from a “human in the loop”. There has been some work on
the much more limited task of translating word problems stated in English into a representation and
then solving the equations. For instance Kushman et al. (2014) report a program that achieves an
overall accuracy of 68.7% on textbook problems that translate into two equations in two unknowns.

A more immediate issue is user-unfriendliness. By all accounts, the learning curve for this
technology is extremely challenging and the user interface uninviting. Consequently, when a new
theorem is verified it is much more likely that an expert on verification has learned the math involved
in the theorem than a mathematician who is an expert in the area of the theorem has learned to use
the verification technology. Verifying the Feit-Thompson theorem involved a six-year collaborative
effort by a team of fifteen mathematicians2 (Gonthier, 2013). If the technology were easy to use,
then one could imagine the “mathematician in the street” taking the trouble to master in order to
check that their proofs are correct; but currently that seems far off.

2.2 Word problems

Another part of math, particularly elementary math, is word problems.

Let us pass over the large problems of natural language processing and of knowledge base
construction and focus on the representational problem: How can the content of a word problem
plausibly be expressed in a logical representation that describes the real world situation and that
suffices for the solution of the problem, when combined with the relevant mathematical theory? The
problem formulation should as far as possible be a direct expression of the meaning of the natural
language formulation of the problem. That is, we want as much as possible of the reasoning needed
to find the solution to be made explicit in the proof structure built on the formulation, and as little

2This does not, of course, imply that it required ninety man-years of work.
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reasoning as possible done implicitly in the process of translating the natural language expression
into the formal problem specification.

Tables 1 and 2 illustrate what I have in mind, for one well-known brain teaser.

Some comments about the formalization in tables 1 and 2. The representation uses a sorted,
first-order logic with theories of time, dimensioned quantities and vectors, and Euclidean geometry,
that I have developed for representing physical theories (Davis, in prep.) The semantics is straight-
forward, and the intended meaning is hopefully self-evident. There is a partial account in (Davis,
Marcus, and Frazier-Logue, 2017). Typewriter font is used for object-level symbols; Italics are
used for sortal symbols. Non-logical symbols have an initial upper-case letters, object-level variables
have an initial lower-case letter, and sortal variables use Greek letters. Sorts of symbols are declared
in a form modeled on declarations in typed programming languages such as Java. Thus, for example,
the declaration

VectorFrom(x,y:Point) → Vector[Distance]
means that VectorFrom is a function symbol, taking two arguments, x and y, both of which are
Points, and returning a value which is a vector of dimension Distance.

The problem formulation in tables 1 and 2 combined with suitable basic axioms and defini-
tions of the dimensions involved, time, and Euclidean space will support a proof of the conclusion
ArcLength(Z,T0,TC) = 150 * Mile.

The complexity of tables 1 and 2 together with the domain axiomatization not shown here, as
compared to the simplicity, both of the natural language expression, and of the mathematical forms
that a human reasoner might write down or think through in solving this problem, might be taken
as a sign that we are seriously on the wrong track here. In particular the gap between the phrase
“the bird flies back and forth between the two trains” and the complex axioms 6 and 7 is concerning.
Certainly any human being would find it much easier to solve the problem directly from the natural
language formulation than to translate the natural language into the formulas in these tables. (I
myself spent some hours getting them right, and I have thirty years’ practice in writing these kinds
of formalisms.) More than that, one might well worry that it would be easier to write a program
that could solve these kinds of problem than to write one that could generate these axiomatizations.

There are a number of partial answers, at different levels. First, the gap from “flies back and
forth” to axioms 6 and 7 can be bridged by positing an intermediate form,3 such as Until(t,φ,ψ),
meaning “Starting at time t, φ remains true at least until ψ becomes true.” Axiom 6 can then be
worded,

6′ ∀ta T0 < ta < TC ∧ V(ta,Place(B)) = V(ta,Place(TrA)) =⇒
Until(ta,Place(B) = Place(TrB),

Velocity(B) =
Vec*(150 * Mile/ Hour, Direction(VectorFrom(Place(B), Place(TrB))))).

and axiom 7′ would be analogous.

Getting to these intermediate representation 6′ and 7′ from “flies back and forth”, seems con-
siderably more doable, though certainly not a solved problem; and the process of getting from the
intermediate forms 6′ and 7′ to axioms 6 and 7 can easily be completely specified.

Second, while a shallower semantic analysis might often suffice to build a computer program
that solves word problems, in the same way that human students sometimes learn to solve math

3Technically speaking, the operator Until here can be viewed as “syntactic sugar”, or as a temporal modal operator,
or, if one performs some “representational tinkering” on the arguments, as a first-order predicate.
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Problem: Two trains 100 miles apart are speeding toward one another. One is going 75 mph, the
other is going 25 mph. A bird flies back and forth between them at 150 mph. How far does the
bird travel before the trains collide?

Sorts: Object, Time, Duration, Point, Distance, Speed, Real

Sortal Functions:
Fluent[α] — Function from Time to sort α.
Vector[α] — If α is a real-valued dimension, then a vector of dimension α.

For example, Vector[Speed] is the sort of velocities.
Vector[Real] is the sort of dimensionless vectors.

α⊗ β — Infix operator: Dimension α times dimension β.
For example, Duration ⊗ Speed = Distance.

α� β — Dimension α divided by dimension β.
For example, Distance � Duration = Speed

Constant Symbols:
TrA→Object – the first train.
TrB→Object – the second train.
B→Object – the bird.
T0→Time – the initial time.
TC→Time – the time the two trains collide.
Mile→Distance – a mile
Hour→Duration – an hour
Standard numerals → Real.

Function Symbols:
Place(x:Object) → Fluent[Point]. The function tracking the position of object x over time.
Velocity(x:Object) → Fluent[Speed]. The function tracking the velocity of object x over time.
Magnitude(v:Vector[α]) → α. Magnitude of vector v. |~v|.
Direction(v:Vector[α]) → Vector[Real]. Direction of v. ~v/|~v|.
V(t:Time, q:Fluent[α]) → α. Value of fluent q at time t.
VectorFrom(x,y:Point) → Vector[Distance]. The vector y− x.
Vec*(s:α, v:Vector[β]) → Vector[α⊗ β].

Scalar s of dimension α times vector v of dimension β.
x:α * y:β → α⊗ β.

Infix operator x ∗ y where x has dimension α and y has dimension β.
x:α / y:β → α� β.

Infix operator x/y where x has dimension α and y has dimension β.

Table 1: Formalization of a word problem: Sorts and Symbols
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Problem Statement:

1. Magnitude(VectorFrom(V(T0,Place(TrA)),V(T0,Place(TrB)))) = 100*Mile.
The two trains are initially 100 miles apart.

2. V(TC,Place(TrA)) = V(TC,Place(TrB))
The two trains collide at time TC.

3. ∀t T0 < t < TC =⇒
V(t,Velocity(TrA)) =
Vec*(25 * Mile/Hour, Direction(VectorFrom(V(t,Place(TrA)),V(t,Place(TrB)))).

Between T0 and the collision, train TrA moves at 25 mph toward train TrB.

4. ∀t T0 < t < TC =⇒
V(t,Velocity(TrB)) =
Vec*(75 * Mile/ Hour, Direction(VectorFrom(V(t,Place(TrB)),V(t,Place(TrA)))).

Between T0 and the collision, train TrB moves at 75 mph toward train TrA.

5. V(T0,Place(B)) = V(T0,Place(TrA)).
The bird starts at train TrA.

6. ∀ta,tb T0 < ta < TC ∧ V(ta,Place(B)) = V(ta,Place(TrA)) ∧ ta < tb < TC ∧
[∀tx ta < tx ≤ tb =⇒ V(tx,Place(B)) 6= V(tx,Place(TrB))] =⇒

V(tb,Velocity(B)) =
Vec*(150 * Mile/ Hour,

Direction(VectorFrom(V(tb,Place(B)), V(tb,Place(TrB)))).
If the bird is at train TrA at time ta, and it does not reach train TrB any time between ta and
tb inclusive, then at time tb it is moving toward TrB at 150 mph.

7. ∀ta,tb T0 < ta < TC ∧ V(ta,Place(B)) = V(ta,Place(TrB)) ∧ ta < tb < TC ∧
[∀tx ta < tx ≤ tb =⇒ V(tx,Place(B)) 6= V(tx,Place(TrA))] =⇒

V(tb,Velocity(B)) =
Vec*(150 * Mile/ Hour,

Direction(VectorFrom(V(tb,Place(B)), V(tb,Place(TrA)))).
If the bird is at train TrB at time ta, and it does not reach train TrA any time between ta and
tb inclusive, then at time tb it is moving toward TrA at 150 mph.

Evaluate: ArcLength(T0,TC,Place(Z)).

Table 2: Formalization of a word problem: Problem Formulation
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problems by pattern matching against problems that they have seen before, I would argue that
solving these problems robustly will require a semantic representation of the depth of tables 1 and
2. For instance, to answer the particular question “How far will the bird fly?”, a computer does not
actually have to understand what is meant by “back and forth” at all; it suffices to understand that
the bird is flying at 150 mph. However, that will not suffice if you change the problem statement or
the question:

• How many times is the bird exactly 10 miles from one or the other train?”

• Is there any time at which the distance from the bird to the first train and the distance to the
second train are both simultaneously decreasing?

• Suppose that whenever the bird reaches a train, it rests for a minute. How far does it fly in
that case?

For any of these, you will need a level of understanding comparable to tables 1 and 2

The objection that people find it easier to solve the problem than to work through the notation
of tables 1 and 2, though often raised as a derisive dismissal of logic-based notations, really has
no weight at all. Working through any description of how a cognitive task is carried out is almost
always more difficult than performing the task. I can guarantee that if somebody builds a system
based on machine learning that solves the bird problem, that will also be harder to understand than
solving the bird problem.

In general, what is the state of the art in representing math word problems in this way? I don’t
know of any systematic study; it would be interesting to carry one out. But my guess would be
that problems in high school level or freshman college level math – that is, elementary problems in
Euclidean geometry and trigonometry, basic algebra, differential and integral calculus through the
first three college courses, and combinatorics — would rarely if ever present difficulties.

Probability theory might often be challenging. The Kolmogorov formulation of probability
theory suffices for all formal mathematical theorems in probability theory (as far as I know); if
you want to prove the central limit theorem, say, or the existence of limiting distribution for a
Markov chain, you can state it and prove it within the Kolmogorov formulation. Likewise, if a word
problem can be easily cast in terms of a sample space, then it can be represented and solved. For
instance, if we wish to answer the question, “What is the probability that a five-card hand is a flush
(including straight flush)?”, then it is straightforward to axiomatize the combinatorics and prove that
#Hand = C(52, 5), #Flush = 4 · C(13, 5) and therefore Prob(Flush|Hand) = 4 · C(13, 5)/C(52, 5)
= 0.00198

However, in many cases the derivation is much more problematic. Consider the following well-
known puzzle:4

A. John has two children and at least one of them is a boy. What is the probability that he has
two sons? Answer: 1/3.

B. John has two children; the older is a boy. What is the probability that John has two sons?
Answer: 1/2.

C. John has two children; at least one is a boy born on Tuesday. What is the probability that
John has two sons? Answer: 13/27.

I’m ignoring here the slight correlation in days of birth due to twins, the even slighter correlation
in sex due to identical twins, and the fact that male births are not exactly 50% of all births.

4The “Monty Hall” problem is even trickier, and has tripped up professional mathematicians.
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(Peter Winkler (email to the author, 12/28/17) has pointed out that almost any real world
situation where you know that John has 2 children and one is a boy — for instance, if you are told
that he has two children, and then you run into him with one child, who is a boy — conforms to the
analysis in (A) or (C) rather than the one in (B). However, he reports running into one real-world
exception: A friend of his was pregnant with fraternal twins, and had some kind of genetic test that
gives positive results if either fetus has a Y chromosome. In that case, the analysis in (A) held; there
was a 1/3 chance that she was bearing two boys.)

If you consider Prob(φ|ψ) to be a sentential operator then the probabilities to be evaluated are
easily expressed:

A. Prob(#{x|Child(x, John) ∧ Sex(x) = Male} = 2 |
∃y,z{x|Child(x, John)} = {y, z} ∧ y 6= z ∧ Male(y))

B. Prob(#{x|Child(x, John) ∧ Sex(x) = Male} = 2 |
∃y,z{x|Child(x, John)} = {y, z} ∧ y 6= z ∧ Male(y) ∧ Older(y, z)).

C. Prob(#{x|Child(x, John) ∧ Sex(x) = Male} = 2 |
∃y,z{x|Child(x, John)} = {y, z} ∧ y 6= z ∧ Male(y) ∧ Born(y, Tuesday))

But I don’t know of any logical formalization which will allow one to go from forms like the
above to stochastic models in which the specified probabilities can be calculated.

