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Chapter 1

Physical reasoning

Ernest Davis

An intelligent creature or automaton that is set in a complexuncontrolled world will be
able to act more effectively and flexibly if it understands the physical laws that govern its
surroundings and their relation to its own actions and the actions of other agents. In this
chapter we discuss work by KR researchers that tries to represent commonsense knowledge
and carry out commonsense reasoning over some basic physical domains.

There is, of course, a vast body of computer science and scientific computing which
deals in one way or another with physical phenomena; almost all of this lies outside the
scope of KR research and hence of this chapter. Even within AI, there are many types of
physical reasoning that are excluded here. For instance, the automated visual recognition of
a scene is, in a sense, a type of physical reasoning. Image formation is a physical process;
the problem in vision is to infer plausible characteristicsof a scene given an image of it.
Why is this not considered a problem for KR physical reasoning? Mainly because the
physics involved is too specialized. A single, quite complex, physical process, and a single
type of inference about the process are at issue; and the computational techniques to be
applied are highly tuned to that process and that inference and hardly generalize to any
other kind of problem.1

At the other end of the spectrum, most of the physical theories that appear in the KR
literature, such as the STRIPS representations of actions,are too crude and narrow in scope
to be of any interest as a physical theory. For instance, the classic blocks world theory
applies only to rectangular blocks piled in strict stacks and manipulators constrained to
moving a single block from one top of a stack to another; moreover, it does not characterize
the positions or motions of the block or manipulator while being moved. The theory is
therefore not even a useful start toward a general realistictheory of blocks of general shape
in general positions being moved by an actual manipulator.

1In principle, high-level physical reasoning could enter into visual recognition, either by providing con-
straints or measures of likelihood for possible scenes [45]or by relating physical conditions of the image forma-
tion process to qualities of the image — e.g. if the lens cap isleft on, the image will be black. In practice, the
former has been rarely attempted in vision research, and thelatter, as far as I know, has never been attempted.
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The most important difference between KR physical reasoning and scientific comput-
ing is that, whereas scientific computing almost always aimsat achieving a high degree of
numerical accuracy, KR is almost always content to achieve just a qualitative description.
In many cases, predicting qualitative behavior with a high degree of certainty depends on
predicting numerical values with a high degree of accuracy —e.g. will the car fall off
the cliff, or stop short? In such cases, qualitative reasoning necessarily gives ambiguous
results; either the car will stop short and remain intact, orit will fall over the edge and
will crash and possibly explode. The quest for numerical accuracy means that most scien-
tific computations involve a fine-grained division of time orspace or both (except in the
special cases of problems that have an exact symbolic solution). By contrast, KR physi-
cal reasoning almost always divides space, time, or space-time into physically significant
intervals/regions/histories bounded by significant events/boundaries.

KR also differs from scientific computing in that it often attempts to:

• Incorporate a theory of action.

• Use knowledge for inference in different directions.

• Generate explanations in addition to answers.

• Address everyday domains at the human scale, rather domainsthat are esoteric,
highly specialized, very small or very large,

• Use theories that are psychological plausible but not necessarily scientifically cor-
rect.

• Use explicit theories of causality.

• Study explicitly the interaction between alternative theories at different levels of ab-
straction. Scientific computation uses many theories at different levels of abstraction,
but the problem of choosing the theory appropriate to a situation or of integrating
multiple theories in solving a problem is generally left to ahuman understander (or
hard-wired into code).

As contrasted with thead hocphysical theories used in most planning and temporal
reasoning, KR work in physical reasoning is distinguished by:

• Generality. The attempt to deal with all or nearly all possible configurations within a
given domain. E.g. dealing with arbitrary configurations ofblocks of arbitrary shape
rather than with stacks of rectangular blocks.

• Continuous time and continuous change over time.

• Geometry and continuous change over space.

Of course, the dividing lines between KR physical reasoningandad hocKR theories
at one end and conventional scientific computing at the otheris not a sharp one; indeed, a
very important problem for KR is how to integrate all these together.

KR physical reasoning generally involves two important forms of non-monotonic rea-
soning. The first is a closed-world assumption, that all the entities that will influence a
physical system are known or easily determined. This assumption is made both at the level
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of theory, that the domain theory accounts for all relevant types of events, processes, and
so on; and at the level of the specific problem, that the problem statement accounts for all
the individual objects, actions, and so on. The second is an idealization assumption, that a
particular idealization can be safely used. Again this can either be at the level of the choice
of theory, such as assuming that the objects in a problem can be modelled as rigid, or at the
level of problem description, such as taking a block to be strictly rectangular. Ultimately,
it must be expected that KR physical reasoning will have to deal with combining degrees
of certainty, and thus require probabilistic or some similar form of reasoning, but little or
no such work has yet been done.

Research in KR physical reasoning — which, for the remainderof this chapter we will
call simply “physical reasoning” — can largely be divided into four categories:

Qualitative calculus. The development of representations and inference techniques
for numeric quantities and functions whose value and relations are specified qualitatively.
These calculi are the subject of chapter 9 of this handbook and are therefore not further
discussed here.

Architecture. The development of general frameworks which support the statement
of physical theories and the description of specific problems and scenarios. Section 1.1
describes the component model and the process model. Again,these theories are presented
in chapter 9, so our description here is brief and focusses onthe ontology used in these
architectures.

Domain theories.The analysis of particular physical domains. Section 1.2 describes
kinematic and dynamic theories of solid objects and the theory of liquids.

Multiple models and levels of abstraction.Any model of a physical situation used in a
reasoning task will include some features of the situation and abstract away others. Thus, a
single situation may have many different models, which varyin the features and the detail
they include. For instance, depending on the reasoning task, it may be suitable to model
a soccer ball as a point object, a perfect sphere, or an irregular sphere; a rigid object or
an elastic object; an object of uniform material, a uniform closed rubber shell around an
interior of air, or a rubber shell with an inflation hole around an interior of air. Moreover,
a reasoner may use more than one of these models in the course of a single reasoning task.
The issues of choosing an appropriate model and combining models are therefore critical
aspects of physical reasoning. These issues are discussed in section 1.3.

We conclude in section 1.4 with a historical and bibliographical survey; here we will
mention some further work in the area that falls outside the above categories.

