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Abstract

This paper presents a theory of informative communications among agents that al-
lows a speaker to communicate to a hearer truths about the state of the world; the
occurrence of events, including other communicative acts; and the knowledge states
of any agent — speaker, hearer, or third parties — any of these in the past, present,
or future — and any logical combination of these, including formulas with quanti-
fiers. We prove that this theory is consistent, and compatible with a wide range of
physical theories. We examine how the theory avoids two potential paradoxes, and
discuss how these paradoxes may pose a danger when this theory are extended.
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1 Introduction

In constructing a formal theory of communications between agents, the issue of
expressivity enters at two different levels: the scope of what can be said about

the communications, and the scope of what can be said in the communications.
Other things being equal, it is obviously desirable to make both of these as
extensive as possible. Ideally, a theory should allow a speaker to communicate
to a hearer truths about the state of the world; the occurrence of events,
including other communicative acts; the knowledge states of any agent —
speaker, hearer, or third parties; any of these in the past, present, or future; and
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any logical combination of these. This paper presents a theory that achieves
pretty much that.

A few examples of what can be expressed in our representation:

1. Alice tells Bob that all her children are asleep.
2. Alice tells Bob that she doesn’t know whether he locked the door.
3. Alice tells Bob that if he finds out who was in the kitchen at midnight, then

he will know who killed Colonel Mustard.
4. Alice tells Bob that no one had ever told her she had a sister.
5. Alice tells Bob that he has never told her anything she didn’t already know.

The above examples illustrate many of the expressive features of our repre-
sentation:

• Example 1 shows that the content of a communication may be a quantified
formula.

• Example 2 shows that the content of a communication may refer to knowl-
edge and ignorance of past actions.

• Example 3 shows that the content of a communication may be a complex
formula involving both past and future events and states of knowledge.

• Examples 4 and 5 show that the content of a communication may refer to
other communications. They also show that the language supports quan-
tification over agents and over the content of a communication, and thus
allows the content to be partially characterized, rather than fully specified.

Moreover, our theory supports basic inference from these kinds of representa-
tions. For example, given that Alice tells Bob that no one has ever told her that
she has a sister, and that Alice knows that, if she did have a sister, someone
would have told her, it is possible to infer that Alice knows that she does not
have a sister. The proof from our theory of this and similar sample inferences
and the representation of the five statements above is given in section 4.

Following the research programme of [22,23,19,8], the primary purpose of this
paper is to develop a representation for expressing commonsense knowledge
about knowledge and communication, with the ultimate intention that this
representation or something similar, could be used to carry out symbolic rea-
soning in this domain. A secondary purpose is to develop an object-level the-
ory, expressible in the language, that will justify as broad a range as possible
of commonsensically obvious inference in the domain, while entailing as few as
possible commonsensically absurd consequences. The success of the language
and theory is demonstrated in terms of their ability to capture a large num-
ber and a broad range of examples of commonsensically obvious inferences.
We are not here concerned with specialized applications, such as distributed
systems; with subtle philosophical nuance; or with efficiency of inference in an
implemented reasoning engine.
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Since our theory allows communications that refer to other communications,
and even communications that refer to themselves, there is clearly a danger
of running into paradoxes of vicious self-reference. It is therefore particularly
important to establish that the theory is consistent. We prove a meta-theorem
that the theory is indeed consistent; in fact, that it is consistent with a wide
range of domain-specific physical theories and axioms of knowledge acquisi-
tion. We discuss two particular apparent paradoxes — an analogue of Russell’s
paradox, and the “unexpected hanging” paradox — and we show how our the-
ory manages to side-step these.

We should note at the outset the limitations of our theory. The theory deals
only with informative acts (and not, for example, with requests) and assumes
that the following conditions are true and universally known: If AS commu-
nicates Q to AH , then

1. AS knows that Q is true at the time that he initiates the communication.
2. From the time that he initiates the communication, AS knows that he is

carrying out a communication; he knows that the content is Q; and he knows
that the recipient is AH .

3. Similarly, when the communication is complete, AH knows that he has
received a communication; he knows that the content was Q; and he knows
that the sender was AS.