Furthermore, stochastic models whose complexity seems quite moderate when presented in an
applied probability textbook, such as the k-gram model of language production, end up being much
more intricate when written out in full in a logical notation. The elegant mathematical formulas
used to describe such models in the research literature often turn out, on careful analysis, to be a
morass of implicit quantifiers of implicit scope and ambiguous variable symbols, superscripts, and
subscripts, meaningful only to someone who reads the accompanying text and understands what is
intended.

Mathematically, statistics is largely a subfield of probability, but it seems to gravitate toward
that class of probability problems that are particularly difficult to formulate logically. I suspect that
many word problems in statistics would be extremely difficult to represent in a reasonable way that
supports the statistical inference.

3 Physics

With the example of mathematics in mind, as inspiration and point of comparison, we can now
enter on the main topic of the question. Vaguely put, can we carry out this same kind of project for
physics? More specifically, can we achieve the following:

• Represent some significant part of the content of physics, including both foundational theories
and the experimental and observational results that they rest on, in a formal language?

• Characterize some significant part of reasoning and argumentation in physics, particularly the
reasoning that connects foundational theories to “real world” situations, in a formal theory of
reasoning?

• Implement the representation and reasoning mechanisms in a technology for argument verifi-
cation for physics?
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3.1 The potential value of this undertaking

If Pavel can be built, then it seems to me that both the finished product and the work involved in
developing the product are likely to have significant payoffs, in a number of different directions.

First, the work involved in Pavel might shed some light on issues in the philosophy of science.
That will be easier to discuss after we have looked at specific issues, so I am deferring it to section 6.

Second, work on Pavel would be a step toward in developing AI that can do flexible, powerful
commonsense physical reasoning. Gary Marcus and I have argued at length elsewhere (Davis and
Marcus, 2014, 2016) that approaches to physical reasoning based on simulation, which currently
entirely dominate AI physical reasoning, are insufficient for many of the kinds of problems that
a general purpose AI will confront, besides being implausible as general cognitive models. It is
certainly the case that physicists, in reasoning about physical situations, use a wide variety of
reasoning techniques beyond simulation. It seems likely, therefore, that analyzing the kinds of
reasoning needed to do physics may open up the space of automated reasoning techniques available
to AI reasoners.

Third, it may be possible to integrate the reasoning in Pavel with program verification tech-
nology, and thus to formally verify the validity of programs that control physical devices, in safety-
critical ways: airplanes, robots, nuclear reactors and so on. A major accomplishment in program
verification, some years ago (Souyris et al. 2009) was the verification of the control software for
the Airbus airplane. However, that verification only proved that the program won’t crash; it didn’t
prove that the airplane won’t crash. In work closer to Pavel, Jeannin et al. (2015) formally verified
a hybrid system for the avoidance of aircract collision. Their domain axiomatization is similar in
flavor to the axiomatizations we develop in this paper, but are quite specialized to the problem
under discussion.

Finally, Pavel would be a step toward the “super-AI-scientist” fantasized by the many “AI as
messiah” enthusiasts; an AI that can achieve an integrated, total, understanding of all of science
and thus can solve those of our problems that can be solved that way. In fact, it seems to me that
solving the issues involved in Pavel is a necessary step; the super-AI-scientist must have the kind
of general understanding that is encoded in Pavel.

Paleo (2012) similarly argue in favor of expressing arguments in physics in proof-theoretic terms,
arguing that this will clarify existing debates in the philosophy of science and “open new conceptual
bridges between the disciplines of Physics and Computer Science.”

3.2 The Bayesian formulation

In thinking about Pavel, I find it helpful to keep in mind the Bayesian approach to scientific
hypothesis and data (Jaynes, 2003); (Rosenkrantz, 1977), (Howson & Urbach, 2006) (Strevens,
2005), partly as a framework to make things concrete, partly as a foil to work against.

The basic Bayesian formulation of scientific theorizing is straightforward. There is a space
Φ of possible scientific theories; that is, each hypothesis h ∈ Φ is a complete theory of physics.
There is a space ∆ of possible total data collections; that is, each element D ∈ ∆ is a combined
record of all the outcomes of all the experiments and observations ever performed. We are given one
particular collection of data D ∈ ∆. We are looking for the most likely theory given the data; that
is, argmaxh∈ΦP (h|D). So now, as always, we use Bayes’ Law:

argmaxh∈ΦP (h|D) = argmaxh∈ΦP (D|h)P (h)

All that’s left is to set the priors P (h), to compute the conditional probabilities P (D|h), and
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to find the maximum of the expression. Within reason, the exact values of the priors don’t matter
much anyway, since their contribution is soon swamped by the data. That is, you think of each
imaginable theory of physics as a generative stochastic process that outputs data, and thus defines
a probability distribution P (·|h) over ∆. You imagine a prior distribution over all such processes.
Then you match the observed data to the predicted data.

One thing that’s appealing about this is that it completely eliminates the need for scientific
induction as a separate mode of reasoning. There is no need to address the difficult question of what
it means for data to support a hypothesis; Bayes’ law allows you to turn that into the much more
straightforward question of whether a hypothesis predicts data.

The hypotheses in Φ must all be mutually exclusive or the method doesn’t work. They cannot
be theories in the logical sense, organized in a lattice of generality, because the probability of a
more general theory is necessarily less than a narrow theory. Given any premise or data, the
conditional probability of ∀xB(x) =⇒ A(x) is cannot be greater than the conditional probability
of ∀xB(x)∧C(x) =⇒ A(x), because the first sentence implies the second. If, therefore, Φ included
more and less general theories, the maximum would never land on the most general theories; those
are always the least probable. In Bayesian models, therefore, all the hypotheses are maximally
specific. For example, in the Hierarchical Bayesian Models theory (Tenenbaum et al., 2011), all
the theories in Φ are generative stochastic models that generate data. The choice therefore, is not
between “∀xB(x) =⇒ A(x)” and “∀xB(x) ∧ C(x) =⇒ A(x)”. Rather the choice is between

H1(p): ∀xB(x) =⇒ A(x) and A occurs randomly with probability p among entities
that are not B;

vs.
H2(p): ∀xB(x) ∧ C(x) =⇒ A(x) and A occurs randomly with probability p among
entities that are not both B and C;

Here p is a parameter that will be optimized (viz. set to the measured frequency of A in the
two referent sets). Since H1 no longer implies H2, there is now nothing to prevent us from assigning
a higher prior probability to H1 than to H2.

As is well known, Bayesian theories are equivalent to minimum description length theories
under the information-theoretic correspondence I(φ) = − log2 P (φ). That is: you choose an optimal
encoding for hypotheses based on their prior probabilities, or, conversely, you set the prior probability
to be exponential in the length of the theory: P (h) = 2−I(h) where I(h) is the number of bits needed
to express h. For each hypothesis h, you choose an optimal encoding for possible data outputs where
I(D|h) = − log2 P (D|h). So overall you have attained an expression of length I(D) = I(D|h)+I(h).
Choosing the most probably value of h given D is then equivalent to using Occam’s razor to choose
the shortest expression of the data; that is, we find the simplest, most elegant theory that explains
the data.

In some ways, this seems enormously appealing, almost inevitable; in other ways it seems
completely far-fetched ((Sober, 2002) is a sharp critique.) The idea that there exists a space Φ of
fully formed physical theories prior to making any observations and the idea that there is a space
∆ of possible data collections that exists independent of the physical theory — all the theory does
is to change the conditional probability distribution over ∆ — do not correspond to our experience
of how science actually progresses. What we see, rather, is a tight mutual dependence between
theory and data. On the one hand, in the development of science, the data collected thus far affects,
not just the choice of theories, but even the language that the theories are expressed in. On the
other hand, the choice of which experiments to carry out or observations to make depends on what
is known about the physics. As we will discuss further in section 3.5, an experimental device or
design and the interpretation of its behavior as data depend critically on knowledge of physics; if
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the physics of world were otherwise, then the experiment would be not merely inconclusive, it would
be meaningless or impossible.

A Bayesian might justify the spaces Φ and ∆ with the following Gedanken experiment. Let us
fix the scientific investigator under discussion: perhaps a new born baby (Gopnik, 2012), perhaps
a scientific community over millennia. Imagine now the collection Ω of all epistemically possible
physical worlds; or, at least, all those consistent with the existence of a baby/scientific community.
(This is somewhat similar to Tegmark’s (2009) Level IV multiverse.) We insert a clone of the
investigator into each possible world. The investigator’s task in each world is to find out which
world he is in; or at least to get some information about that. We now, from the outside, observe all
these investigators in all these worlds. At a certain point, we stop him; we find out what data he have
seen and we ask him what physical theory he now believes, or what set of alternative theories he has
under consideration. For each world w ∈ Ω, let Dw be the collection of data that the investigator
has compiled in w and let Φw be the set of alternative theories that the investigator in w reports.
Then ∆ = {Dw|w ∈ Ω} and Φ =

⋃
w∈Ω Φw.

The fact that, in different worlds, the investigator will perform different experiments and make
different observations is merely the standard scenario in decision theory in which the space of possible
actions may depend on prior observations. It slightly complicates Bayesian inference, but does not
fundamentally alter it.

The reason that this view seems alien (the Bayesian can continue) is that, due to our own
cognitive limitations, we are not used to taking such a large view; we are used to looking at the
development of science through a much narrower window. However, fundamentally, behind the
scenes, this is what is going on. In fact the ultimate AI scientist will be able to take exactly this
view of things; it will take into account all of the scientific data D that has been collected and chose
the best among all possible scientific theories h ∈ Φ, up to limits of computational power.

The transformation of a theory of physics — that is, a collection of physical laws — into
a stochastic model elicits starkly varying reactions from different people. To a Bayesian, this is
natural, indeed inevitable; trying to do inference without a distribution is like trying to bake a cake
without an oven. To a logicist, burdening an elegant, well-motivated logical theory with an ugly,
arbitrary probability distribution is adding an unnecessary excrescence; it is like trying to bake a
cake with a blowtorch. As we will discuss in section 3.5, the relation between theory and a scientific
theory, in general will carve out a strangely shaped, lower-dimensional manifold5 in the space ∆ of
all data collections; and defining a natural distribution over such a manifold is a problematic and
ill-defined undertaking. It is hard enough to characterize the sense in which the observations of the
tides, for example, can be explained in terms of Newton’s law of gravity. The question, “What is the
probability distribution over observations of the tides, given Newton’s law?” seems a truly strange
one.

We will not pursue this argumentation back and forth further here; however, in the course of
our discussion, we will refer back to this as a possible frame of reference. An implementation of this
approach by Kemp and Tenenbaum (2009) will be discussed in section 5.4.2.

3.3 Straw man: The tee-shirt model of Pavel

At this point I want to put up a straw man proposal for an approach to building Pavel; the process
of knocking it down will serve as an effective frame for making the points I want to make.

The straw man is this: We express the famous laws of physics in a formal logic. These are the
5You may argue that because of noise, the theory does not correspond to a lower-dimensional manifold, it cor-

responds to a probability distribution centered on the manifold. That hardly helps, because now the probability
distribution of the projection onto the manifold depends strongly on largely arbitrary assumptions about the noise.
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axioms of our system. Everything else is proved from those axioms. In our Bayesian formulation,
this collection of axioms is the hypothesis h.

I call this “the tee-shirt model”, because tee-shirts printed with a few elegant equations are
popular among the geekier part of the population. Full disclosure: As an undergraduate I owned and
wore a Maxwell’s equations sweatshirt. Less snarkily, I will also call this approach “the foundational
approach” when that is more appropriate.

Now, the tee-shirt model is exactly the equivalent of what is done in mathematical proof veri-
fication systems. The basic axioms given are the ZFC axioms of set theory (or some other similar
foundational set); everything else in math is defined in terms of sets and all proofs can ultimately
be traced back to the foundational axioms. At the other extreme, it is hard to imagine that anyone
would propose anything like the tee-shirt model for chemistry or biology, let alone for the cognitive
or social sciences, with the possible exception of economics. But physics occupies a middle ground
here, and it seems as though the tee-shirt model should be more or less attainable. I will argue that,
at least in our current state of understanding, the tee-shirt model is nowhere close to right, for quite
a number of reasons.