Terminological comment: In this chapter afluentis an entity whose value may change
as a function of time. For instance, the fluent “Temperature(O1)” represents the tempera-
ture of object O1 as function of time; the fluent “Place(O1)” represents the region occupied
by object O1 as a function of time; the Boolean fluent “On(OA,OB)” represents the func-
tion of time which is TRUE at times when object OA is on OB and FALSE at other times.
A parameteris a fluent whose value is in a numeric-valued space, such as temperature.
Standard mathematical numerical and geometric functions are extended to fluents in the
obvious way; for instance, iff andg are parameters, thenf + g denotes the parameter
whose value at any timet is the sum of the values off andg at t.
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1.1 Architectures

An architecturefor physical reasoning is a representational schema; that is, it is a struc-
ture that defines a high-level ontology and a basic set of relations and that supports the
representation of various general domains and of specific problems, and the carrying out
of particular types of inferences over those representations. Thus, it is roughly analogous
to the STRIPS or PDDL representation for planning. The best established and most ex-
tensively studied architectures for physical reasoning are the component model and the
process model; since these have been already considered in chapter 9, our treatment of
them here is brief and focusses on their ontologies rather than on reasoning methods.

1.1.1 Component Analysis

Many complex systems are designed and can be analyzed as a fixed configuration of stan-
dardcomponents.

A component is an atomic entity with a number ofports,Each port has associated with
it a number ofparameterswith numerical values. The component imposes constraints
on the values of the parameters over time. These constraint are generally either algebraic
constraints over the values of the parameters at a given time, or differential equations,
relating the derivatives of the parameters at a given time totheir values. In the component
model, these constraints comprise the entire physical characteristics of the component;
aside from the constraints, the component is a black box.

For example, a resistor has two portsa andb. Each portp has two parameters: the
inflowing current InCurrent(p) and the voltage Voltage(p). A resistorr is characterized by
two equations:

InCurrent(a) = −InCurrent(b) and
Voltage(b)−Voltage(a) = resistance(r) · InCurrent(b).

A capacitorc has the same types of ports and parameters and is characterized by the equa-
tions

InCurrent(a) = −InCurrent(b) and
InCurrent(b) = Capacitance(c) · Derivative(Voltage(b)−Voltage(a))

A nodeis a collection of ports connected together. The node imposes a constraint on the
parameters of the ports determined by the domain theory. Forinstance, in the electronics
domain, if portsp1 . . . pk are connected at a node, then that creates the constraints

InCurrent(p1) + . . . + InCurrent(pk) = 0 and
Voltage(p1) = Voltage(p2) = . . . Voltage(pk).

A systemis defined by a collection of components, and a partition of their ports into
nodes. The structure of connections and the component characteristics are fixed over time;
what varies over time are the values of the parameters. The set of constraints generated by
the components and by the nodes determines the behavior of the system over time.

Electronic systems are the archetypal and best example of a domain that can be ana-
lyzed using the component model. The model has also been applied to hydraulic devices,
heat transfer systems, and mechanical systems of certain types.
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Actions can be incorporated into the component architecture by modelling an agent as
an exogenous signal. That is, an agent is modelled as a component for which the values
of the parameters are not determined by the theory and the remainder of the system, but
rather can be “chosen”. For example, in the electronics domain, an agent could be a voltage
source that can choose a waveform to output; the waveform it chooses is its action.

Typical reasoning tasks carried out over component models include:

• Static evaluation.If all the constraints are algebraic, then determine the state (or the
set of possible states) of the system.

• Initial value problem. If the constraints include differential equations, then deter-
mine the progress of the system following some starting condition.

• Signal response.Determine the output of a system in response to a specified signal
at some input.

• Comparative static evaluation.Determine the effect of changing some component
characteristic on the static state of the system.

• Comparative dynamic evaluation.Determine the effect of changing some compo-
nent characteristic on the dynamic progress of the system.

The best known program using the component model was the ENVISION program
of DeKleer and Brown [17]. ENVISION used the sign calculus tosolve qualitatively the
initial value problem and the comparative static evaluation problem. ENVISION also pro-
posed a model of causality, in which an change to some exogenous parameter in the system
causes changes to other parameters by propagating through the network, in a manner that
has a sequence, though no measurable time duration.

1.1.2 Process Model

In the process model [22], change is brought about byprocesses, events, actions,and
indirect influencesbetween parameters.

A processis active over a time interval. It is characterized by preconditions and effects.
The preconditions must hold for the process to begin. and they must continue to hold
throughout the interval in which the process is active. If the preconditions cease to hold,
then the process stops. The effects of a process aredirect influenceson numeric fluents. A
direct influence is a contribution to the derivative of the fluent; the derivative of the fluent
is the sum of the influences of all the processes that act on it.

For example, consider the process of a tapt filling a bucketb. The preconditions are
that the tap is open, the bucket is under the tap, and the bucket is not yet full. The process
directly influences the fluent “volume of water in the bucket”; that is, the derivative of the
volume of water is a sum of terms, one of which is the flow-rate of the tapt. For example,
if there are several taps fillingb and also a leak from the bottom ofb, then the derivative of
the volume of water inb is the sum of the flow-rates of the taps minus the flow-rate of the
leak.

An action takes place at an instant. It is characterized by preconditions, which must
hold for the action to be feasible, and effects, which are discontinuous changes in the value
of a discrete or numeric fluent. For example, turning on a tap is an action. The precondition
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is that the agent is next to the tap and that the tap is closed. The effect is that the tap is open.
If the preconditions of an action are satisfied, then an agenthas the choice of whether or
not he wishes to perform the action.

An eventis similar to an action except that it is not a matter of choice; it is a natural
discontinuous change that must take place if the conditionsare met. For instance, suppose
that you have a weak bucket whose bottom will fall out when thebucket is half full. Then
the event “Bottom ofB falls out” has the precondition that the bucket is at least half full
and has the effect that what was formerly a bucket is now a disconnected cylinder and a
pan.

Finally, parameterp is an indirect influenceon parameterq if there is a natural con-
straint relating their two values. For example, the volume of liquid in a bucket is an indirect
influence on the height of liquid in the bucket. It is assumed that the system of influences
on system parameters can be structured in such a way that (a) no parameter is both directly
and indirectly influenced; (b) the relation “p indirectly influencesq” is acyclic.