4. When the communication is complete, AS knows that the communication is
complete and AH knows the time at which the communication was initiated.

The paradigmatic example of a form of communication satisfying conditions
2, 3, and 4 is direct speech. 2 Another example could be mail, assuming that

• All messages are time-stamped with the time of sending, and signed by the
sender.

• There is a universally known maximal delay D between the time of sending
and the time of receiving a message. (“Receiving” here means the time when
the hearer reads the message, not the time that it arrives in his mailbox.)

In this case, if we define a communication to be “complete” at the time of
sending plus D, then the above conditions are met.

Many aspects of the theory can be applied to communications that do not meet
condition (4), but I have not been able to find a plausible axiomatization of
this more general case that I can prove to be consistent. Also, I cannot prove
that the theory is consistent unless time is taken to be discrete. These are

2 Under assumptions that are reasonable, though not universally valid: e.g. that
the speaker knows what he will say when he begins speaking, and that the speaker
and hearer have common knowledge that the hearer will correctly understand the
message.
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discussed forther in section 8.

The paper proceeds as follows: Section 2 reviews the theories of time and of
knowledge, which are not new here. Section 3 presents our language and ax-
ioms of communication. Section 4 is the core of this paper; it illustrates the
power of the theory by showing how it supports the representation of the five
sample statements above and three example commonsense inferences. Sections
5 and 6 describe two apparent paradoxes — a paradox analogous to Russell’s
paradox and the “unexpected hanging” paradox — and explain why these
do not cause inconsistencies in the theory. Section 7 gives the statement of
Theorems 1 and 2, which assert that the theory is internally consistent and
compatible with a wide range of physical theories. Sections 8 and 9 discuss
related work. Section 10 discusses open problems and summarizes our conclu-
sions. Appendix A gives the proofs of theorems 1 and 2.

2 Framework

We use a situation-based, branching theory of time; an interval-based theory
of multi-agent actions; and a possible-worlds theory of knowledge. This is all
well known, so the description below is brief.

2.1 Time and Action

We use a situation-based theory of time. Time can be either continuous 3 or
discrete, but it must be branching, like the situation calculus. The branching
structure is described by the partial ordering “S1 < S2”, meaning that there is
a timeline containing S1 and S2 and S1 precedes S2. It is convenient to use the
abbreviations “S1 ≤ S2” and “ordered(S1, S2).” The predicate “holds(S, Q)”
means that fluent Q holds in situation S.

Each agent has, in various situations, a choice about what action to perform
next, and the time structure includes a separate branch for each such choice.
Thus, the statement that action E is feasible in situation S is expressed by
asserting that E occurs from S to S1 for some S1 > S.

Following McDermott [24], actions are represented as occurring over an in-
terval; the predicate occurs(E, S1, S2) states that action E occurs starting in

3 As will be discussed below, I have not proven the theory consistent for continuous
theories of time. However, nothing in the form of the representation inherently
excludes a continuous model of time; and I conjecture that the theory is, actually,
consistent with a continuous model of time.
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S1 and ending in S2. However, the whole theory could be recast without sub-
stantial change into the situation calculus extended to permit multiple agents,
after the style of Reiter[33] The advantage of using the “occurs” representation
is the much greater ease of extensibility. The situation calculus was developed
for domains where a single agent executes a single atomic action in each situ-
ation to bring about the next situation; and extending the situation calculus
to allow multiple agents, exogenous change, real-valued time, concurrent ac-
tions, extended actions, and alternative characterizations of actions involves
a series of representational extensions that are somewhat awkward and hard
to integrate [33]. By contrast, all of these can be subsumed in the “occurs”
representation, though finding a correct axiomatization of a theory with these
features can still be difficult.

Table 1 shows the axioms of our temporal theory. Throughout this paper, we
use a sorted first-order logic with equality, where the sorts of variables are
indicated by their first letter. The sorts are clock-times (T ), situations (S),
Boolean fluents (Q), actions (E), agents (A), and actionals (Z). An actional

is a characterization of an action without specifying the agent. For example,
the term “puton(blocka,table)” denotes the actional of someone putting block
A on the table. The term “do(john, puton(blocka,table))” denotes the action
of John putting block A on the table. Free variables in a formula are assumed
to be universally quantified.