3.4 The equations are more complicated than their tee-shirt version

To begin with a rather minor point: the actual equations of physics are often more complicated than
than they appear on tee shirts.6

To take a simple example: On the tee-shirts Newton’s theory of universal gravitation might
well be given in two equations;

F = G
mimj

r2
Universal law of gravitation

F = m
d2x

dt2
Newton’s 2nd law

But actually, a force is a vector with a direction, and Newton’s second law applies to the vector
sum of all the forces incident on a particle. Forces and positions are functions of time. We need to
exclude forces by a particle on itself. So for point particles, the equations become

i 6= j =⇒ ~Fi,j(t) = G
mimj · θ̂(~xj(t)− ~xi(t))
|~xj(t)− ~xi(t)|2

mi
d2~xi(t)
dt2

=
∑
j 6=i

~Fi,j(t)

The indices i, j range over particles. We use θ̂(~v) to mean the direction of vector ~v: θ̂(~v) = ~v/|~v|.

If we want to have extended objects, then things become still more complicated. We can develop
a theory of eternal extended objects constructed from particle by introducing a predicate c(pi, pj),
meaning “particle pi is connected to particle pj .” The object is then the set of particles within the
transitive closure of the relation c.

6The Lagrangian for the Standard Model, given in full in (Gutierrez, 1999), is 36 lines long and has something like
170 terms and 1000 symbols. However, Gutierrez does claim that he has printed tee shirts with the whole thing.
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For a rigid object, ignoring contact forces between the objects — that is, allowing objects to
freely interpenetrate — we get the following rules:

c(pi, pj) =⇒ c(pj , pi)

c(pi, pj) =⇒ |xj(t)− xi(t)| = di,j

~Fi,j(t) = −~Fj,i(t)

¬c(pi, pj) =⇒ ~Fi,j(t) = G
mimj · θ̂(~xj(t)− ~xi(t))
|~xj(t)− ~xi(t)|2

mi
d2~xi(t)
dt2

=
∑
j 6=i

~Fi,j(t)

The second equation above expresses the rigidity constraints by requiring the distance between
connected particles to be constant. The third equation is Newton’s third law.

For elastic objects, the second equation above, characterizing the constraint between connected
particles, is replaced by Hooke’s law:

c(pi, pj) =⇒ ~Fi,j(t) = ki,j(|~xj(t)− ~xi(t)| − di,j) · θ̂(~xj(t)− ~xi(t))

The formulation for continuum mechanics is similar, but replaces the force by force density,
the relation between connected particles by the corresponding partial differential equations, and the
summation by an integral.

These don’t have quite the same panache on a tee shirt. This observation does not refute the
possibility of using a foundational model to build Pavel, but it does suggest that formulating the
the foundational equations correctly may take more care than one might suppose.

3.5 The Grounding of Physics in Observation and Experiment

The most serious objection to the tee-shirt model is it ignores the problem of expressing the connec-
tion between the terms in the equations and the ways that these are manifested in the world that a
physicist interacts with.

A hypothetical student who merely knows the above equations and has worked through their
mathematical consequences can hardly be said to have an adequate understanding of gravity. She
additionally needs to understand the consequences of these equations in the observable world; how
they explain falling objects in the everyday setting; the weight of objects, as perceived and as
measured on scales of various designs; the motion of planets in the solar system; the tides; and so
on.

None of these observations in itself validates the entire Newtonian theory of universal gravity;
each corresponds to part of the theory, with some degree of indirectness. Measuring the time that
an object takes to fall various distances gives indirect information about the acceleration, but none
about the forces, the masses, or the distance to the center of the earth. Feeling the weight of an
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object being held gives fairly direct but very imprecise information about the force of gravity on the
object (what you are directly experiencing is the normal force of the object on your hand). Using
a spring scale gives indirect information about the weight of the object, in the form of the height
of an indicator, mediated by the compression of a spring. Using a balance scale gives information
about the weight of the object being weighed as compared to standard weights mediated by the
law of the lever. For the observations of the planets, which were the major source for the theory
of gravity, the data was a record, over time, of the direction from the earth to the planets, the
earth itself, of course, being a platform with a complex movement. It took the combined genius of
Kepler and Newton to show how these measurements related to the equations of gravity, and even
so, the astronomical observations did not give any information about the absolute distance of the
planets. Until the observations became precise enough for the effect of one planet on another to be
measurable, they likewise gave no information about the relative masses of the planets. The tides,
correctly explained, are an effect of the spatial derivative of the gravitational force of the moon,
as reflected, though a complex mechanism, in a twice-daily rising and falling of sea level at every
sea-coast location.

As experiments and theories become more complex, the relation between the observations and
the theory generally become more indirect, at least in some respects. Cavendish’s experiment (fig-
ure 1) to determine the gravitational constant (from his point of view, to determine the mass of
the earth), for the first time succeeded in creating a setting in which the masses and the distances
could all be directly measured. But the measurement of the minuscule gravitational force created
(1.74 · 10−7 Newton) is quite indirect: The torsion coefficient for the wire is determined by timing
the oscillation period for the small balls twisting back and forth on the wire; the force needed to
twist the wire is then calculated from the small angular deflection created.

The deeper the science, the more indirect the experimental evidence. The relation between
Schödinger’s equation and the experiments that support it are very indirect. You need to know a
lot of physics to understand how gravitational wave detectors work or how the Higgs boson was
detected.

At the other end of the spectrum, we have been speaking of measuring distances and time as
though those were atomic percepts. But measurements rely on measuring devices; measuring small
distances requires an accurately calibrated ruler, and measuring durations of time requires a clock.
Designing high quality rulers (see for instance Berger, 2010 pp. 116-120) or clocks requires some
physics and some engineering. (The foundations of theories of measurement is analyzed in (Suppes,
Luce, Kranz & Tversky, 1974).)

Moreover, measurements are taken separately, and the experimenter assumes that they remain
[close to] constant from one stage of the experiment to the next. In the Cavendish experiment,
you first measures the torsion coefficient using oscillation; and then you assume that that same
coefficient is valid when you are measuring the gravitational force between the balls. You first
weigh the balls on a scales and then place them in the apparatus. We are thus drawing on a basic
commonsense understanding of world in reasoning about the experiment, but we also know that
that the commonsense view is insufficient.

Therefore, in Pavel’s encoding of the relation of Cavendish’s experiment to the law of universal
gravitation, the statement of the law of gravity is only a small part of the physics knowledge that
you need, and the final actual measurements — the masses of the objects, the length of the rod, the
oscillation period, and the displacement of the balls — are only a very small part of the description of
the situation. Most of the knowledge of physics — the relevant part of h, in our Bayesian formulation
— has to do with the properties of parts of the apparatus: most obviously, that the wire will exert a
force against twisting proportional to the angle of twist, but also that the rod remains (reasonably)
straight, that the masses of the balls remain (close to) constant in between being weighed and being
placed in the apparatus. Almost all of the data — the relevant part of D in the Bayesian formulation
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Drawing by Chris Burks. From the Wikipedia article, “Cavendish Experiment”.

Figure 1: Cavendish’s experiment
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— is a description of the design of the apparatus and of the procedure followed. The representation
of the procedure must, at least implicitly, characterize all the things you didn’t do in the course of
the experiment: you didn’t cut the rod shorter after measuring it or chop a chunk out of the balls
after weighing them.

Moreover, a full description of the experiment should in principle include a description of the
measurement apparatus and how it is used. The oscillation period was 20 minutes; but what kind
of clock did you use? The small balls weigh 1.61 pounds; but what kind of scales did you use? Life
being finite, the regress here cannot be infinite; and it would seem to bottom out, partly in systems
of circular support (e.g. two independent rulers or clocks confirm one another), partly in direct
perception (e.g. the ticks on the ruler look equally spaced), partly in some physical assumptions in
the reasoning system that are made and not justified (e.g. that the masses do not change between
being weighed and being put in the experimental set-up); and, at the individual level, in trust in
the scientific community.

This last issue of trust is a major epistemic difference between mathematics and physics. In
principle, a mathematician can check the proof of every theorem she is using; in practice, mathe-
maticians do work through the proofs of many of the basic results in their area, and, even in our
time, some mathematicians are known for their care in checking the proofs of the theorems they
use. (MathOverflow, 2016). By contrast, a physicist must trust both that the suppliers of scientific
equipment are not sabotaging her lab by sending her defective instruments and equipment, and that
other physicists are accurately reporting their experimental results. Even in principle, a scientist
cannot rerun all the experiments that underlie her theory. Some require unique equipment (the
Hubble telescope, the CERN accelerator); others, such as astronomical observations, can only be
made from particular locations at particular times (or must be made at multiple locations simulta-
neously). In mathematics, the communal aspect is important (Martin and Pease, 2015); in physics
and the other sciences, it is inescapable.7

To calculate the mass of the earth, Cavendish additionally needed to know the radius of the
earth, which, at least in Cavendish’s time, in turn was based on all kinds of geographic knowledge —
knowing the north-south distance between two cities and comparing the angle of shadows at noon on
the same day, and such. (The radius of the earth is also one important starting point for much of the
knowledge of astronomical distances.) One doesn’t necessarily think of pacing out the distance from
Cyrene to Alexandria as a physics experiment, but these measurements certainly have implications
for physics, and they are all part of the data D in our Bayesian formulation.

From the standpoint of the foundational approach, all this information consists of rules for
translating human-scale realities into boundary conditions. That seems like an strange characteri-
zation, but, in the foundational approach, there is nothing else that it can be, as far as I can see.
There are the differential equations, which are the foundational dynamics laws, and then there are
the boundary conditions, and there is no room for anything else to enter in.

3.6 Is the complexity of grounding different in physics than math?

I have argued that, in our reasoning system, the fundamental laws can only be a small part of the
content. One might respond that an analogous situation holds with mathematics. Only a very
small part of the mathematical knowledge of a mathematical proof verifier consists of the base ZFC
axioms of set theory; most of the content is the definition of more complex mathematical concepts
— the real numbers, the Gamma function, the regular dodecahedron, the class of NP-complete

7Large levels of trust are needed in any such enterprise. That is why conspiracy theorists, who are willing to
distrust any evidence that runs against their theory, are so crazy and so unanswerable; and why any violation of trust
— by scientists, by technologists, by the media — is so damaging, not just to the specific instance, but to the entire
scientific/technological enterprise.
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languages, Lie algebras, and so on — as set-theoretic constructions. Similarly, we could start with
the foundational elements of physics, define things like the Cavendish experiment as a construction
over the foundational elements, and then prove the behavior of the experiment from the foundational
laws.

In principle, this is presumably possible; in fact, as we will discuss in section 3.7, it is an impor-
tant principle of physics that in principle this is possible. In practice, however, it is so far from being
possible as to be not worth discussing. In mathematics the reduction to set theory is reasonably
straightforward; any mathematician could work out the set-theoretic definition of the Gamma func-
tion and the rest of them, perhaps occasionally looking up some forgotten definition in Wikipedia or
MathWorld. By contrast, characterizing the internal structure of the wire in Cavendish’s experiment
in terms of the atomic structure of its material, and proving that when twisted it exerts a restoring
force proportional to the angle (rather than, for example, breaking, deforming, disintegrating, exert-
ing a negative force, or exerting a force that is non-linear in the angle, within the angle range under
discussion) are extremely difficult. We will discuss this issue of argumentation further in section 3.8.

In mathematics, one sometimes gets out of these difficulties by positing the properties that you
want; define a “Cavendish wire” to be one that, on twisting, exerts a restorative force proportional
to the angle of twist, and then define the Cavendish experiment as using a Cavendish wire. But in
this context, that doesn’t help; we now have to prove that there exist Cavendish wires, and that the
wire that was actually used in the experiment is a Cavendish wire.

3.7 Claims to universality

A distinguishing feature of physics, as compared to other disciplines, is that it makes claims to
universality of a certain kind. Specifically, physics makes one very general universal claim, which I
will get to, but it also makes a number of more limited, but still very broad claims. Let me discuss
a few, in increasing order of generality.

Historically, perhaps the first important finding of this kind was Laplace’s successful explanation
of all the motions of the planets then known in terms of Newton’s law, which he published in his
five-volume opus Méchanique Céleste (1799-1825). (The precession of the perihelion of Mercury,
which requires general relativity, was reported by Le Verrier in 1859.)

Second: In chapter 1 of his Lectures on Physics, Richard Feynman (1964) wrote,

If, in some cataclysm, all of scientific knowledge were to be destroyed and only one
sentence passed on to the next generation, what statement would contain the most
information in the fewest words? I believe that it is the atomic hypothesis . . . that all
things are made of atoms — little particles that move around in perpetual motion,
attracting each other when they are a little distance apart, but repelling upon being
squeezed into one another.