The QP program [22] uses a process model to carry out qualitative projection. Condi-
tions are conjunctions of discrete values, such as “The tap is open” and inequalities, either
between one parameter and another, or between a parameter and a constant “landmark”
value, such as “The level of water in the bucket is less than the depth of the bucket.” In-
fluences are specified in terms of their sign; e.g. the processof a tap filling a bucket has a
positive influence on the volume of water in the bucket, whilethe process of leaking has
a negative influence. Using this information QP can generatean “envisionment graph”, a
transition graph between states of the system. Any possiblebehavior of the system corre-
sponds to a path through the envisionment graph. (The converse does not in general hold;
there are often paths through the envisionment graph that donot correspond to physically
possible behaviors.)

Both the component model and qualitative process theory arediscussed at much greater
length in chapter 9.

1.2 Domain theories

The person on the street is familiar with hundreds, perhaps thousands, of physical cate-
gories, qualities, and phenomena; an expert (scientists and engineer) knows perhaps tens
or hundreds of thousands; collective scientific knowledge must include many millions. It
seems likely that the largest part of achieving general purpose physical reasoning, at either
the commonsense or the expert level, will be the representation of all the different concepts
involved To date very few physical domains — certainly fewerthan a dozen — has been
studied in any depth in the KR literature. In this section, wewill look at theories of rigid
solid objects and theories of liquids.

1.2.1 Rigid Object Kinematics

Solid objects enter into almost all scenarios that physicalreasoning in a terrestrial, human-
scale environment deals with. More specifically, in a significant fraction of physical rea-
soning, only solid objects are significant, only the motionsof the objects are significant,
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and the objects can be idealized as rigid (constant shape).2

The complete theory of rigid object dynamics is discussed insection 1.2.2. First, how-
ever, we will discussed thekinematictheory of rigid solid objects. The kinematic theory
is much less informative than the dynamic theory but is nonetheless sufficient in many im-
portant applications, and in fact has been applied much moreextensively and successfully.

The kinematic theory asserts four rules governing the shapeand motion of solid objects:

• The shape of an object is a closed, regular, connected region.3

• The shape of an object is constant over time.

• The position of an object is a continuous function of time.

• At any given time, the regions occupied by two distinct objects do not overlap.

In the kinematic theory, therefore, the only significant time-invariant characteristic of
an object is its shape, and its only significant time-varyingcharacteristic is its position.
The shape can be characterized in terms of the spatial regionoccupied by the object in
some standard position. The position of objecto at timet can be characterized in terms of
a rigid (orthonormal) mapping, characterizing its displacement from its standard position
to its position att (Figure 1.1).4 Thus the kinematic theory can be formulated in first-order
logic using the functions Shape(o) which maps an objecto to the region which is its shape;
Position(o) which maps objecto to the fluent of its position over time; Place(o) which maps
objecto to the fluent of the region it occupies over time; combined with suitable temporal
and geometric primitives.

Given a set of objectso1 . . . ok and given the shapes of these objects, aconfigurationis
a specification of the position of each object. A configuration is feasibleif no two objects
overlap. A configurationc2 is attainablefrom configurationc1 if it is possible to move
the objects fromc1 to c2 without causing two objects to overlap. Given a set of objects
and an initial configurationc1 the attainable configuration spaceis the set of feasible
configurations attainable fromc1. Since the position of objects is a continuous function of
time, a configurationc2 is attainable fromc1 just if there is a path fromc1 to c2 through
the space of feasible configurations for the objects; thus, an attainable configuration space
is a path-connected component of the space of feasible configurations. For initial-value
problems, in which the shapes of the objects and the initial configuration are given, it
suffices to consider only attainable configurations, since no other configurations can ever
occur.

Indeed, initial value problems with complete shape specifications can be addressed as
follows: One begins by computing the attainable configuration space for the system; that

2One reflection of the cognitive salience of this category is the persistent attempt in eighteenth- and
nineteenth-century physics to reduce all physics to mechanical interactions of small solid objects; e.g. the ki-
netic theory of heat, or Maxwell’s mechanical model of electrodynamics.

3A closedregion is one that includes its boundary. The decision to usea closed rather than an open region
is arbitrary, but it simplifies description to specify one orthe other. A closed region isregular if it is equal to the
closure of its interior, and thus is “thick” everywhere and does not have any one or two dimensional pieces.

4A displacement is a composition of a rotation around the origin and a translation. A translation ink dimen-
sions is characterized by a vector~t; any pointx is mapped intox + ~t. A rotation in two dimensions (relative to
a fixed origin) is characterized by an angleφ. A rotation in three dimensions is characterized by three angles;
there are a number of different systems of angles that can be used for this purpose, such as the Euler angles.
Alternatively, ak-dimensional rotation can be characterized by ak × k orthonormal matrix.
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Place(O)

Displaced frameShape(O)

Reference frame

Figure 1.1: Shape, place, and relative position of a rigid object

is, the connected component of the configuration space containing the initial configuration.
Having done that, the entire content of the kinematic theorylies in the statement that the
configuration moves continuously through that space. This technique is particularly effec-
tive if the configuration space is of low dimension; that is, the physical system has few de-
grees of freedom. Significantly, this is often the case with man-made mechanisms; indeed,
for many mechanisms, such as gear trains, the configuration space is one-dimensional, or
nearly so.5 In such cases, it is easy to determine the consequences of theconstraint that
the configuration changes continuously. For example, if theconfiguration space is parti-
tioned into regions, then the continuity constraint means that the configuration must move
between adjacent regions in the space.

A number of methods for qualitative analysis for kinematic systems have been de-
veloped. The most common method [19, 49, 51] starts with exact shape descriptions,
computes the configuration space exactly, divides the configuration space into significant
regions, and then characterizes qualitative properties ofthe system from the connectivity
of these regions. Kim [39] describes a system for qualitative reasoning about linkages, an-
alyzing the relation between the directions between the ends of the arms (discretized into
quadrants), the angles between the arms (likewise), and inequalities between the lengths of
the arms.