Note that in our model of time, each feasible action and its consequences
are represented by a branch in the time structure. Thus the time structure
incorporates everything that can possibly happen. We do not single out one
particular time line or branch as the history that will actually happen. This
will be important in our discussion of the paradox of the unexpected hanging.

2.2 Knowledge

As first proposed by Moore [25,26] and widely used since, knowledge is repre-
sented by identifying temporal situations with epistemic possible worlds and
positing a relation of knowledge accessibility between situations. The relation
k acc(A, S, SA) means that situation SA is accessible from S relative to agent
A’s knowledge in S; that is, as far as A knows in S, the actual situation could
be SA. The statement that A knows φ in S is represented by asserting that φ

holds in every situation that is knowledge accessible from S for A. As is well
known, this theory enables the expression of complex interactions of knowl-
edge and time; one can represent both knowledge about change over time and
change of knowledge over time.

Again following Moore [26], the state of agent A knowing what something is is
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Primitives:

T1 < T2 — Time T1 is earlier than T2.
S1 < S2 — Situation S1 precedes S2, on the same time line. (We overload the <

symbol.)
time(S) — Function from a situation to its clock time.
holds(S,Q) — Fluent Q holds in situation S.
occurs(E,S1, S2) — Action E occurs from situation S1 to situation S2.
do(A,Z) — Function. The action of agent A doing actional Z.

Definitions:

TD.1 S1 ≤ S2 ≡ S1 < S2 ∨ S1 = S2.

TD.2 ordered(S1, S2) ≡
S1 < S2 ∨ S1 = S2 ∨ S2 < S1.

TD.3 feasible(E,S) ⇔ ∃S2 occurs(E,S, S2).

Axioms:

T.1 T1 < T2 ∨ T2 < T1 ∨ T1 = T2.

T.2 ¬[T1 < T2 ∧ T2 < T1].

T.3 T1 < T2 ∧ T2 < T3 ⇒ T1 < T3.
(Clock times are linearly ordered)

T.4 S1 < S2 ∧ S2 < S3 ⇒ S1 < S3. (Transitivity)

T.5 (S1 < S ∧ S2 < S) ⇒ ordered(S1, S2).
(Forward branching)

T.6 S1 < S2 ⇒ time(S1) < time(S2).
(The ordering on situations is consistent with the orderings of their clock times.)

T.7 ∀S,T1 ∃S1 ordered(S, S1) ∧ time(S1)=T1.
(Every time line contains a situation for every clock time.)

T.8 occurs(E,S1, S2) ⇒ S1 < S2.
(Events occur forward in time.)

T.9 [occurs(E,S1, S2) ∧ S1 < SX < S2 ∧ SX < SY ] ⇒
∃SZ SX < SZ ∧ ordered(SY, SZ) ∧ occurs(E,S1, SZ).
(If action E starts to occur on the time line that includes SY , then it completes
on that time line. (Figure 1))

Table 1
Temporal Axioms
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If the time structure has the form on the left, then it has one of the forms on
the right.

Fig. 1. Axiom T.9

expressed by using a quantifier of larger scope than the universal quantification
over accessible possible worlds. For example, the statement, “In situation s1,
John knows who the President is” is expressed by asserting that there exists
a unique individual who is the President in all possible worlds accessible for
John from s1.

∃X ∀S1A k acc(john,s1,S1A) ⇒ holds(S1A,president(X)).

For convenience, we posit an S5 logic of knowledge; that is, the knowledge
accessibility relation, restricted to a single agent, is in fact an equivalence
relation on situations. This is expressed in axioms K.1, K.2, and K.3 in table 2.
Three important further axioms govern the relation of time and knowledge.

K.4. Axiom of memory: If A knows φ in S, then in any later situation, he re-
members that he knew φ in S.

K.5. A knows all the actions that he has begun, both those that he has completed
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Axiom K.6 prohibits this structure.