As further confirmation of the centrality of the atomic hypothesis, we may note that the reality
of atoms was a matter of fierce debate in the late nineteenth century and the first two decades of
the twentieth, with Mach and others vehemently arguing that they were just a theoretical construct.
The establishment of the physical reality of atoms, by Jean Perrin, Einstein, and others, was one
of the major accomplishments of the early part of the twentieth century (less well known than
relativity or quantum theory, because it was the consolidation of an established doctrine rather than
a revolutionary new one).

Though fundamental, atoms are not on the tee-shirt; you will not get rich selling tee-shirts
reading “All things are made of atoms”. They are also not foundational, in the current view of things;
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an atom is the lowest energy state solution to the quantum electrodynamical equation describing
a system with k electrons orbiting a nucleus with k protons. Atoms are not universal; there are
no atoms in neutron stars. What Feynman’s rather vague “all things” means is, presumably, “all
matter within the terrestrial setting”.

The fact that the atoms are fundamental but not foundational is not, in itself, an argument
against grounding our reasoning system in foundational theories. One might say the same of the
construction of real numbers from set theory. Real numbers predate infinite sets, certainly histor-
ically, almost certainly cognitively; and I know many mathematicians who, faced with Feynman’s
hypothetical cataclysm, would much prefer that mankind remember the reals rather than remember
ZFC.

A third universalizing statement seems to me important, though difficult to state precisely.
(This is discussed, in a somewhat more limited form, in (Laughlin and Pines, 2000).) The claim is
more or less this: Taking the influx of radiation from outside earth to be an exogenous boundary
condition, practically all physical events and physical properties of things that people encounter
on earth are consequences of the earth’s gravity together with non-relativistic quantum mechanics
(Schrödinger’s equation) applied to the electromagnetic interactions of atomic nuclei and electrons.
There are some number of exceptions — the tides, the occasional meteor, radioactive decay, the
things that happen inside sophisticated physics experiments — but those are largely known, and
otherwise it is a very reliable rule. That is, if you make some physical observation or encounter a
physical phenomenon, whether in meteorology, earth science, biology, chemistry, material science,
or whatever, then it is overwhelmingly likely that this is a consequence of these two theories. The
presumption is that it would not be necessary to invoke quantum chromodynamics, or the weak
force, let alone to posit physical processes or entities previously unknown to physics. Moreover,
these theories are mathematically simple: the equation of terrestrial gravity is extremely simple,
and the necessary quantum mechanics, “can be written down simply and is completely specified by
a handful of known quantities: the charge and mass of the electron, the charges and masses of the
atomic nuclei, and Planck’s constant” (Laughlin and Pines, 2000).

The final statement is completely universal. The claim is that anything in the universe that
happens, happens by virtue of physical changes to physical substances, governed by universal physical
law:

Schematically, physicalism can be thought of as the claim that the physical facts de-
termine all the facts. . . . In developing a claim of this sort, we need to do two things:
first provide some dependence relation that explicates the thought that one set of facts
“determines” another; second, decide what kinds of facts are to count as physical. Phys-
icalist positions have been articulated in terms of a variety of dependence relations,
including supervenience (there can be no change without physical change), realization
(non-physical properties are s second-order, properties of physical properties), and token
identity (everything (concrete) that instantiates a non-physical property also instantiates
a physical property, to name but a few. . . . [T]he causal level must be “causally closed”
with respect to the higher level; there is no “downward causation” from the higher level
to the lower level. (Hendry, 1999).

Laplace’s finding is easily expressed in a logical system; one simply states that Newtonian
gravitation exactly characterizes the motion of the planets. I can see, more or less, how to represent
Feynman’s atomic hypothesis; one can state that all solids, bodies of liquids, bodies of gas, and
unions of these are a set of atoms; or that the mass of all the matter within a given spatial region at
a time is equal to the sum of the masses of the atoms. However, I have no idea how to formalize the
latter two statements. Indeed, their logical status is not clear to me; I don’t know whether they are
statements in physics or meta-level statements about physics or heuristics for carrying out research
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in physics.

However, it does seem that there can be experimental evidence for these claims. For example,
Rubner’s 1894 demonstration that conservation of energy holds within a dog is an important ex-
periment for physics, because it demonstrates that the principle holds for living creatures, which
is not obvious on the face of it. More generally, the justification for these two claims rest on an
enormous body of experimental evidence showing the profound regularities in chemical behavior,
material behavior, biochemical behavior, and biological behavior; and the theoretical analysis and
experimental evidence that demonstrates, as far as it goes, that chemical and material behavior can
be explained in terms of physics, that biochemistry can be explained in terms of chemistry, and that
biology can be explained in terms of biochemistry. Conversely, any phenomenon that is puzzling
and not explained, such as the reversal of the earth’s magnetic field, is necessarily to some extent
evidence against the claims. (In a Bayesian theory, if a positive outcome is evidence for a claim,
then necessarily a negative outcome is evidence against it.) All of these are, in principle, part of the
data D to be considered.

Also, it seems to me, these claims indicate that Occam’s razor, as used by physicists, involves
something more than just the minimum description length principle. When you make a new experi-
mental finding, then the MDL principle gives you brownie points (so to speak) if you can explain it
in terms of known laws of physics, because you can use that to compress the description of the data.
That in turn translates back into a increased probability for those laws and hence into predictive
power. But I don’t see any justification for the MDL principle giving you brownie points as a reward
for speculating that the new findings ought to somehow be explicable using known laws of physics.

3.8 Argumentation in physics

From the AI perspective, the difficulties discusses above are mostly problems of representation. Even
greater are the difficulties of reasoning — how one can characterize an argument and implement the
validation of arguments in a computer program.

Rigorous mathematical proof consists entirely on deductive reasoning: The conclusion is a
logically necessary consequence of the assumptions. In actual mathematical discourse, there are
certainly informal arguments, but, as discussed at the start of this article, the great discovery that
powers verification technology is that, in the vast body of math that is considered rigorously proved,
it is possible to eliminate all informal, “hand-waving” arguments and to fill in all logical gaps.

However, such an undertaking does not seem to be close to possible in physics. Unlike math,
it is not possible to ground the reasoning about physical systems on the human scale in deductive
inference from the foundational theories; the complexities are simply too large.

3.8.1 Deduction from the absolute foundations

One extreme form of the tee-shirt approach to Pavel is to start from a minimal set of absolutely
fundamental concepts and laws, and do everything deductively from there. This idea is demolished
in (Laughlin and Pines, 2000); I really cannot do better than to quote from them at a little length,
and then I have nothing to add.

We know that [the Schrödinger equation for electrodynamics] is correct . . . But it can-
not be solved accurately when the number of particles exceeds about 10. No computer
existing, or that will ever exist, can break this barrier because it is a catastrophe of
dimension. If the amount of computer memory required to represent the quantum wave-
function of one particle is N , then the amount required to represent the wavefunction of
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k particles is Nk. It is possible to perform approximate calculations for larger systems,
and it is through such calculation that we have learned why atoms have the size they
do, why chemical bonds have the length and strength they do, why solid matter has the
elastic properties it does, why some things are transparent while others reflect or ab-
sorb light . . . . With a little more experimental input for guidance, it is even possible to
predict atomic conformations of small molecules, simple chemical reaction rates, struc-
tural phase transitions, ferromagnetism, and sometimes even superconducting transition
temperatures . . . . But the schemes for approximating are not first-principles deductions
but are rather art keyed to experiment [emphasis added] and thus tend to be the least
reliable precisely when reliability is most needed, i.e. when experimental information
is scarce, the physical behavior has no precedent, and the key questions have not yet
been identified. There are many notorious failures of alleged ab initio computation
methods, including the phase diagram of liquid 3He and the entire phenomenology of
high-temperature superconductors . . . . Predicting protein functionality or the behavior
of the human brain from these equations is patently absurd.

This is from 2000; certainly we can now compute much more than we could eighteen years
ago, and for all I know, some of the specific examples that Laughlin and Pines mentioned may be
outdated.8 Moreover, these kinds of calculations may be a good fit for quantum computing, when
that technology becomes practical. But as far as I can determine, the general point still holds, and
will continue to hold for the foreseeable future.

It would certainly be immensely desirable to include in Pavel the kinds of arguments based
on “art keyed to experiment” that connect quantum theory to the many phenomena mentioned by
Laughlin and Pines. However, I do not have the knowledge to discuss the logical structure of these
arguments or what would be involved in incorporating them into Pavel.

3.8.2 Argumentation in elementary physics

Let me return to the level of physics that I understand. In arguments that use elementary physics
to analyze real-world situations, we can characterize a variety of non-deductive forms of reasoning:

• The closed world assumption. It is assumed that everything that will affect the outcome
of the experiment has been accounted for.

• Ignoring irrelevant issues. A description of Cavendish’s experiment need not specify the
geographic location where the experiment was performed. (By contrast, the latitude is critical
in a description of Foucault’s pendulum.)

• Ignoring small quantities. In some cases, the value of some small quantity is known, or
can be bounded, and it is assumed without proof that, because it is small, its impact on the
analysis is small. In other cases, the value of a quantity is not known with any precision, but
it is assumed to be small and further assumed to have a small impact on the analysis.

• Approximation. “Assume a spherical cow” as the old joke says. Surfaces are taken to be
flat, densities are taken to be uniform, resistances are taken to be linear, and so on.

Certainly approximation, and order-of-magnitude reasoning which is similar, can sometimes be
carried out deductively. If an upper bound on the inaccuracy of the approximation is known,
it may be possible to answer Boolean questions with certainty or to give an upper bound on

8Hendry (1999) similarly argues that molecular structures cannot be calculated from Schrödinger’s equation.
Rather, given the structure, it is possible to use quantum mechanics to calculate various physical values.
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the inaccuracy of numerical calculation. In a probabilistic setting, if an upper bound on the
variance is known, then it may be possible to compute a lower bound on the certainty of the
answer to a Boolean question or an upper bound on the variance of a numerical answer.

• Idealization and abstraction. Almost every analysis of a physical situation idealizes the
entities involved and abstracts the relations between them. One reasons about a physical
electronic circuit in terms of a circuit diagram. In a mechanics problem, a string is taken to be
massless and one-dimensional. Continuum mechanics is an abstraction of the actual particles
structure of matter.

Moreover, a single argument may use multiple idealizations of the same thing. Analyses of
chemical reactions, for example, will often combine an molecular model of substances, to
describe the reaction, with a continuous model, or multiple continuous models, to describe the
fluid mechanics and thermodynamics. An analysis of the tides caused by a planet’s moons
might well first calculate the moon’s orbit approximating the planet as a point mass, and then
use the planet’s extent and material composition in calculating the tidal effects.

The same physical object and even the same physical situation may have many different possible
models, depending on what is the range of behaviors under consideration, the accuracy desired, and
the measurements being made. Consider a pendulum on a string. You have the following choices,
among others (Beech, 2014).

• The setting can be two-dimensional or three-dimensional. It can even be one-dimensional, if
you simply set up the problem in terms of the Lagrangian L(θ) = m(rθ̇)2/2 + mgr sin(θ),
where θ is the angle from vertical downward.

• The bob can be a point mass, a circle or sphere, or a more complex shape.

• There are many different options for the string:

– It can be considered like a rod, holding the weight at a fixed distance from the attachment
point; or a hard constraint maintaining an upper bound on the distance from the bob
to the attachment point; or a soft constraint, exerting an elastic force when stretched
beyond a fully extended position. In the Lagrangian formulation mentioned above, the
string is completely abstracted away, into the formulation of the energy function.

– It can be one dimensional or three dimensional.

– It can be massless or massed.

– It can bend along its length or twist along its axis or both.

– It can be immutable, or it can snap, or it can be cut.

• Dissipative forces can include air resistance or friction at the attachment point or both; various
kinds of approximations can be used.

• The frame within which the pendulum is set up can be fixed, or it can be attached to a rotating
earth. This option would hardly cross one’s mind, except that it is critical in Foucault’s
pendulum.

• Gravity can be a uniform field, or a Newtonian field, or follow general relativity

Different circumstances call for different idealizations. A problem in a freshman course would
probably use a two-dimensional setting, a point mass, and a string of fixed length. A problem in an
advanced mechanics class might simplify the analysis to a one-dimensional Lagrangian formulation
or might complicate it by positing an extended mass or a three-dimensional setting. Cavendish’s
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experiment requires a three-dimensional setting, an extended bob, (the two weights on the rod) and
a cord that twists along its axis. Foucault’s pendulum requires a three-dimensional setting, a cord of
fixed length, and a frame attached to the rotating earth. Smith, Battaglia, and Vul (2013) describe
a psychological experiment in which subjects were ask to predict the trajectory of a pendulum if its
cord is cut in mid flight; this requires a fixed length string that can be cut. Reasoning about a yo-yo
requires an extended object and a flexible one-dimensional string. Reasoning about a cord swinging
freely requires a one-dimensional string with constant density. The pendulum in a grandfather clock
is connected to a mechanism that adds energy at every swing. In the Poe story, “The Pit and the
Pendulum”, the cord is a brass rod, the bob is “a crescent of glittering steel, about a foot in length
from horn to horn; the horns upward, and the under edge evidently as keen as that of a razor;” and
the frame gradually descends.