A theory of action can be integrated into a kinematic theory by specifying that specified
objects aremanipulable, and that their motions are thus chosen by the agent. In this setting,
a standard projection problem consists of a specification ofthe shapes and initial positions
of all the objects and the motions of the manipulable objects. The kinematic theory asserts

5Man-made mechanisms tend to rely on kinematic constraints when possible, because they are extremely
robust. A large external force or impact is generally required to make solid objects significantly bend or break,
and there is no way to cause two solid objects to spatially overlap.
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that the other objects will move through the configuration space along a path that accom-
modates the specified motions of the manipulable objects, ifthere is such a path; if there is
not, then the specified motions are infeasible. The most difficult aspect of formulating this
theory is asserting that an action is feasible unless it leads to an infeasible configuration.

In some cases, it is convenient to abstract a kinematic system using a simplified shape
description together with a set of imposed constraints. Forexample mechanical systems
often contain parts such as gears that are pinned by a circular pin to a fixed frame so that
they can rotate around the pin. It is common to abstract away both the frame and the pin,
and to view the gear as subject to an abstract constraint thatenforces the condition that the
center of the gear remains fixed (figure 1.2), (e.g. Faltings [19] and Joskowicz [33] use this
device for gears rotating on a frame, and Kim [39] uses the analogous device for linkages.)

1.2.2 Rigid Object Dynamics

The kinematic theory of solid objects, though often very useful, is in general much too
weakly constraining for commonsense reasoning. Thedynamictheory of rigid solid objects
describes the motions of solid objects in all circumstancesin which they don’t break or
significantly bend. Thus, for example, the fact that a book remains on a bookshelf rather
than floating off into the air, or that a chair will be stable when standing on four legs but
not when standing on one leg lie beyond the scope of the kinematic theory; they require at
least part of the dynamic theory.

It has been known since the early eighteenth century that theinteraction of rigid solid
objects is characterized by the following rules: the kinematic principles listed above; New-
ton’s second and third laws; the existence of a normal force between objects at a contact
point; static and sliding Coulomb friction between objectsat a contact point; and a the-
ory of instantaneous momentum transfer when objects collide. For terrestrial problems at
the human scale, these must be supplemented by the existenceof a uniform downward
gravitational force; the existence of fixed objects (such asthe ground) which never move;
the existence of manipulators which can be subjected to an applied force at the will of an
agent; and a closed world assumption that the only types of forces that act on objects are
those enumerated in this theory.

Somewhat surprisingly, there is still no complete, accepted formulation of this theory
in the scientific literature, particularly the theory of collisions. Even in the simple case
of two objects colliding at a point, there is debate over the proper theory,6 and there is
no standard theory to use in either the case of two objects that collide along a surface or
a curve, or the case of collisions involving multiple objects simultaneously. Stewart [57]
reviews the state of the art in the current theory.

In any case, the scientific theory outlined above is not well-suited to the needs of rea-
soning in ordinary applications. It involves determining entities, such as forces, which are
only occasionally of interest in commonsense reasoning, and it characterizes behavior over
differential time, whereas the reasoner is generally concerned with behavior over extended
time. For example, if you put a book on a shelf, you are not usually concerned with the
forces between the book, the shelf, and the other books; you are only concerned to predict

6The desiderata for such a theory are that it corresponds to experiment; that it satisfies global constraints,
such as conservation of energy, momentum, and angular momentum; that it yields a solution for all well-posed
initial-value problems; that numerical calculations converge; and that it can be justified in terms of a more detailed
elastic model of solid objects.
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Abstraction: 2D Gears constrained to rotate 
around a fixed center.

Concrete: Gears pinned to a frame.

Figure 1.2: Gears and their abstraction
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that the book will stay on the shelf. Similarly, if you carry aloose collection of objects
in a closed box from one place to another, you are not usually concerned with the forces
between the objects during the journey, or even with how the objects shift their relative
positions inside the box. Generally, it suffices to determine that the objects remain inside
the box throughout the journey.

Though a few AI programs have addressed the general problem of solid object dy-
namics by doing full numerical simulation (e.g. [28]) most AI program have dealt with
restricted special cases:

• Point objects.The NEWTON program [16] performed qualitative prediction of the
behavior of a point object on a track. The shape of the track was characterized in
terms of the signs of its slope and its curvature. This was thefirst application of the
sign calculus in AI physical reasoning. The FROB program [21] similarly performed
qualitative predication of the behaviors of a collection ofpoint objects moving in a
world with fixed barriers, and one vertical and one horizontal dimension.

• Statics.An important category of physical prediction is to predict that an object will
remain unchanged: a book will remain on a shelf, a building orbridge will continue
to stand. (Note the contrast here with the usual attitude in KR that this can simply be
assumed by default.) The equations of motion and their analysis are of course very
much simplified if all that is required is to distinguish between situations that have a
static solution and those that do not. Fahlman [20] implemented a static analysis of
configurations in the blocks world.

• Quasi-statics.In a quasi-static problem, objects all move so slowly that their mo-
mentum is negligible as compared to the frictive forces acting on them. Hence ob-
jects only move while being pushed, directly or indirectly,by an exogenous force
such as a manipulator. The standard scenario for quasi-static problems is a col-
lection of flat objects on a horizontal surface being pushed around, though other
scenarios are possible (e.g. a collection of three-dimensional objects in a highly vis-
cous liquid.) Exact quasi-static predictions were carriedout by Mason [44] to carry
out “sensorless manipulation”; i.e. finding ways to maneuver objects to a desired
target position without any sensory feedback describing the positions of the objects.
Qualitative quasi-static predictions were carried out by Forbus, Nielsen, and Falt-
ings [23] and Stahovich, R. Davis, and Shrobe [56] using qualitative representation
of configuration space and of the driving forces. If the motions of the objects are
highly constrained, then the quasi-static theory is often equivalent to just the kine-
matic theory plus the default assumption that objects only move when necessary.

As mentioned above, a theory of action can be integrated intoa dynamic theory of rigid
objects by designating particular objects as manipulatorswhich are subject to exogenous
forces chosen by the agent. Thus, one visualizes the robot’shand as a rigid object which,
at the robot’s command, fires invisible rockets to exert specified forces on it. The advan-
tage of this model is that it gives a well-formed boundary problem; a problem consists of
a specification of the initial state plus the forces on the manipulators always has a solu-
tion [57]. The disadvantage is that this is not usually a verynatural way to think about a
manipulator. The natural way to think about a manipulator, indeed, depends on the cir-
cumstance: often, it is just a geometric specification of themotion of the manipulator, but
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Figure 1.3: Nail in a board

sometimes it is a force exerted by a stationary manipulator against an object, sometimes, it
is combination of a motion of the manipulator together with aforce exerted on an external
object, and sometimes, as in compliant motion, it is a control strategy where the force and
motion of the manipulator depends on feedback. No general high-level language suitable
for commonsense reasoning has been found for this.