Time

precedes

k_acc
S2B

S1B

S2A

S1A

Fig. 2. Axiom K.6

and those that are ongoing. That is, he knows a standard identifier for these
actions; if Bob is dialing (212) 998-3123 on the phone, he knows that he is
dialing (212) 998-3123 but he may not know that he is calling Ernie Davis.
At any time, A knows what actions are feasible for him now.

K.6 Knowledge accessibility relations do not cross in the time structure. (Figure
2.) In a discrete theory of time, axiom K.6 is a consequence of the axiom of
memory K.4. (Knowledge accessibility relations that violate this condition
have sometimes been used in the literature for agents who do not satisfy
the axiom of memory.)

The theory includes a form of common knowledge, restricted to two agents.
Agents A1 and A2 have shared knowledge of φ if they both know φ, they both
know that they both know φ and so on. 4 We represent this by defining a
further accessibility relation, “sk acc(A1, A2, S, SA)” (SA is accessible from
S relative to the shared knowledge of A1 and A2). This is defined as the
transitive closure of links of the form k acc(A1, ·, ·) together with links of the
form k acc(A2, ·, ·). (Of course, transitive closure cannot be exactly defined
in a first-order theory; axioms K.7 and K.8 define an approximation that is
adequate for our purposes.)

3 Communication

We now introduce the function “inform”, taking two arguments, an agent AH

and a fluent Q. The term “inform(AH, Q)” denotes the actional of inform-
ing AH that Q; the term “do(AS,inform(AH, Q))” thus denotes the action of
speaker AS informing AH that Q. Our theory here treats “do(AS,inform(AH, Q))”
as a primitive action; in a richer theory, it would be viewed as an illocution-
ary description of an underlying locutionary act (not here represented) — the
utterance or writing or broadcasting of a physical signal.

4 In [10], we need to use common knowledge by a general set of agents. The mod-
ifications to the representation and the axioms needed to support this are entirely
straightforward.
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Primitives:

k acc(A,SA, SB) — SB is accessible from SA relative to A’s knowledge in SA.
sk acc(A1, A2, SA, SB) — SB is accessible from SA relative to the shared

knowledge of A1 and A2 in SA.

Axioms

K.1 ∀A,SA k acc(A,SA, SA).
K.2 k acc(A,SA, SB) ⇒ k acc(A,SB,SA)
K.3 k acc(A,SA, SB) ∧ k acc(A,SB,SC) ⇒ k acc(A,SA, SC).

(K.1 through K.3 suffice to ensure that the knowledge of each agent obeys an
S5 logic: what he knows is true, if he knows φ he knows that he knows it; if he
doesn’t know φ, he knows that he doesn’t know it.)

K.4 [k acc(A,S2A,S2B) ∧ S1A < S2A] ⇒
∃S1B S1B < S2B ∧ k acc(A,S1A,S1B).
(Axiom of memory: If agent A knows φ at any time, then at any later time he
knows that φ was true.)

K.5 [occurs(do(A,Z),S1A,S2A) ∧ S1A ≤ SA ∧
ordered(SA,S2A) ∧ k acc(A,SA, SB)] ⇒
∃S1B,S2B occurs(do(A,Z),S1B,S2B) ∧
S1B ≤ SB ∧
[S2A < SA ⇒ S2B < SB] ∧
[S2A = SA ⇒ S2B = SB] ∧
[SA < S2A ⇒ SB < S2B] ∧
[S1A = SA ⇒ S1B = SB]
(An agent knows which actions he has completed, which actions he has begun,
and which actions are now feasible.)

K.6 ¬∃A,S1A,S1B,S2A,S2B

S1A < S2A ∧ S1B < S2B ∧ k acc(A,S1A,S2B) ∧ k acc(A,S2A,S1B).
(Knowledge accessibility links do not cross in the time structure (Figure 2).)

K.7 sk acc(A1, A2, SA, SB) ⇔
[k acc(A1, SA, SB) ∨ k acc(A2, SA, SB) ∨
sk acc(A1, A2, SB, SA) ∨
sk acc(A2, A1, SA,AB) ∨
∃SC sk acc(A1, A2, SA, SC) ∧ sk acc(A1, A2, SC, SB)].
Definition of sk acc as a equivalence relation, symmetric in A1, A2, that includes
the k acc links for the two agents A1, A2.