It is tempting to propose that one should always use the most detailed possible model. But this
is hardly feasible; not only does the complexity of calculations go up rapidly, but, more seriously,
so does the kind of information needed. If you approximate a cord in a pendulum as a distance
constraint, all you need to know is its length; if you want a detailed model you need to know
additionally its radius and its material characteristics. In a given situation, these may be unspecified
or hard to determine. (Again, of course, the Bayesians will tell you blithely that, if you don’t know
them, you should use a probability distribution over the range of values.)

3.9 Reasoning about things that are partially understood

Physical reasoning can be applied to phenomena that are only partially understood, such as plate
tectonics, the planetary magnetic fields, the million-degree temperature in the sun’s corona, and
lightning (Dwyer and Uman, 2013). Feynman (1964) book-ends his volume-long textbook on elec-
tromagnetism as follows:

[End of chapter 1] Let us end this chapter by pointing out that among the many phe-
nomena studied by the Greeks, there were two very strange ones: that if you rubbed a
piece of amber, you could lift up little pieces of papyrus, and that there was a strange
rock from the island of Magnesia which attracted iron. It is amazing to think that these
were the only phenomena known to the It is amazing to think that these were the only
phenomena known to the Greeks in which the effects of electricity or magnetism were
apparent. [Feynman seems to have forgotten lightning.] (Feynman 1964, end of chapter
1 ]

[End of chapter 37] We now close our study of electricity and magnetism. In the first
chapter we spoke of the great strides that have been made since the early Greek observa-
tions of the strange behavior of amber and of lodestone. Yet in all our long and involved
discussion, we have never explained why it is that when we rub a piece of amber we get
a charge on it nor have we explained why a lodestone is magnetized . . . So you see this
physics of ours is a lot of fakery — we start out with the phenomena of lodestone and
amber, and we end up not understanding either of them very well [end of chapter 37]

Almost sixty years later, these phenomena are certainly better understood, but none are per-
fectly understood; in particular the triboelectric effect, in which rubbing one material with another
creates an electric charge “is not very predictable” (Wikipedia, triboelectric effect). Nonetheless, a
lot of physical reasoning about these is possible, through a combination of fundamental principles,
experimental evidence, approximations, and speculative reconstruction of structure and mechanisms.
Such explanations typically fail to match observed reality in some respects or fail to distinguish the
circumstances where the phenomenon occurs from those where it doesn’t. Nonetheless, these expla-
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Figure 2: Dropping a pendulum on a string

nations are considered valid as far as they go; no one seriously proposes that these phenomena are
evidence of a fundamental physical process that lies outside of the known fundamental theories.

4 An example word problem

To illustrate what would be involved in formalizing simple physics reasoning in Pavel, we present
a formalization of the following simple word problem:

Problem: A 1 kg pendulum bob on a 1 meter inelastic string is dropped from the point
0.5 meters directly to the right of the attachment point. How long will it take to reach
a point directly below the attachment point? What force will the string be exerting on
the bob at that point? (Figure 2).

Table 3 shows the sorts and the sortal operators. Table 4 shows the language of geometry
and kinematics used. Table 5 shows the theory associated with string. Table 6 shows the dynamic
laws of physics. Finally table 7 shows the formulation of the problem. What is missing here is the
purely mathematical theory (the theory of the reals, vector algebra, and vector calculus); the axioms
governing the relation between dimensions; and the purely kinematic theory.
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Sorts: Object, String, PseudoObject, Time, Point, Real, Duration, Distance, Speed,
Acceleration, Mass, Force

Sortal Functions:
Fluent[σ] — Function from Time to sort α.
Vector[α] — If α is a real-valued dimension, then a vector of dimension α.
α⊗ β — Infix operator: Dimension α times dimension β.
α� β — Infix operator: Dimension α divided by dimension β.

Notes: Acceleration, Force, and Momentum are here scalar dimensions, not vectors.
Here and in the tables below, sortal variables σ and τ range over all sorts; variables α and β range
over the additive dimensions (i.e. real-valued dimensions with a natural sense of zero and of addition)
Real, Duration, Distance, Speed, Acceleration, Mass, and Force.

Table 3: Physics Word Problem: Sorts
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Constant Symbols
Meter → Distance.
Second → Duration.
X → Vector[Real]. Horizontal dimensionless unit vector.
Z → Vector[Real]. Vertical dimensionless unit vector.

Function Symbols:
Dist(pa:Point, pb:Point) → Distance.

Distance between Points pa and pb.
Magnitude(v:Vector[α]) → α. The magnitude |~v|.
PointPlusVec(p:Point, v:Vector[Distance]) → Point

The sum p + ~v of point p plus vector ~v.
VecFrom(pa:Point,pb:Point) → Vector[Distance].

Vector pb − pa where pa and pb are Points.
VecMinus(u:Vector[α], v:Vector[α]) → Vector[α]. Vector ~v − ~u.
ScalarTimesVec(x:α, v:Vector[α]) → Vector[α⊗ β]. The scalar product x · ~v.
DotProd(u:Vector[α], v:Vector[β]) → α⊗ β. Dot product ~u · ~v.
Direction(v:Vector[α]) → Vector[Real].

Dimensionless direction of ~v. ~v/|~v|.
V(t:Time, q:Fluent[α]) → α. Value of fluent q at time t.
VelocBefore(p:Fluent[Point]) → Fluent[Vector[Speed]].

Derivative of ~x(t), where ~x is a Point-valued Fluent, evaluated from the left (see text.)
VelocAfter(p:Fluent[Point]) → Fluent[Vector[Speed]].

Derivative of ~x(t), where ~x is a Point-valued Fluent, evaluated from the right.
DerivOfVeloc(p:Fluent[Vector[Speed]]) → Fluent[Vector[Acceleration]].

First time derivative of ~v(t), where ~v is a velocity, evaluated from the left.
OPlace(o:Object) → Fluent[Point].

The fluent tracking the location of Object o over time.
QPlace(q:PseudoObject) → Fluent[Point].

The fluent tracking the location of PseudoObject q over time.

Predicate symbols:
Zero(x:α) — Scalar x has zero value.
Positive(x:α) — Scalar x is positive.
Continuous(p: Fluent[Point]t :Time).

Point-valued Fluent p(t) is a continuous function of time in a neighborhood of time t
TwiceDifferentiable(p:Fluent[Point], t:Time).

Point-valued Fluent p(t) is twice differentiable in a neighborhood of time t.

Table 4: Physics word problem: Geometric and kinematic primitives
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Function symbol:
Length(s:String). Length of String s.

Predicate Symbols:
EndOf(q:PseudoObject, s:String). PseudoObject q is an end of String s.
Fixed(q:PseudoObject). PseudoObject q is fixed in position.
Attached(q:PseudoObject, o:Object). Object o is attached to PseudoObject q.
Taut(s: String:, t:Time). String s is taut at time t.
Yanking(s:String, t:Time:. At time t, String s yanks the objects attached to it. See text.
Yanked(o:Object, t:Time). At time t, Object o is yanked by some string it is attached to.

Axioms:
S.1. ∀s:String ∃qa,qb EndOf(qa,s) ∧ EndOf(qb,s) ∧ qa 6= qb ∧

[∀qc EndOf(qc,s) =⇒ qc=qa ∨ qc=qb].
Every string has exactly two ends.

S.2. ∀t:Time;s:String,qa,qb:PseudoObject

EndOf(qa,s) ∧ EndOb(qb,s) ∧ qa 6= qb =⇒
Distance(V(t,QPlace(qa)), V(t,QPlace(qb))) ≤ Length(s).

The distance between the end of a string is at most the length of the string.

S.3 ∀s:String;q:PseudoObject;oa,ob:Object EndOf(q,s) ∧ Attached(oa,q) ∧ ob 6= oa =⇒
¬Attached(ob,q) ∧ ¬Fixed(q).

S.4. ∀o,q Attached(q,o) =⇒ ∀t V(t,OPlace(o)) = V(t,QPlace(q)).
If Object o is attached to end q of a String then o and q are always in the same place.

S.5. ∀q Fixed(q) =⇒ ∀ta,tb:Time V(ta,QPlace(q)) = V(tb,QPlace(q)).
A fixed end of a string is always in the same place.

S.6. ∀s:String;t:Time Taut(s,t) ⇔
[[∀q EndOf(q,s) =⇒ [Fixed(q) ∨ ∃o Attached(q,o)]] ∧
[Distance(V(t,QPlace(qa)), V(t,QPlace(qb))) = Length(s)]].

Definition: A string is taut at time t if both ends are either fixed or attached to an object and
the distance between the ends is equal to its length.

S.7 ∀s:String;t:Time Yanking(s,t) ⇔
Taut(s,t) ∧
∃qa,qb EndOf(qa,s) ∧ EndOf(qb,s) ∧

Positive(DotProd(VecMinus(V(t,VelocBefore(Place(qa))),
V(t,VelocBefore(Place(qb))))

VecFrom(V(t,Place(qa)),V(t,Place(qb))))).
Definition: String s is yanking at time t if it is fully extended at t, and if the velocity of the

two ends at time t are such that it would be overextended if they continued in their motion.

S.8 ∀o:Object;t:Time Yanked(o,t) ⇔
∃s,q Attached(o,q) ∧ EndOf(q,s) ∧ Yanking(s,t).

Object o is yanked at Time t if it is attached to some String that is yanking.

Table 5: Theory of strings
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Constant symbol:
Kilogram → Mass

Function Symbols:
MassOf(o:Object) → Mass. The mass of Object o.
GravForceOn(o:Object) → Fluent[Vector[Force]]. The gravitational force on Object o.
ForceOn(oa:Object, ob:Object). The force executed on oa by ob.
TotalForceOn(oa:Object) → Fluent[Vector[Force]]. The total force executed on oa.

Axioms:

P.1. ∀o:Object;t:Time Continuous(OPlace(o),t).
Objects move continuously.

P.2. ∀o:Object;t:Time ¬Yanked(o,t) =⇒
TwiceDifferentiable(OPlace(o),t) ∧
ScalarTimesVec(Mass(o),V(t,DerivOfVeloc(VelocityBefore(OPlace(o))))) =

V(t,TotalForceOn(o)).
Newton’s second law, except when there is an impulse from a string.

P.3. ∀o:Object;t:Time GravForceOn(o,t) =
ScalarTimeVec(−9.8 * MassOf(o) * Meter / (Second * Second), Z).

Terrestrial gravitational force.

P.4. ∀o:Object;s:String;qa,qb:PseudoObject;t:Time

Attached(o,qa) ∧ EndOf(qa,s) ∧ EndOf(qb,s) ∧ Fixed(qb) ∧ Yanking(s,t) =⇒
V(t,VelocAfter(OPlace(o))) =
VecMinus(V(t,VelocBefore(OPlace(o))),

ScalarTimesVec(DotProd(V(t,VelocBefore(OPlace(o))),
Direction(VectorFrom(V(t,QPlace(qb)),V(t,QPlace(qa))))),

Direction(VectorFrom(V(t,QPlace(qb)),V(t,QPlace(qa)))))).
When an object “collides” with the end of a string and the other end is fixed, then the velocity

after the collision is the component of the velocity before the collision in the direction tangent to
the taut string.

P.5. ∀o:Object;s:String;t:Time ¬Taut(t,s) =⇒ Zero(V(t,ForceOn(s,o))).
If a string is not taut, it is not exerting any force.

P.6. ∀o:Object;s:String;qa,qb:PseudoObject;t:Time

Taut(t,s) ∧ EndOf(qa,s) ∧ EndOf(qb,s) ∧ qa 6= qb ∧ Attached(o,qa) =⇒
[Zero(Magnitude(V(t,ForceOn(s,o)))) ∨
Direction(V(t,ForceOn(s,o))) =

Direction(VectorFrom(V(t,QPlace(qa)), V(t,QPlace(qb))].
The force exerted by a taut string on an object attached at one end is parallel to the direction

to the other end.