Another difficulty in the theory of the dynamic theory of solid objects is that the theory
is sporadically underdetermined. In most cases, a specification of the initial positions and
velocities of all the objects and their material characteristics is sufficient to determine their
behavior, but there are exceptions, and these exceptions can be difficult to deal with. The
most important category of exceptions is configuration in which an object is jammed. For
instance, consider a nail in a hole in a board, pointing up (Figure 1.3.) Will the nail fall
out of the hole? It depends on whether the nail was placed in the hole or whether it was
driven into the hole. In the latter case, there are large, normal forces on the nail from
the board and a corresponding large frictional force holding the nail in place. Thus, the
boundary conditions in this problem include a specificationof the forces, whereas in most
cases forces generally determined by the positions and velocities. This makes it difficult to
state what constitutes an adequate representation of a situation.

In some cases, considerations of mechanical energy give powerful constraints. For
instance de Kleer’s NEWTON [16] uses an energy-based calculation to predict whether
a roller-coaster on a track will go around a loop-the-loop, slide back, or fall off. Davis
[9] shows how energy considerations can be used to constructan argument that a marble
dropped inside a funnel will come out the bottom. (It can’t come out the top, because of
conservation of energy; it can’t attain a stable resting position inside, because of the slope
of the sides; it can’t remain inside forever moving around, because the kinetic energy will
dissipate. Hence, the only possibility is that it will come out the bottom.)

KR work to date has barely scratched the surface of a commonsense understanding
of this domain. Most commonsense inferences involving solid objects cannot even be
represented in current KR theories, much less implemented.

1.2.3 Liquids

Liquids are in one way simpler than solid objects; they don’thave a fixed shape that has
to be represented and reasoned about. Thus, for example, it is often easier to determine
whether a liquid will flow out of a tilted cup than whether an object will fall out of a tilted
box. If you are tilting a cup of liquid, then the liquid will start to flow over the side of the
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cup just when, if there were no such flow, the volume of the inside of the cup below the
opening would be less than the volume of the liquid. No such simple rule can be stated for
tipping solid objects out of boxes.

On the whole, however, liquids are much more difficult to reason about than solids, be-
cause they are not individuated into objects. Rather, a system with liquids can be character-
ized in three complementary ways [32]. The first method is to define fluents Volume(l, r),
the volume of liquidl in regionr, and Flow(l, b), the flow out liquidl through directed
surfaceb. (The regions involved need not be fixed regions in space; they can be fluents
whose value at an instant is a region, such as “the inside of a pail”, which moves if the pail
moves.)

The second method is to define a fluent Place(c) which denotes the region occupied
by a “chunk”c of liquid. Note that Place(c) may be a disconnected region. A variant on
the second method is to fix a starting reference timeT0, to identify the region place(L, T0)
occupied by liquidL timeT0, and then to characterize the evolution of the liquid over time
in terms of a fluent LiquidTrajectory(X, L). For any pointX ∈place(L, T0), liquid L, and
time T , the value of liquidTrajectory(X, L) at T is the location atT of the particle ofL
that was atX atT0

A third approach is to treat the liquid as a collection of molecules or small particles
[7, 29, 54], whose positions and velocities can be tracked (if there are few enough) or char-
acterized. The chief difficulty here is to characterizationthe interaction between particles
in such a way as to give the characteristic liquid behavior.

If we exclude from consideration both mixtures of liquids and phase changes such
as evaporation, and we assume that all liquids are incompressible, then we can state the
following three kinematic properties:

1. A liquid moves continuously.

2. A liquid does not overlap with a solid, nor do two liquids overlap.

3. A quantity of liquid maintains a constant volume.

In a region-based representation. constraints (1) and (3) above are achieved by assert-
ing the divergence theorem that Derivative(Volume(l, r)) = −Flow(l,Boundary(r)) and that
the flow out through boundaryb is the negative of the flow throughb with the reversed ori-
entation. In a chunk-based representation, these constraints are achieved by asserting that
Place(c) is a continuous function of time for every chunkc and that Volume(Place(c)) is
constant over time.

However, unlike the solid case, the kinematic theory of liquids is not by itself strong
enough to analyze many interesting physical situations; a stronger dynamic theory must be
used. The dynamic theory of liquids is much less well understood than the dynamic theory
of solid objects, both in scientific and in commonsense theories. A few special cases are
worth noting:

Statics, bulk liquid:If we ignore the phenomenon of a liquid wetting a solid surface,
then we may state the following rule: If a body of liquid occupies a connected region
R and is at rest, then the boundary ofR must meet solid objects everywhere except at
a collection of horizontal upper surfaces of the liquid. If at all such surfaces the liquid
meets the open air, then all these surfaces are at the same height. Otherwise, if some of
the surfaces meet bodies of gas that are themselves enclosedby solids, then the difference
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A B

C

The heights in A and B are equal because both meet the open air.
The pressure of the gas at the top of C is greater than atmospheric pressure,

by an amount proportional to the difference in heights.

Figure 1.4: Liquid statics

in heights among the surfaces is proportional to the difference in pressure in the bodies
of gas involved (Figure 1.4.) (Note that in such cases, it is necessary to represent the gas
explicitly, whereas this is not necessary if all bodies of gas are connected to the outside
air.) In particular, if a volumeV of liquid is poured into a open solid container, then it will
reach a heighth such that the volume of the interior of the container belowh is equal toV .

Quasi-statics: If the solid objects that are in contact with the liquid, and with the
contained gases that meet the liquid, are all moving slowly,then it is sometimes possible
for the liquid to flow in such a way that the above static constraints are maintained. When
this is possible, it generally happens. (It becomes impossible when the liquid is poured
out from its container.) In such a case, the above static rules can be used to predict the
trajectory of the regions occupied by the liquids and gas, and the flow of the liquid, given
the motion of the solids.