K.8 (Induction from k acc links to sk acc links.) Let Φ(S) be a formula with a free
situational variable S. Then the closure of the following formula is an axiom:
[∀AS,AH [[∀SA,SB Φ(SA) ∧ k acc(AS,SA, SB) ⇒ Φ(SB)] ∧

[∀SA,SB Φ(SA) ∧ k acc(AH,SA,SB) ⇒ Φ(SB)]] ⇒
[∀SA,SB Φ(SA) ∧ sk acc(AS,AH,SA, SB) ⇒ Φ(SB)].

Table 2
Axioms of Knowledge
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We also add a second actional “communicate(AH)”. This alternative char-
acterization of a communicative act, which specifies the hearer but not the
content of the communication, enables us to separate out physical constraints
on a communicative act from contentive constraints. Thus, we allow a purely
physical theory to put constraints on the occurrence of a communication, or
even to posit physical effects of a communication, but these must be indepen-
dent of the information content of the communication.

We posit five axioms of communication, summarized in table 3. Some of these
are straightforward; others much less so. We discuss them below in increasing
order of complexity. We also put forward a sixth axiom, a frame axiom for
ignorance, but its status is more dubious, for reasons that we will discuss.

3.1 Relation between informing and communication

Axiom I.1: Any inform act is a communication.
occurs(do(AS,inform(AH, Q)),S1, S2) ⇒
occurs(do(AS,communicate(AH)),S1, S2).

Axiom I.2: If a speaker AS can communicate with a hearer AH , then AS

can inform AH of some specific Q if and only if A knows that Q holds at the
time he begins speaking.

feasible(do(AS,communicate(AH)),S1)] ⇒
[∀Q feasible(do(AS,inform(AH, Q)),S1) ⇔

[∀S1A k acc(AS, S1, S1A) ⇒ holds(S1A, Q)]]

By virtue of these two axioms, the preconditions for a AS informing AH that
Q are just that it is feasible for AS to communicate to AH and that AS knows
that Q is true. The content Q may not affect the feasibility in any other way.
Axiom I.1 further guarantees that any other physical constraints over com-
munications, such as the duration of a communication or its physical effects
must apply also to inform acts; that is, that the physical characteristics of
any inform act must be consistent with the physical constraints on communi-
cations. These axioms do not rule out the possibility that the content could
affect other physical aspects of the inform act — for example, that a complex
content takes longer to communicate than a simple content — but I have not
shown that any such constraints lead to a consistent theory.

Note that axiom I.2 requires, conversely, that any fluent Q that is known to
be true can be communicated; that is, there is a branch in the time structure
corresponding to the communication of Q.
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I.1 Any inform act is a communication.
occurs(do(AS,inform(AH,Q)),S1, S2) ⇒
occurs(do(AS,communicate(AH)),S1, S2).

I.2. If a speaker AS can communicate with a hearer AH, then AS can inform AH

of some specific Q if and only if AS knows that Q holds at the time he begins
speaking.

feasible(do(AS,communicate(AH)),S1) ⇒
[∀Q feasible(do(AS,inform(AH,Q)),S1) ⇔

[∀S1A k acc(AS,S1, S1A) ⇒ holds(S1A,Q)]]

I.3. If AS informs AH of Q from S1 to S2, then in S2, AH knows that AS has
informed him of Q.

∀S1,S2,S2A [occurs(do(AS,inform(AH,Q)),S1, S2) ∧ k acc(AH,S2, S2A)] ⇒
∃S1A occurs(do(AS,inform(AH,Q)),S1A,S2A) ∧ k acc(AH,S1, S1A).