Table 6: Physics word problem: Laws of physics
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B→Object – The bob.
S→String – The string.
QA→PseudoObject – The end of the string attached to B
QB→PseudoObject – The fixed end of the string.
T0→Time – The initial time.
TU→Time – The time when the bob is directly under the attachment point.

Axioms:
F.1. EndOf(QA,S) ∧ EndOf(QB,S) ∧ QA 6= QB.

F.2. Attached(B,QA).

F.3. Fixed(QB).

F.4. Length(S) = Meter.

F.5. MassOf(B) = Kilogram.

F.6. V(T0,OPlace(B)) =
PointPlusVec(V(T0,QPlace(QB)), ScalarTimesVec(0.5 * Meter, X)).

F.7. Direction(VectorFrom(V(TU,QPlace(QB)),V(TU,OPlace(B)))) =
ScalarTimesVec(−1, Z).

F.8. ∀t:Time Direction(VectorFrom(V(t,QPlace(QB)),V(t,OPlace(B)))) =
ScalarTimesVec(−1, Z)) =⇒

t ≥ TU.
TU is the first time when the bob is below the attachment point.

F.9 ∀t:Time V(t,TotalForceOn(B)) = V(t,ForceOn(S,B)) + V(t,GravForceOn(B)).
Closed world assumption: The only forces on the bob are gravity and the string.

Evaluate: (TU−T0). Evaluate: V(TU, ForceOn(S,B)).

Table 7: Physics word problem: Problem formulation
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The formalization in tables 3-7 should be largely self-explanatory, but a few points require
explanation.

A “pseudo-object” (introduced in Davis, 1988) is a geometrical feature that moves around with
an object: The center of a spherical object, the surface of an object, the apex or base of a cone, the
hole in a donut, and so on. In this case, we mark the two ends of the string as pseudo-objects.

The long-winded and unappealing symbols that we have used for vector and function operators
— PointPlusVec(x,v) instead of simply x+~v, and so on — are there in order to keep our system
of sorts simple. Standard mathematical notation, and many math-oriented programming languages
such as Matlab, enormously overload standard symbols such as ‘+’ and ‘·’. In a practical imple-
mentation of Pavel, this might end up being worthwhile; for this simple example, it seemed better
to keep the sorting system simple and burden ourselves with separate symbols.

Since the velocity of the bob is discontinuous at the moment when the end of the string is
reached, we define the velocity of an object o before time t to be the limit of the derivative of its
position at time t′ as t′→t− and the velocity after t analogously. (The definition would be included
in the kinematic axioms, not enumerated here.)

In section 3.5 we raised the issue of the assumption that masses and so on remain constant from
one stage of an experiment to another. In our formalization here, we have unabashedly cheated on all
such concerns by using time-independent symbols for every quantity or relation that does not change
over time in this particular problem. For instance MassOf(o) is presumed to be a time-invariant
property of an object o; Attached(o,q) is assumed to be a time-invariant relation between object
o and pseudo-object q; and so on.

We use a simple theory of non-elastic, one-dimensional, massless strings, governed by the fol-
lowing rules, enumerated in tables 5 and 6

• A string has two ends (axiom S.1) which cannot be more than a fixed distance apart (the
length of the string) (axiom S.2).

• The end of a string may be attached to a single point object, or it may be fixed in space
(presumably actually attached to some fixed frame, but we did not include the frame in our
formulation here) (axiom S.3). If it is attached to an object, then the object and the end of
the string are always at the same point (axiom S.4). If the end of the string is fixed, then it
is always at the same point (axiom S.5).

• A string is taut if both ends are either attached or fixed, and if it is fully extended; that is, the
distance between the two ends is equal to the length of the string (axiom S.6)

• An inelastic event involving the string, called a yanking occurs when the string is taut, and the
difference in velocities between the two ends has a positive component in the direction from
one end to the other (axiom S.7). Note that if difference is orthogonal to the direction, as in
the case when the string is swinging in a circle, that is not considered a yanking.

• If an object is attached to an end of a string undergoing a yanking then it is said to be yanked
(axiom S.8)

• A string exerts no force if it is not taut (axiom P.5)

• A string that is taut and not yanking exerts on an attached object a non-negative force in the
direction along the string (axiom P.6)

• If one end of a string yanks on an object, and the other end is fixed, then the velocity of
the object changes discontinuously. Specifically, its velocity after the event is equal to the
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component of its velocity before the event in the direction orthogonal to the direction of the
string (axiom P.4 — there may well be some more elegant way to axiomatize this.)

Combining these with the statement (axiom P.2) that, when not yanked, the object obeys
Newton’s second law, these suffice to determine that, after falling vertically to the length of the
string, the bob will swing back and forth on a circle, and the centripetal force that the string exerts
on the bob will be exactly what is needed to keep it on that path (the component of gravity in the
direction of the string plus the centrifugal force). If the centripetal force were less then that, then
the distance between the end of the string would be greater than the length, which is impossible; if
it were greater, it would pull the bob within the circle; the string would cease to be taut, and the
bob would instantaneously fall back, which is also impossible.

The rule for the changes in velocity if the string is attached to objects at both ends and a
yanking event occurs is similar, but more complicated; it is not included here.

The problem formulation requires a closed world assumption (axiom F.9) that the total force
on the bob is the sum of gravity and the force from the string. Almost any problem formulation in
physical reasoning has to have some kind of closed world assumption, that states that everything
that will interfere with the system has been accounted for. In this case, it would be better to have
a general rule of physics that the total force on an object is the sum of the forces, and then to
have the individual problem statement assert that the only forces on the bob are gravity and the
string. However, that would require adding “sets of forces” as a sort and summation over sets as an
operation, so we went with this simpler, less general, formulation instead.

In general, there is always a choice to be made about how general to make the formulation
of the theory and how much to tailor it to the specifics of the problem at hand. If you have only
a single problem in mind, then the decision is essentially stylistic: using a general representation
makes the argument that the theory generalizes more plausible, using a more tailored one makes the
exposition simpler. The more problems you address, the more is gained by generality, but it remains
to some extent a matter of taste. (Tailoring the representation of a general theory to the specifics
of one or a few problems violates the “no function in structure” rule of (de Kleer and Brown, 1985).
On the other hand, if one is going to choose among idealizations the one that best fits the problem,
as I have argued above, then that principle has been given up in any case.)

On the whole word problems in physics are simpler and more idealized than experimental set
ups. A reasonable axiomatization of the Cavendish experiment at a comparable level of detail would
probably be two or three times longer.

5 Historical context and related work

There is a long history of work more or less along the lines of Pavel. That history has three primary
threads: in physics, in philosophy, and in AI. The physics and philosophy threads both largely begin
with Hilbert; the AI thread is largely separate.

Corry (2004) gives a very detailed account of the physics and philosophical work up through
the work of Hilbert; I have not found a comprehensive review of the work since Hilbert.

5.1 Before Hilbert

Newton’s Principia is substantially presented as deductions from axioms, in imitation of Euclid.
In modern times Heinrich Hertz’s (1894) Die Prinzipien der Mechanik was the first attempt to
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formulate the laws of mechanics in axiomatic form. It was notable for its exclusion of force as a
fundamental concept, and using only time, space, and mass.

5.2 Hilbert’s sixth problem and the axiomatization of physics

In Hilbert’s famous collection of 23 mathematical problems, proposed at the 1900 International
Congress of Mathematicians, number 6 was the axiomatization of physics (Corry, 2004).

Mathematical Treatment of the Axioms of Physics. The investigations on the
foundations of geometry suggest the problem: To treat in the same manner, by means of
axioms, those physical sciences in which already today mathematics plays an important
part; in the first rank are the theory of probabilities and mechanics.

Hilbert further explained:

As to the axioms of the theory of probabilities, it seems to me desirable that their logical
investigation should be accompanied by a rigorous and satisfactory development of the
method of mean values in mathematical physics, and in particular in the kinetic theory
of gases. . . . Boltzmann’s work on the principles of mechanics suggests the problem of
developing mathematically the limiting processes, there merely indicated, which lead
from the atomistic view to the laws of motion of continua.

In general, mathematicians have been unenthusiastic about Hilbert’s sixth problems. It is very
much an outlier among his 23 problems; whatever it is, it isn’t mathematics,9 and it is not at all
clear what would count as a solution. Benjamin Yandell (2002), in his 400-page book on Hilbert’s
problems, dismissed the sixth problem in a mere four pages.

There seem to be three general projects involved in Hilbert’s sixth problem.

First, the axiomatization of probability theory. This was accomplished by Kolmogorov, at least
as far as the measure space interpretation goes. As discussed in section 2.2, I am not convinced that
the likelihood model, which permits probabilities of individual propositions, is axiomatized to the
point that it supports analysis of real-world situations.

Second, the axiomatization of the foundations of physics; these, of course, were radically trans-
formed in the three decades after Hilbert’s speech. Hilbert himself devoted substantial research
energy to the formulations of quantum theory and general relativity; he and Emmy Noether were in
communication with Einstein about general relativity during the years that Einstein was developing
the theory.

As best as I can ascertain, the current status is as follows:

• General relativity is completely axiomatized. It would be feasible to formulate the theory as
axioms in a proof-verification system and to prove consequences such as the rotation of the
perihelion of Mercury, the possibility of black holes, gravitational lenses, gravitational waves,
and so on.

• Schrödinger’s equation for non-relativistic quantum mechanics is easily axiomatized — it is
just a partial differential equation — and its consequences can be proved, up to the limits

9Incidentally, the fact that Hilbert included this problem and spent a great deal of time working on it tells strongly
against the common idea that Hilbert was a pure formalist, who viewed the meaning of mathematical symbols as
unimportant (Corry, 2004).
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discussed in section 3.8.1. However, if one adds Born’s law, which governs the probabilistic
collapse of the wave function following an observation, then the situation becomes much less
clear. As far as I can find, most so-called “axiomatizations” of quantum physics that include
Born’s law (e.g. Cappellaro 2012, chap. 3) are fine as regards the physics, but do not specify
what is the probabilistic logic used (if that is necessary) or give a useful characterization of
an observation, or state the independence assumptions. It is not clear to me that we are
currently in a position to characterize axiomatically experiments whose outcomes depend on
Born’s law.10 I do not know how severe a limitation that is; for example, how many, if any,
of the explanations of phenomena enumerated in the above quote from Laughlin and Pines
would be affected.

Ludwig’s (1985, 1987) An Axiomatic Basis for Quantum Mechanics develops an axiomatic
theory, and, further, presents a metatheory of axiomatizations of physical theory. It includes
an extensive, though very abstract, discussion of the relation between the theory and its
macroscopic manifestations. Unfortunately, I am not at all in a position to evaluate what
is the scope of what he accomplished; apparently the discussion is extremely difficult and
relentlessly abstract, even for expert readers (Vogt, 1997).

Boender, Kammüller and Nagarajan (2015) have Coq to verify protocols in quantum commu-
nication and quantum cryptography, but this is far from the physics experiments that we are
discussing, and though it uses probabilities, it requires only a very limited theory.

• Quantum field theory is in a much less certain state; the axiomatizations that have been
proposed, such as the Wightman axioms, have severe limitations. This remains an open
problem.

Also, as is well known, finding a satisfactory theory that encompasses both general relativity
and quantum theory is unsolved.

Third, the explanation of continuum mechanics in terms of particle mechanics;11 more generally,
the explanation of macroscopic behaviors in terms of foundational theories. This is a more open-
ended project, since there are several forms of continuum mechanics, and an open-ended collection
of macroscopic behaviors.

One particularly important and difficult problem of this kind has been to complete the derivation
of thermodynamics from statistical mechanics begun by Maxwell and Boltzmann. A recent study
which develops a substantial formal foundation, is Wallace (to appear).

In general, it seems to me fair to say that what a physicist usually means by “axiomatiza-
tion” is quite different from a mathematician means, and still more from what a logician means.
When a physicist claims to have “axiomatized” a theory, what he/she generally has done is to have
enumerated a set of foundational rules for an abstract theory which, generously supplemented by
the physicists’ own understanding of the concepts involved and by a variety of facts too obvious to
be worth mentioning, will support various kinds of informal arguments. ((Ludwig 1985, 1987) is
certainly an exception.)

10It has been suggested to me that it will be easier to find a logical formulation of the “many-worlds” interpretation
of quantum mechanics or, alternatively, the theory of quantum decoherence than the Copenhagen interpretation.
That may be so; but I can’t find that anyone has produced a logical formulation of either of these interpretations
either.