Kim [39] describes a system that carries out qualitative predictions of the motions of
liquids in response to the motions of pistons. She also includes in her model a special case
of solids being acted on by liquids, namely the opening and closing of one-way valves.

Hayes [32] identified 15 disjoint and exhaustive physical states of liquids (Table 1.1).
Any quantity of liquid at any time can be divided into parts, each of which is in one of
these states. Any quantity of liquid, considered over an interval of time, can be divided
into histories— that is, regions of space-time — each of which is in a single state. Hayes
proposed that a qualitative physics of liquids could be developed in terms of axioms de-
scribing how different types of histories meet one another and meet histories of solid object
trajectories, on both spatial and temporal faces; and he began work on such an axiomati-
zation. For example, the bottom face of a “falling” history must have a downward flow
through it. All but the top, horizontal face of a “pool” history must meet the outer face of
solid objects. This axiomatic work was never completed (or even extended beyond Hayes’
original article) for a number of reasons, chiefly because a useful theory would require a
much stronger spatial language than Hayes originally envisioned.
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Lazy still Lazy moving Energetic moving
Bulk on surface Wet surface Flowing down Waves lapping

a surface a shore (?)
e.g. a sloping jet hitting
roof a surface (?)

Bulk in space Contained Flowing along Pumped along
in container a channel pipeline

e.g. river
Bulk Falling column Waterspout,
unsupported of liquid fountain,

e.g. pouring jet from hose
from a jug

Divided Dew, drops on
on surface a surface
Divided Mist filling Mist rolling steam or mist
in space a valley down a blown along

valley a tube
Divided Mist, cloud Rain, shower spray, splash
unsupported driving rain

Table 1.1: The possible states of liquid (from [32]).

1.3 Abstraction and Multiple Models

A characteristic of physical reasoning, at both the commonsense and the expert level, is the
existence of many different theories for a given domain, andmany different ways and levels
of detail for describing a given situation, and many different abstraction techniques for
simplifying problem statements and problem solving. A reasoner faced with a real-world
problem must almost always choose among these in formulating his problem; infrequently,
he must apply different, mutually inconsistent, theories to different parts of the problem-
solving process. Some interesting, but very preliminary, studies have been made of the
ways in which appropriate theories/descriptions can be chosen and integrated in problem
solving.

Some of the more important categories of abstraction include:
Alternative physical theories.Two physical theoriesU andV of the same physical

domain may be related in that

• U adds additional constraints toV ; that is,V is logically a subtheory ofU . E.g. the
relation between dynamic and the kinematic theory of solid objects. U is called a
“theorem increasing” [30] or “model decreasing” [48] extension ofV .

• U adds additional entities toV . E.g. the relation between dynamic theories with and
without friction.

• U is a limiting case ofV . E.g. the theory of rigid solid objects corresponds to the
theory of elastic solid objects in the limit as the elasticity goes to zero. Classical
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mechanics corresponds to relativistic mechanics in the limit as the speed of light
goes to infinity.

• U adds more mathematical precision toV . E.g. the relation between a theory in
which terrestrial gravitation is taken as constant and one in which it is taken as
diminishing with elevation.

• U is a discretized form ofV obtained by selecting key states ofV and treating the
transitions between these states as atomic actions or events. E.g. the relation between
the representation of the blocks world in STRIPS and its representation in solid
object dynamics.

• U is a smoothed form ofV in which elements or events that are discrete inV are
replaced by a continuous function governed by a differential equation. E.g. the
relation between atomic and continuous models of matter; the use of continuous
models of animal population.

• U andV conceptualize the domain in radically different ways. E.g.the relation
between wave and particle theories.

It should not be taken for granted that simplifying the form of the theory will make it easier
to solve the problem at hand. For instance, problems in statics, where objects are in a stable
position and will stand still, are often easier than the sameproblem in kinematics, where
one has to consider all possible motions of the objects that do not make them overlap.
Similarly, a theory with friction is simpler to use than a theory without friction in the
common case where the friction serves to hold the objects in afixed position.

Ignoring small quantities.For instance, if a problem involving solid objects takes place
over regions at different temperatures, it is often reasonable to ignore thermal expansion
and contraction, though occasionally, of course, these arecritical. Relativistic corrections
are ignored in almost all problems that do not involve speedscomparable to the speed of
light.

Dimension Reduction.Dimensions that are irrelevant or along which there is little
change may be projected out of a problem. For instance, a problem that involves little
change over time may be treated as an atemporal problem. A problem involving moving
objects on a surface may be treated as a two dimensional problem. A problem involving
moving objects on a track may be treated as a one-dimensionalproblem. Alternatively,
particular entities in the problem may be treated as possessing fewer dimensions than they
actually do. For instance, a ball may be abstracted as a pointobject; a rod in a linkage may
be abstracted as a line segment.

Finally, dimension reduction may be carried out in abstractspaces. Consider for exam-
ple, a train ofn gears that do not mesh tightly. The coordinated motion of thegears, where
they all rotate in sync, constitutes a path through configuration space. More precisely, there
is one path through configuration space corresponding to thecase where the gear train is
moving in one direction, and the front edges of the teeth of thekth gear meet the back edge
of the teeth of thek +1st; and there is a slightly different path through configuration space
corresponding to the case where the gear train is moving in the opposite direction, and the
back edges of the teeth of thekth gear meet the front edge of thek + 1st. In between
these two paths, there is a narrowk-dimensional tube of configurations, corresponding to
the free play of the gears in the small angle range where theirteeth do not meet. For many
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purposes, the radius of the tube can be ignored, and the system can be analyzed as if the
configuration space contained only the central path [49].

An extensive survey by Joskowicz and Sacks [36] of the kinematics of 2500 mecha-
nisms in a standard encyclopedia of mechanisms [1] found that some kind of dimensional
reduction is possible for the analysis of most mechanisms; it is only a minority of mecha-
nisms that require a full three-dimensional representation of the parts involved.

Object coalescence.A collection of objects whose internal relations are fixed can
sometimes be treated as a single object. For instance, a table can be treated as a single
solid object, rather than reasoning separately about the top, the legs, and the screws as
separate interacting objects. (This abstraction breaks down exactly when the table itself
breaks down.) A fabric can be treated as a single object made of cloth rather than as a large
number of interacting threads.