I.4. If AS informs AH of Q1 over [S1, S2] and the shared knowledge of AS and AH in
S1 implies that holds(S1, Q1) ⇔ holds(S1, Q2), then AS has also informed AH

of Q2 over [S1, S2]. Conversely, the two actions “do(AS,inform(AH,Q1))” and
“do(AS,inform(AH,Q2))” co-occur only if Q1 and Q2 are related in this way.

occurs(do(AS,inform(AH,Q1)),S1, S2) ⇒
[occurs(do(AS,inform(AH,Q2)),S1, S2) ⇔
[∀S1A sk acc(AS,AH,S1, S1A) ⇒

[holds(S1A,Q1) ⇔ holds(S1A,Q2)]]]

I.5. Axiom of comprehension: any property of situations that can be stated in the
language is a fluent.

Let α(S) be a first-order formula that contains exactly one free variable S of sort
“situation” and that does not contain Q as a free variable. (α may have other free
variables of other sorts.) Then the closure of the following formula is an axiom:

∃Q ∀S holds(S,Q) ⇔ α(S).

(The closure of a formula β is β scoped by universal quantifications of all its free
variables.)

I.6 Frame axiom for ignorance. See the discussion in section 3.5 below.

Table 3
Axioms of Communication

3.2 Epistemic effect of communication

Since we require the strong conditions mentioned in section 1, we can posit
the following axiom: 5

5 The statement of this axiom in the KR-2004 paper [9] was not correct.
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Axioms I.3: If AS informs AH of Q from S1 to S2, then in S2, AH knows
that AS has informed him of Q.

∀S1,S2,S2A [occurs(do(AS,inform(AH, Q)),S1, S2) ∧ k acc(AH, S2, S2A)] ⇒
∃S1A occurs(do(AS,inform(AH, Q)),S1A, S2A) ∧ k acc(AH, S1, S1A)

Lemmas 3.1 and 3.2 are important consequences of I.3 together with the pre-
ceding axioms:

Lemma 3.1: If AS informs AH of Q then, when the communication is com-
plete, then AS and AH have shared knowledge that the communication has
taken place.

occurs(do(AS,inform(AH, Q)),S1, S2) ∧ sk acc(AS, AH, S2, S2A) ⇒
∃S1A occurs(do(AS,inform(AH, Q)),S1A, S2A)

Proof: By K.5, AS knows when he has completed a communication.

occurs(do(AS,inform(AH, Q)),S1, S2) ∧ k acc(AS, S2, S2A) ⇒
∃S1A occurs(do(AS,inform(AH, Q)),S1A, S2A)

By I.3, AH knows when he has received a communication.

occurs(do(AS,inform(AH, Q)),S1, S2) ∧ k acc(AH, S2, S2A) ⇒
∃S1A occurs(do(AS,inform(AH, Q)),S1A, S2A)

Choosing Φ(S) to be the formula “occurs(do(AS,inform(AH, Q))”, the for-
mula in Lemma 3.1 then follows from axiom K.8.

Lemma 3.2: If AS informs AH of Q then, when the communication is com-
plete, then AS and AH have shared knowledge that Q was true when the
communication began.

occurs(do(AS,inform(AH, Q)),S1, S2) ∧ sk acc(AS, AH, S2, S2A) ⇒
∃S1A occurs(do(AS,inform(AH, Q)),S1A, S2A) ∧ holds(S1A, Q)

Proof:

Let as, ah, q, s0, s1, s2a satisfy the left side of the above implication.
By Lemma 3.1 there exists s1a such that occurs(do(as,inform(ah,q)),s1a,s2a).
By K.1, k acc(as,s1a,s1a).
By I.2, holds(s1a,q).
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3.3 Axiom of comprehension

The axiom of comprehension states that there is a fluent corresponding to any
property of situations definable in the language. The content of this axiom
therefore depends on the overall language L. We state this as an axiom schema
i.e. an infinite set of axioms.

Axiom I.5: The comprehension axiom for fluents in a language L is this: Let
α(S) be a first-order formula that contains exactly one free variable S of sort
“situation” and that does not contain Q as a free variable. (α may have other
free variables of other sorts.) Then the closure of the following formula is an
axiom:

∃Q ∀S holds(S, Q) ⇔ α(S).

(The closure of a formula β is β scoped by universal quantifications of all its
free variables.)