11Slemrod (2013) writes, “Historically a canonical interpretation of this ‘6th problem of Hilbert’ has been taken to
mean passage from the kinetic Boltzmann equation for a rarefied gas to the continuum Euler equations of compressible
gas dynamics as the Knudsen number ε approaches zero.” I do not know what is the basis for this rather narrow
interpretation.
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5.3 Philosophy

There is a long philosophical literature on axiomatizing physics, particularly particle dynamics, either
in a strictly logical notation or in some other formalism. Some early work include part VII of Russell’s
(1903) The Principles of Mathematics, a precursor to Principia Mathematica, entitled “Matter and
Motion”; and Hamel (1912, 1921) Elementare Mechanik and Grundbegriffe der Mechanik. (Hamel
was a student of Hilbert’s)

In Vienna in the 1920s, a group of philosophers, mathematicians, and physicists called “The
Vienna Circle” (Sigmund, 2017) embarked on a formidably ambitious project to investigate the
foundations of science, called “logical positivism” or “logical empiricism”. Following the models of
Whitehead and Russell’s (1910) in Principia Mathematica, and of Wittgenstein’s (1922) Tractatus,
they attempted to demonstrate that scientific theory could be built up logically from basic obser-
vations. They planned to produce a large series of books, the International Encyclopedia of Unified
Science, which would formalize the foundations of all the sciences — physical, biological, and social.
Twenty monographs in the series were published, in two volumes.

The Vienna Circle held regular meetings from 1924 to 1936; at any given time, there were 10 to
20 people involved. The central figures at the start were the physicist Moritz Schlick, who served as
chair, the sociologist Otto Neurath, and the mathematicians Otto Hahn and Philipp Frank. In 1926,
the Circle were joined by Rudolf Carnap, who became the leading exponent of logical positivism;
his book The Logical Structure of the World became a Bible of the movement. (Gödel was also a
participant in the meetings of the Circle; however, he does not seem to have ever subscribed to the
tenets of logical positivism.)

During the 1950s, there seems to have been an explosion of interest in the subject. Most notably,
in 1957, Leon Henkin, Patrick Suppes, and Alfred Tarski (1958) organized a ten-day international
symposium at Berkeley on The Axiomatic Method: With Special Reference to Geometry and Physics;
Part II consisted of 13 papers on “Foundations of Physics”. (Part I had to do with geometry; part
III was miscellaneous.) In particular, the papers by Adams on rigid body and particle mechanics,
by Noll on continuum mechanics, by Hermes on axiomatizing mechanics, and by Suppes, by Walker,
and by Ueno on relativistic kinematics give sets of precise axioms that could easily be formalized
in a logical notation, and used in a proof verifier. These all lie within the foundational paradigm;
they are concerned with formulating basic axioms, not with drawing connections to experiment or
observation, except in a very general sense.

There are a number of striking gaps. Carnap was not involved, despite being a good friend of
Tarski’s and nearby at UCLA; nor are there any citations to his work or any of the other logical
positivist work. Hilbert’s sixth problem is never mentioned as a context or motivation. Despite
the fact that the organizers were Henkin, Suppes, and Tarski, none of the papers in the physics
section use logical notation or refer to the concepts of mathematical logic; of course, it is not an
especially congenial notation for physics theories. (Several of the papers in parts I and III do use
logical notation and reference mathematical logic.) Feynman’s dictum notwithstanding, atoms are
never mentioned, as far as I can tell.

In their preface to the proceedings of the symposium, Henkin, Suppes, and Tarski (1958) ex-
pressed some reservations about whether the project of axiomatizing physics was a reasonable one:

Much foundational work in physics is still of the programmatic sort, and it is possible
to maintain that the status of axiomatic investigations in physics is not yet past the
preliminary stage of philosophical doubt as to its purpose and usefulness.

An even sharper critique arguing for the unsuitability in physical reasoning, not merely of
axiomatic logic, but of any kind of rigorous mathematics, was Schwartz (1960) “The Pernicious

35



Influence of Mathematics on Science.”

A number of important papers along the same lines precede the conference e.g. McKinsey,
Sugar, and Suppes (1953). But after the conference, this line of research seems to have gradually
petered out.12 Richard Montague (1974) wrote a paper on deterministic physics, illustrated with
an axiomatization of the gravitational theory of a finite collection of particles, written in logical
notation. In the last few decades there have been some further sporadic studies of this kind e.g.
(Sant’Anna 1999).

In recent years, some philosophers seeking a mathematical framework for science have turned
to Bayesianism, discussed earlier in section 3.2.

A fascinating study, not easily characterized in terms of the above categories, is Strevens’
(2013) Tychomancy. Drawing extensively on the cognitive psychology of probabilistic reasoning,
Strevens attempts to justify the probabilistic reasoning underlying Maxwell’s amazing derivation of
the distribution of velocities among particles in a gas; he includes also a discussion of the reasoning
involved in Darwinian evolution.

5.3.1 Is Pavel a bad reinvention of logical positivism?

In many ways the previous undertaking that most resembles my proposal for Pavel was logical
positivism. Like Pavel, logical positivism, as applied to physics, attempted to draw a logical line
all the way from the theory to the experience of the scientist doing measurements or observations
and to characterize the way in which the theory explains the data and the data supports the theory.

That is not the most encouraging of precedents. The general consensus is that logical positivism
was thoroughly demolished by Wittgenstein, Popper, Quine, Kuhn, Lakatos, and others, and that
it is an entire dead end — a wholly unworkable approach to the analysis of the scientific method.
“The fundamental assumptions of the positivist world view . . . lie shattered” (Bhaskar, 1979). Is
Pavel trying to revive a long-dead horse?

Obviously, I don’t think so. I think that there are reasons for optimism.

First, the general consensus may be overstated. A philosophical programme that makes am-
bitious claims is apt to get strong rejoinders, but demonstrating that it has limitations and flaws
does not establish that it has nothing of value to offer. Moreover, part of the disrepute of logical
positivism is that it became associated with the psychological theory of behaviorism; but the phi-
losophy of science in no way depends on that. There are some indications that the pendulum in the
philosophical world may be swinging back.

Second, one issue that the logical positivists were never able to resolve to their own satisfaction
was the nature of the ultimate data. The bedrock data from which theory is built are supposed to
be “protocol statements” expressing “direct perception”, but that turns out to be a very slippery
notion. We are in a better position to deal with that now. Perception is better understood now than
in 1930. If we want, we could use computer vision to start with actual sensor input. Whether or not
this would have satisfied Carnap or early Wittgenstein as an epistemically primitive starting point,
it is clearly a well-defined and motivated starting point. The analogous question then becomes, at
what level do we move from opaque computer vision procedures to representations with semantics,
but that is much more of an engineering question.

12I am necessarily relying here on the fact that I have failed to find much later work of this flavor, which is obviously
an unreliable argument. However, I do have the following concrete evidence. The International Congress of Logic,
Methodology, and Philosophy of Science was in some respects the successor to the Symposium on the Axiomatic
Method; it has met 15 times since its inception in 1960. Between 1960 and 1999 there was only one paper (Mehlberg,
1964) that presented an axiomatization of any physical theory (relativistic space-time), though there was a second
paper (Ludwig, 1989) that argued in favor of axiomatizations.
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Finally, Pavel has the advantage of being AI, not philosophy. It therefore does not have
to produce a theory that covers all cases, or to find its way down to the ultimate turtle or to
characterize the whole chain of turtles; if it produces a useful partial answer, that is enough to
justify the undertaking. We can set the starting point wherever we want, and get a theory that is
more or less powerful and rich. For instance, rather than insisting on taking human perception as
the grounding point and viewing the validity of experimental measurements as a hypothesis to be
tested, we can take the experimental measurements as a given; that will give results that are in some
respect more limited but could still be very enlightening. In my discussion of the BACON program,
below, I am critical of BACON for using pre-digested data; but there is nothing wrong with taking
that as a starting point, as long as one is aware of its limitations. Problem representations like the
one in table 7 are also enormously pre-digested as compared to the actual sensor input, though much
richer than the BACON input. The key point is to be aware of the many levels of abstraction that
are ultimately involved, and to keep working toward realism.

5.4 Artificial Intelligence

Within AI, there is work of many kinds on physical reasoning (Davis, 2008a); there are AI programs
that solve word problems e.g. (Gunning et al. 2010) (Khashabi, Khot, Sabharwal, and Roth, 2018)
(Khot, Sabharwal, & Clark, 2018); that do qualitative reasoning (Bobrow, 1985); that design devices
e.g. (Hornby, Globus, Linden, and Lohn, 2006), and that design experiments e.g. (Krenn et al. 2016),
(Melnikov et al. 2017). Data mining and machine learning are now ubiquitous in scientific research.
In this section I will limit the discussion to AI research on developing rich declarative theories of
basic physics, and on inferring fundamental theories from data.

5.4.1 Knowledge-Based Physical Reasoning

The AI project closest to Pavel was the GALILEO project (Lehmann, Chan, & Bundy, 2013).
GALILEO used the Isabelle proof assistant to encode a number of models of physical theories and
their experimental consequences, including: Joseph Black’s theory of latent heat and heat capac-
ity; the explanations of galactic orbital velocities by positing dark matter and by using Milgrom’s
proposed modification of Newtonian gravity; Roemer’s (1676) measurement of the speed of light by
delays and advances in the perceived eclipses of Io by Jupiter; the identification of the morning and
evening star as the same planet, using observations and Kepler’s theory (oddly unhistorical, since
the identification was known to the Babylonians13); and Pythagoras’ determination that the earth
is spherical, based on its shadow on the moon during eclipses.

The primary objective of GALILEO was to characterize how ontologies and theories change as
a result of disconfirming evidence, and the examples were used as illustrations of various techniques
for changing theories. The details of the representation are therefore only developed necessary to
illustrate these meta-level techniques. For instance, in the encoding of the speed-of-light example,
the time delay on light coming from Jupiter is taken as a primitive measurement; there is no mention
of Io or its revolutions.

A research programme, initiated by Patrick Hayes (1979, 1985) aims toward analyzing physical
reasoning, particularly “naive” or “commonsense” physical reasoning, at the knowledge level (Newell,
1982) by formulating theories of physics in a logical form and demonstrating that simple inferences
can be justified as inference within the logical theory. This is part of a more general project in
AI of using logic to formalize the representation of commonsense knowledge and the process of
commonsense reasoning (McCarthy, 1968) (van Harmelen, Lifschitz, and Porter, 2008), (Davis,

13In fact, despite its popularity as an philosophical example since Frege, there is little evidence that anyone who
was aware of the existence of the planets has ever thought that Phosphorus and Hesperus were two different planets.
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2017). I myself have continued this direction of research, axiomatizing elementary reasoning about
cutting (Davis, 1993), carrying objects in boxes and containers (Davis, 2011), (Davis, Marcus, &
Frazier-Logue, 2017), and pouring liquids (Davis, 2008b). The results are axiom sets and problem
formulations similar in flavor to tables 1-7. The sample inferences in (Davis, Marcus, & Frazier-
Logue, 2017) were automatically verified in SPASS (Weidenbach et al. 2009), a first-order theorem
prover considerably less powerful and expressive than Coq or Isabelle, but easier to use.

Bundy et al. (1979) used logic in a quite different way for solving simple physics word problems.
Using the “logic programming language” Prolog, they implemented a system that accepted a problem
written in English; carried out a “semantic parse” to extract the content of the problem statement;
used a rule-based system to find the appropriate equations; and then solved the equations. The
program was supplied with schemas for translating categories of problems into equations, for example

schema(pullsys
[Pull,Str,P1,P2], Time
[ constacc(P1,Time),
constacc(P2,Time),
cue stringsys(Str,[Lpart,Rpart]),
(tension(Lpart,T1,Time)

<-- coeff(Pull,zero) &
tension(Rpart,T,Time) )

],
[ coeff(Pull,zero),
mass(Pull,zero,Time)

]
)

The explanation is thus: “This schema asserts that in a standard pulley problem, the objects
undergo constant acceleration, the tension in both parts of the string is equal if there is no friction,
and that the friction and mass of the pulley default to zero if not otherwise specified.” It is notable
here that the general physical law about tension is placed subordinate to the class of pulley problems
— that is, at least as done here, it would have to be restated separately in each class of problems
where it is used; the general law is placed parallel to the defaults of zero mass and friction on pulleys,
which are mostly just conventions about how exercises are written. In a more general knowledge
base, it would be better to separate out these levels.

Friedman, Forbus, and Sherin (2017) develop a cognitive model of how student progress from
incorrect to correct explanations of physical phenomena. The representation used in that model is a
detailed knowledge-based (though not logic-based) structure (figure 3) that relates the observation
that Chicago is warmer in summer than winter, both to the correct theory of the seasons (the earth’s
axis is tilted) and to a common misconception (the earth is closer to the sun in summer than in
winter).