Hierarchical analysis of devices.A complex mechanism can be analyzed as a hierarchy
of components at different scales and levels of abstraction. An archetypal, though of course
extremely difficult, example is the analysis of an organism as decomposed into organs,
tissues, and cells, and sub-cells. This kind of analysis hasbeen carried out with some
success for electronic systems [58], but it is in general difficult, first, because it is hard
to find a systematic language to characterize the functionality or behavior of high-level
components, and second because in order to achieve efficiency, systems are often designed
so that high-level modules share sub-parts. The same problems arise in the hierarchical
analysis of plans.

Some types of abstraction are easy to carry out computationally but difficult to charac-
terize logically. One such is the abstraction mentioned in section 1.2.1 in which a kinematic
joint is abstracted as a constraint in configuration space. Computationally, such constraints
are easily incorporated into the routines that compute the configuration space; once the
configuration space has been computed, all subsequent calculations are done purely on
the basis of the configuration space and it no longer matters how the configuration space
was computed. From a logical point of view, things are more complicated. Are these
constraints reified as entities or stated as axioms? If they are reified, then the theory of
kinematics must be rewritten to describe the properties of “constraints” and to state how
“constraints” enter into the laws of motion. If they are axioms, then there is no longer a
clean separation between the problem-specific descriptionof the physical system and the
problem-independent physical theory; rather, part of the description of the physical sys-
tem consists of physical laws (the constraints) that are generated outside the theory itself.
Moreover, there will have to be meta-logical rules stating what constraint axioms are rea-
sonable; i.e. can actually be implemented in physical systems. Put it another way: The
abstraction of the joints as constraints is simple only under a particular computational ap-
proach: The configuration space is computed from the system description and all further
calculations are done from the configuration space, withoutreferring back to the origi-
nal geometry. But a logical representation does not mandateany particular computational
technique, and specifically it cannot prohibit a reasoner from combining results derived
from the configuration space with the original system description. This combination will
be difficult if there are aspects of the configuration space that are not derived from the
original system description.
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1.4 Historical and Bibliographical

The history of research in AI physical reasoning is punctuated by three major landmarks:
in decreasing order of impact, these are

• The publication of the three major qualitative reasoning programs — de Kleer and
Brown’s ENVISION [17], Forbus’ QP [22] and Kuipers’ QSIM [40] — in a special
issue ofArtificial Intelligencein 1984. (This was republished as a book a year later
[4].) These were in many respects outgrowths of de Kleer’s NEWTON program [16],
and Forbus’ FROB [21] which carried out qualitative reasoning for a roller coaster
on a track and for balls bouncing among fixed obstacles respectively. (In both of
these programs the moving objects were modelled as point objects.) NEWTON was
the first substantial study of commonsense physical reasoning in the AI literature.

• The publication of Pat Hayes’ “Naive Physics Manifesto” [31] and “Ontology for
Liquids” [32] in 1978-9. (The latter circulated for years asa photocopied working
paper, until finally being published in 1985.)

• The application of configuration space techniques to problems in solid object kine-
matics by Faltings [19] and Joskowicz [33] independently in1987.

Most of the work in physical reasoning relates fairly directly to one of these three.
The very large body of research associated with the qualitative reasoning programs

ENVISION, QP, and QSIM is surveyed in chapter 9, and it would be redundant to repeat
that here.

1.4.1 Logic-based representations

In his 1978 paper, “The Naive Physics Manifesto”, [31] Pat Hayes argues the following
points. First, an effective strategy in automating commonsense reasoning is to study the
logical structure of reasoning in various domains prior to,and largely independently of,
considering issues of implementation or application. Second, physical reasoning will be
a fruitful domain for this kind of research. Third, commonsense knowledge of physics
divides naturally into “clusters” of concepts and axioms, and an effective research strat-
egy will be to axiomatize the clusters separately and then combine the axiomatizations.
Fourth, the concept of a “history”, a region in space-time, will be a powerful tool in ax-
iomatizing physical knowledge. Hayes then initiated his research program with “Ontology
for Liquids” [32], described above in section 1.2.3.

“The Naive Physics Manifesto” has inspired and encouraged two separate parts of the
KR research community in two different ways. One group of researchers has embraced
the endorsement of research into representations at the logical level, though without being
particularly interested in physical reasoning. Another group of researchers has embraced
the interest in physical reasoning, but with no enthusiasm about logic. Only a rather small
body of work actually attempts to continue Hayes’ programmeof logical analysis of phys-
ical reasoning.

Schmolze [54] presents an axiomatization for a domain that includes actions, events,
processes, liquids, solid containers, and faucets. A liquid is modelled as a collection of
“granules”.
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Sandewall [53] developed a logical description of a microworld of points objects mov-
ing along surfaces. The chief focus of this work was integrating non-monotonic logic with
a continuous model of time.

Three parallel papers by Lifschitz, Morgenstern, and Shanahan [42, 46, 55] axiomatize
various aspects of the process of cracking an egg into a bowl.

Bennett et al. [3] present an axiomatization of solid objectkinematics built up from
geometrical primitives.

Davis has developed a number of first-order axiomatizationsfor physical domains, and
shown how they can be applied to commonsense inference An axiomatization of a small
part of solid object dynamics, sufficient to support the inference that a marble dropped in
a funnel will fall out the bottom is given in [9]. The most significant technical innovation
here is the concept of a “pseudo-object”, a geometric entitythat “moves around” with a
rigid object, such as the hole of a doughnut or the center of mass of an object. Chapter
7 of [10] gives preliminary axiomatizations for a number of physical domains, including
liquids. An axiomatization of qualitative process theory is given in [11]. The main issue
here is to formulate the closed world assumptions correctly.

An axiomatization of a kinematic model of one solid object cutting another is given in
[12]. Two theories are presented. The “object” theory viewsthe process of a blade cutting
a target object as involving a continuous change in the shapeof the target until it splits,
when it becomes two objects. The “chunk” theory views the same process in terms of the
chunks of solid material contained in the target. (Every separate region defines a separate
chunk.) A chunk persists until it is penetrated by the blade,at which point it ceases to exist.

Davis’ “Naive Physics Perplex” [15] reconsiders the methodology promoted in Hayes’
“Naive Physics Manifesto”, and advocates a methodology based around microworlds rather
than clusters.