Let us first discuss the significance of free variables in the formula α. The
reason to allow free variables that are not situations is to deal with examples
such as the following: We want to be able to posit that a speaker can say, for
example, that some specific block is either red or blue without requiring that
the language L have a constant symbol for each block, or even a formula that
uniquely identifies each block. 6

This axiom achieves this. We choose α(S) to be the formula “holds(S,red(X))
∨ holds(S,blue(X))”. The axiom schema then state

∀X ∃Q ∀S holds(S, Q) ⇔ holds(S,red(X)) ∨ holds(S,blue(X))

That is, for every object X there is a fluent Q that corresponds to the situa-
tions in which X is either red or blue.

The reason to exclude formulas that have other situational free variables in
addition to S is that it doesn’t seem to mean anything to have this kind of
de re reference to situations. A situation is meaningful only in relation to the
current situation; there is no other way to meaningfully refer to a situation.
It may be noted that the consistency proof for the theory (theorem 1 below)
does not depend on this restriction.

6 You might well ask, “If you can’t refer to the block in L, how is the speaker talking
about it?” Perhaps he is pointing. Perhaps he is using a slightly richer language with
more constant symbols. It is not a very important point, but it does make the theory
more elegant and easier to use if one assumes that a speaker can refer de re to any
entity other than a situation.
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The reason for the condition that Q not appear free in the formula is that,
otherwise, we could choose α(S) to be the formula ¬holds(S, Q), in which
case the axiom would give us ∃Q ∀S holds(S, Q) ⇔ ¬holds(S, Q), which is
obviously not satisfiable. 7 Note, however, that if a different variable name is
chosen, there is no problem with having a free variable of sort “fluent”. For
example, if we choose α(S) to be the formula ¬holds(S, Q1), then the schema
yields the axiom ∀Q1 ∃Q ∀S holds(S, Q) ⇔ ¬holds(S, Q1)
which is entirely reasonable.

The content of the comprehension axiom depends on the overall language L.
In general, one supposes that the language L will contain many domain and
problem specific symbols beyond those that are used in the axioms enumerated
here. Theorem 1 shows that these axioms are consistent when L is a physical
language augmented with the symbols from the theory of knowledge and com-
munication described here. In [10] we consider a language that includes also
agent commitments and requests. In that setting, the above formulation of the
axiom turns out to be too strong; we have to limit the comprehension axiom
to apply only to formulas that do not include symbols describing commitment
and requests.

In view of this comprehension axiom, axiom K.8 could be restated as a single
axiom (rather than an axiom schema) as follows:

K.8.A ∀Q,AS,AH [ [∀S,SA holds(S, Q) ∧ k acc(AS, S, SA) ⇒ holds(SA, Q)] ∧
[∀S,SA holds(S, Q) ∧ k acc(AH, S, SA) ⇒ holds(SA, Q)]] ⇒

[∀S,SA holds(S, Q) ∧ sk acc(AS, AH, S, SA) ⇒ holds(SA, Q)].

However we did not use this formulation originally because we did not want
K.8 to be dependent on I.5.

3.4 Independent actions

In a temporal representation, like ours, that permits the concurrent execution
of actions, it does not suffice just to describe what actions can be executed; one
must also, to greater or lesser extent, describe what combinations of actions
can be executed concurrently. At the minimum, if two actions are independent,
it should be possible to execute the one without the other. In the case of
“inform” acts, the natural axiom would be that, if AS knows φ, then he
can choose to carry out the single act of informing AH of φ and not doing
anything else. One might suppose that this could be expressed in the following
two axioms:

7 I am extremely grateful to the anonymous reviewer who pointed this out.
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WRONG.1 feasible(do(AS,inform(AH, Q)),S1) ⇒
∃S2 occurs(do(AS, Z),S1, S2) ⇔ Z=do(AS,inform(AH, Q)).

WRONG.2 do(AS1,inform(AH1, Q1)) = do(AS2,inform(AH2, Q2)) ⇒
AS1 = AS2 ∧ AH1 = AH2 ∧ Q1 = Q2.

However, as my labels subtly suggest, 8 this is not an acceptable formulation.
In fact, as we shall show in section 5, these are inconsistent with the axiom of
comprehension I.5.