5.4.2 AI programs that induce scientific theories

AI programs that have induced broad or fundamental scientific theories from data are few. (There
have of course been an enormous number of projects that have used data mining for scientific
discovery for very specific projects.)

The largest project of this kind was the BACON project of Langley, Bradshaw, and Simon
(1981, 1983) which modeled the induction of scientific laws from data. BACON, in its various
incarnations, took as input data tables of results whose values are either numerical or uninterpreted
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f0 (isa earthPath EllipticalPath) f9 (active AH-inst)

f1 (spatiallyDisjoint earthPath TheSun) f10 (qprop- (Temp PlanetEarth)

(Dist TheSun PlanetEarth))

f2 (isa TheSun AstronomicalBody) f11 (qprop (Temp PlanetEarth)

(Temp TheSun))

m0 (isa ProximalPoint ModelFragment) f12 (i+ (Dist TheSun PlanetEarth)

(Rate RPP-inst))

m1 (isa DistalPoint ModelFragment) f13 (increasing (Temp PlanetEarth))

m2 (isa Approaching-Periodic ModelFragment) f14 (decreasing (Temp PlanetEarth))

m3 (isa AstronomicalHeating ModelFragment) f15 (qprop (Temp Australia) (Temp PlanetEarth))

m4 (isa Retreating-Periodic ModelFragment) f16 (qprop (Temp Chicago) (Temp PlanetEarth))

f3 (isa TheSun HeatSource) f17 (increasing (Temp Chicago))

f4 (spatiallyDisjoint TheSun Planet Earth) f18 (decreasing (Temp Chicago))

f5 (isa APP-inst Approaching-PeriodicPath) f19 (holdsIn (Interval ChiWinter ChiSummer)

(increasing (Temp Chicago)))

f6 (isa AH-inst AstronomicalHeating) f20 (holdsIn (Interval ChiSummer ChiWinter)

(decreasing (Temp Chicago)))

f7 (isa RPP-inst Retreating-PeriodicPath) f21 (greaterThan (M (Temp Australia) AusSummer)

(M (Temp Australia) AusWinter))

f8 (i- (Dist TheSun PlanetEarth) f22 (greaterThan (M (Temp Chicago) ChiSummer)

(Rate APP-inst)) (M (Temp Chicago) ChiWinter))

This represents the structure of the explanation of the change of temperature over the seasons in
terms of the false theory that the earth is closer to the sun in summer.

Figure 3: Network of explanations. From (Friedman, Forbus, & Sherin,2017)
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ELEMENT COMPOUND wE wC vE vC wE/wC wE/vE wE/vC

hydrogen water 10.0 90.0 112.08 112.08 0.1111 0.0892 0.0892
hydrogen water 20.0 180.0 224.16 224.16 0.1111 0.0892 0.0892
hydrogen water 30.0 270.0 336.25 336.25 0.1111 0.0892 0.0892
hydrogen ammonia 10.0 56.79 112.08 74.72 0.1761 0.1338 0.1338
hydrogen ammonia 20.0 113.58 224.16 149.44 0.1761 0.1338 0.1338
hydrogen ammonia 30.0 170.37 336.25 224.16 0.1761 0.1338 0.1338
hydrogen ethylene 10.0 140.10 112.08 112.08 0.0714 0.0892 0.0892
hydrogen ethylene 20.0 280.21 224.16 224.16 0.0714 0.0892 0.0892
hydrogen ethylene 30.0 420.31 336.25 336.25 0.0714 0.0892 0.0892

Table 8: Chemical data input to BACON (from Langley, Bradshaw, & Simon, 1983)

symbolic values. It had heuristics for formulating numerical laws which can depend on inferred
intrinsic properties. For instance, if resistors A, B, and C each give rise to a linear relation between
voltage and current, then BACON can formulate the rule V = IR, conjecturing that each of the
resistors has a different value for R.

BACON’s tabulated clean data is, of course, extremely remote from the realities of experiment
interpretation that scientists had to deal with. For instance, table 8 shows the input from which
BACON inferred Prout’s law of definite proportion in chemical composition. This contrasts starkly
with the actual situation of eighteenth and nineteenth century chemists (figure 4), who had to identify
chemicals and elements and to distinguish them from mixtures using the techniques and methods
available in the labs of the time. Langley, Bradshaw, and Simon do point out that Bacon had the
advantage of using clean data, while the data available to the historical scientist used included both
noise and significant errors; and that Bacon was presented with only the relevant variables, while
a large part of the task facing the scientists was figuring out which variables were critical. But,
despite a long historical discussion, they don’t address the enormous epistemic gap between a table
of numbers and a laboratory set up.

I argued above that in examining the relation of theory to data, it was reasonable to take the
grounding data at any level of abstraction. So there is nothing inherently invalid with BACON
having taken the data in table 8 as the starting point for theory construction; only, it is important
to realize how much that leaves out, as a model of science.

More recently, Bridewell and Langley (2010) has been working on inducing process models
characterized by differential equations from traces of parameters over time, across a wide range of
domains, including aquatic eco-systems, biochemical kinetics, and molecular biology.

5.4.3 Bayesian inference of structure

Kemp and Tenenbaum (2009) implemented a program that quite directly follows the Bayesian pro-
gram described in section 3.2 to infer theories from data. Their space of theories Φ is the space of
graph structures. The prior P (H) for h ∈ Φ is given by a generative process that generates graph
structures with various kinds of regularities. The likelihood function P (d|h) is a measure of how
well the data fits the structure. The program uses heuristic search to approximately find the most
probably structure given the data.

The program was applied to a variety of induction problems. As figure 5 illustrates, it inferred
from a table of animal features that animal species conform to a tree structure; it inferred from

40



Figure 4: Lavoisier’s equipment. From Lavoisier Ouevres, Paris, 1862.
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From (Kemp and Tenenbaum, 2009)

Figure 5: Results of structure induction

a table of features of Supreme Court opinions that Supreme Court justices conform to a linear
structure (conservative to liberal); it inferred from a table of similarity judgments over colors that
that colors follow a ring structure; it inferred that a collection of images of faces varying along
masculinity and race conforms to a two-dimensional grid; and it inferred from a table of distances
between world cities that the position of cities corresponds to a graph that is the cross-product of a
ring structure for latitude with a linear structure for longitude.

The last of these, however, inadvertently points out the dangers of using an inappropriate space
of models in this kind of study. They write as follows:

We applied the model to a dataset of distances between 35 world cities. Our model
chooses a cylinder where the chain component corresponds approximately to latitude
and the ring component corresponds approximately to longitude.

This outcome is so far from reality that one wonders why they would think it supports their
theory. The correct model for the geodesic distances between cities on the globe, accurate to within
the precision of measurement, is that they are points or small regions on the surface of a sphere; this
model, however, is not even in the space of discrete models that they are searching over. Optimizing
a model of the distance between cities is not, historically, how the shape of the earth was induced,
or could have been induced. In general it is mathematically impossible to induce the concepts of
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latitude and longitude from city distances, because the choice of the particular grid for latitude and
longitude has essentially no connection to the position of cities, except insofar as there are no cities
close to the poles, and that some major coastlines lie roughly north-south. There is no particular
reason that a graph of cities should give one a cylindrical structure, rather than any other planar
graph, since any planar graph can be embedded in the sphere. In fact, you will only get a cylindrical
graph structure corresponding to latitude and longitude if you pick the cities rather carefully with
that outcome in mind. If you actually look for structure in the distances between cities in the world,
what will be most conspicuous is their tendency to cluster; cities are dense in some areas and very
sparse in others — completely absent in the oceans that make up 7/10 of the earth’s surface. The
area in the South Pacific where there are no large cities is considerably larger than the areas around
the North or South Pole.

In short, what Kemp and Tenenbaum did in this example is that they cherry-picked data to
induce a structure that sound impressive but is actually meaningless in terms of the semantics of the
data, using an inductive bias that bears no relation to the semantics of the data, searching through
a space of models that does not contain models of the correct type.

5.4.4 Domingos and the Master Algorithm

The techniques of corpus-based machine learning that have recently been particularly successful, such
as deep learning, are mostly highly specific in their focus and do not attempt to induce symbolic
theories. Thus they are not directly relevant to Pavel. However, Domingos (2015), in his book The
Master Algorithm, a survey of machine learning techniques, speculates as follows:

The Master Algorithm is the germ of every theory: all we need to add to it to obtain
theory x is the minimum amount of data required to induce it. (In the case of physics,
that would be the results of perhaps a few hundred key experiments).

Domingos’ “Master Algorithm” is a universal machine learning algorithm, which can optimally
induce theories from data. He takes this as the Holy Grail of machine learning, and considers that
it may well be found in the not very distant future. So his claim is that, in principle, one could
choose a few hundred experiments that, given as input to the Master Algorithm, would enable the
algorithm to induce all of physics.

I presume that Domingos is thinking here of something akin to the formulation in BACON; the
input is a digested table of numbers, the target output is the foundational theories. Even so, “a few
hundred” seems to me a huge underestimate. If the intended input is something close to a realistic
description of the experiment, then the estimate of the number of experiments is surely off by at
least a couple of orders of magnitude. (Not that it is always easy to individuate or count number of
experiments; how are astronomical observations counted, for example?) Finally, cherry-picking only
the evidence supporting the eventual theories is an unrealistic and ecologically invalid undertaking;
a true logical reconstruction of science would have to take into account all the evidence that doesn’t
fit well, or is irrelevant. Still, in general what Domingos is suggesting here is somewhat comparable
to Pavel.

6 Potential Philosophical Impact

It seems to me that implementing some part of Pavel might well yield insights that would be of
interest to philosophers of science, on issues such as the nature of informal argumentation in physics,
the sufficiency of physics as an explanation, the nature of the reduction of the other sciences to
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physics, and the universalizing claims made by physics. Even if Pavel takes an approach to issues
that the philosophers found unacceptable from a philosophical standpoint, still the existence of one
clear-cut approach to these issues would be valuable, if only as a point of comparison.

Another point where the construction of Pavel might shed light is on the nature of the prior
expectations. There seems to have been an enormous pressure over the centuries of the development
of physics to find theories that are governed by a small, simple dynamic theory, at an almost arbitrary
cost in the complexity of the boundary conditions; that are local in time and space; that are universal;
that obey various kinds of symmetry; that conform to mathematically elegant equations;14 and that
are mechanistic. It would seem, moreover, that the preferences for these kinds of theories are stronger
than be accounted for in terms of minimum description length or other such general principles. One
evidence for this is that, historically, scientists were eager to claim the universality of physics long
before, in retrospect, it would seem that the state of the data or theory came close to justifying it.
For example, in 1814, Laplace contemplated

An intellect which at a certain moment would know all forces that set nature in motion,
and all positions of all items of which nature is composed, if this intellect were also
vast enough to submit these data to analysis, it would embrace in a single formula the
movements of the greatest bodies in the universe and those of the tiniest atom; for such
an intellect, nothing would be uncertain and the future just like the past would be present
before its eyes.

Laplace had every justification to say this of the solar system, having worked it out himself. But
what evidence did he have that this applied to all the other motions in the universe, considering
what a small fraction of motions the science of his time could actually explain or predict?

Assuming that this is right, are these preferences necessary, as prior preferences? Are they in
any well-defined sense rational? Perhaps they are merely expressions of the existing power structure,
in a Foucaultian sense.

At this point, I have to confess, I find myself seduced by the siren song of Bayesianism. It
would be so wonderful to be able to assign a numerical confidence to the theory of gravity, or to
Schrödinger’s equation, or to the universalizing claims discussed in section 3.7! Or to determine to
what extent any particular experimental finding should increase or decrease our confidence in any
particular theory. It seems like it should be so close, comparatively speaking! The equation is sitting
there, in section 3.2; all we have to do is to find well-founded values for the numbers.

7 Conclusions: Whither Pavel?

There is no lack of things to do: there are easy things to do in the short term and harder things to
do in the long term. The most important directions, it seems to me, would be:

• To increase the collection of physical theories we have in forms that can be used in a theorem
prover.

• To develop techniques for choosing suitable idealizations, approximations, and abstractions for
a given situation.

• To analyze the nature of the informal argumentations used in physics.
14Hossenfelder (2018) argues that the fetishizing of mathematical elegance is responsible for the stagnation of

fundamental physics over the last few decades.
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• To validate the approach by showing how word problems and experiments can be verified in
these theories.

• To further validate the representation of word problems by developing natural language system
that can translate verbal statements into formal representations.
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