1.4.2 Solid Objects: Kinematics

The idea of configuration space was first developed in robotics to characterize the motions
of a robot [43]. Faltings [19] analyzes in detail the kinematics of two-dimensional mech-
anisms composed of parts each with one degree of freedom, such as mechanical clocks.
Joskowicz [33] studies the kinematics of a system that has few degrees of freedom by
virtue of the interaction of its components. Forbus et al. [23] carry out a qualitative anal-
ysis of a kinematic system, based on the topology of configuration space. Gelsey [27]
discusses the construction of kinematic models of varying degree of detail from the geo-
metric specification of a physical system and the use of kinematic models in prediction.
Joskowicz and Addanki [34] proposed methods for designing the shape of a kinematic
system given a specification of desired properties of the configuration space. Joskowicz
and Sacks [36] survey the mechanisms enumerated in a standard encyclopedia of mech-
anisms and analyzed the complexity of the kinematic analysis required. The robustness
of kinematic analysis if it is assumed that shape descriptions are only accurate to within a
specified tolerance is discussed in [37] and [13].

1.4.3 Solid Object Dynamics

Simulators for the behavior of solid objects using a full dynamic theory have been devel-
oped in the contexts of computer-aided engineering [59] andof AI [28]. These carry out a
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exact simulation of behavior given exact geometric specifications of the objects involved.
Sacks and Joskowicz [52] present an algorithm that efficiently carries out dynamic simu-
lation for two-dimensional assemblies using configurationspaces to expedite the problem
of collision detection. WHISPER [26] simulated dynamic behavior of two-dimensional
systems of solid objects in a occupancy array representation.

The CLOCK program of Forbus, Nielsen, and Faltings [23] extended the qualitative
kinematic analysis of [49] with a qualitative representation of forces and motions, thus pro-
ducing a system for qualitative dynamic prediction. The system takes as input a scanned
photograph of a mechanical system such as a mechanical clockwith gears, computes the
exact configuration space, simplifies and abstracts the configuration space to a qualitative
representation, and uses the qualitative configuration space to construct qualitative predic-
tions of behavior. The work of Stahovich, Davis, and Shrobe [56] is similar in spirit to
[23]; it is more restricted in scope but more elegant and systematic. This program does
qualitative simulation for planar systems of objects, eachof which moves with one de-
gree of freedom under the quasi-static assumption that the inertia of objects is negligible
as compared to the driving forces and frictive (dissipative) forces, and that collisions are
inelastic. The input to the program is a representation of the “qc-space”, which gives, for
each pair of interacting objects, a qualitative description of the configuration space of the
feasible (non-overlapping) positions and the contact positions of the two objects. (The
paper vaguely states that the qc-space can be computed from an informal sketch of the
mechanism, but it is not at all clear how this is to be done.) The possible qualitative be-
haviors of the mechanism is then predicted in terms of trajectories through qc-space, using
rules for balancing forces.

1.4.4 Abstraction and Multiple Models

The use of multiple models for physical reasoning is proposed in [2]. General studies of
the use of abstraction in physical reasoning include [18, 47, 48, 60, 61, 8]. Studies of
abstraction in solid object kinematics include [49, 14].

1.4.5 Other

Collins and Forbus [7] describe a program that reasons aboutliquids qualitatively as col-
lections of small particles. The particles are large enoughthat they can be characterized
by thermodynamic properties such as temperature, but smallenough that they remain
undivided. Gardin and Meltzer [29] simulate liquids and strings in terms of interacting
molecules.

Rajagopalan [50] uses a qualitative representation of shape and motion to predict mag-
netic flux and induced current.

Specialized expert systems for specific reasoning in the physical sciences date back
to DENDRAL [6], which inferred molecular structure from mass spectroscopy data. But
these are highly specific to a narrow domain and task, and hardly connected to more general
physical reasoning, either in the knowledge or in the methods of inference used.

An ambitious long-term project, called Project Halo, is underway to encode scientific
knowledge in a knowledge base, the Digital Aristotle [24, 25] The first stage of this project
encoded the knowledge in about a chapter’s worth of an introductory college chemistry
textbook [5]. The project was attempted by three competing knowledge-engineering teams
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and achieved a fair degree of success; the three systems achieved about the mean human
score on questions in the area from the high school AP chemistry test. The subject matter in
this first stage — balancing chemical equations and computing acidity of solutions — was
chosen specifically to avoid the issues of spatial reasoningand of commonsense reasoning
[24].

Great emphasis was placed in Project Halo on carrying out systematic evaluation. The
measure is the success rate on answering questions from the relevant section of the ad-
vanced placement high school chemistry exam, both in findingthe correct answer, and in
explaining the answer. The three competing KR teams were presented with a training set
of problems, and then their systems were tested on a separate, previously unseen, test set
drawn from the same corpus. The grading of the answers was done by an independent set
of domain experts. The translation of the English language AP questions into the input
formalism was done by the system designers, but overseen by the administrators of Halo.

However, there has been very little analysis or descriptionpublished of the actual
knowledge or representation used. The knowledge bases are available on the Web; see [24].
The current author’s examination of the knowledge base created by the Ontoprise group
suggests that the representation was very highly geared toward the particular class of prob-
lems involved, and avoids even fundamental issues in the area if they do not appear in AP
exam questions, as one would expect of a project done under extreme time pressure aiming
toward a specified measure of success. For example, the representation does not seem to
have any conception oftime; its representation of an equation like2H2 + O2→2H2O does
not allow the inference that first the hydrogen and oxygen is present but not the water,
and later the water is present but not the hydrogen and oxygen. Apparently this aspect of
chemical equations is taken for granted by the designers of AP tests, and not tested.

1.4.6 Books

There are three major books in the area.Qualitative Reasoning about Physical Systems
(D. Bobrow ed., 1985) [4] is a reprint of the 1984 special issue of Artificial Intelligence;
it includes the original papers on ENVISION, QP, and QSIM.Readings in Qualitative
Reasoning about Physical Systems(D. Weld and J. de Kleer eds., 1989) [62] contains
essentially all of the important papers in the area published before 1989; it is still the best
source for the field.Qualitative Reasoning: Modeling and Simulation with Incomplete
Knowledge,(Kuipers, 1994) [41] presents the QSIM theory and its extensions.
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