The problem, intuitively, is this: The comprehension axiom asserts that there
exists a fluent for every set of situations; axiom WRONG.1 asserts that there
exists a separate branch in time for every fluent. Therefore, if you try to
construct a model of these axioms combined, you first have to construct all
sets of situations; then add branches for each of these, which gives a whole
bunch more resultant situations; these in turn generate vast numbers of new
sets of situations . . . There is no way to make this construction converge. (I’m
being a little loose here, but one can make this tight. The decisive proof that
this can’t be made to work is the “misled” paradox of section 5.)

Therefore, we have to weaken axiom WRONG.1. 9 The approach we take is as
follows: In general, it is only necessary to distinguish an occurrence of action
A1 from an occurrence of action A2 if they have different causal consequences.
For instance, in the blocks world, if all you are interested in is the sequence
of towers that are formed, then all that matters in discriminating actions is
the ending position of the block being moved; the trajectory through which it
moves is immaterial.

Now, in the case of informative acts, the causal consequence of concern is
the effect on knowledge states. Assuming axiom I.3, the main effect of AS

informing AH of Q is that, when the communication is complete, AS and AH

have shared knowledge that Q held at the beginning of the communication.
Therefore, if Q1 and Q2 are two informative contents such that the effects on
the shared knowledge of AS and AH following a communication of Q1 from
AS to AH are the same as those effects following a communication of Q2,
then we can treat the communication of Q1 and the communication of Q2
as the same action; they, so to speak, attain the same end state via different
trajectories. And a sufficient condition to ensure this is that AS and AH

8 One thing I have learned in twenty years of teaching is that, if you write down
a wrong formula on the blackboard for purposes of discussion, you have to la-
bel it WRONG in large letters. Otherwise, students copy it into their notebooks
. . . Similarly, if someone is skimming through this paper looking for formal axioms,
I do not want him to use these.
9 Weakening axiom WRONG.2 does not work. In fact, WRONG.2 ends up being
true in the model we will construct, but its truth won’t actually matter much once
we have correctly reformulated WRONG.1.
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have shared knowledge at the start of the communication that Q1 and Q2 are
equivalent.

For example, if Jack and Jane share the knowledge that George Bush is the
President and that 1600 Pennsylvania Avenue is the White House, then the
action of Jack informing Jane that Bush is at the White House is identical
to the act of Jack informing Jane that the President is at 1600 Pennsylvania
Avenue. If they do not share this knowledge, then these two acts are different.

This, then, is our axiom: The event of AS informing AH of Q1 and the event
of AS informing AH of Q2 co-occur over an interval [S1, S2] if and only if AS

and AH have shared knowledge in S1 that Q2 if and only if Q1,

I.4: occurs(do(AS,inform(AH, Q1)),S1, S2) ⇒
[occurs(do(AS,inform(AH, Q2)),S1, S2) ⇔
[∀S1A sk acc(AS, AH, S1, S1A) ⇒

[holds(S1A, Q1) ⇔ holds(S1A, Q2)]]]

As we shall see in section 5, in a discrete model of time this is sufficient to
avoid the contradiction.

Note: The above axiom is not sufficient to rule out models in which the in-
formative actions of one agent constrain to the concurrent actions of another
agent. The easiest way to insure independence between agents is to posit an
axiom of “anti-synchrony” that no two agents begin two actions at the same
time [33].

T.10 occurs(do(A1, Z1),S1, S2) ∧ occurs(do(A2, Z2),S1, S3) ⇒ A1 = A2.

However, since this axiom is part of the physical theory, and not all physical
theories may wish to use it, we have not made it part of our standard set of
temporal axioms.

Two alternative formulations of axiom I.4 should be mentioned. We can weaken
I.4 to read that communicating Q1 and Q2 co-occur just if they coincide over
all situations of the same time as the beginning of the situation.

I.4.A: occurs(do(AS,inform(AH, Q1)),S1, S2) ⇒
[occurs(do(AS,inform(AH, Q2)),S1, S2) ⇔
[∀S1A time(S1A)=time(S1) ⇒

[holds(S1A, Q1) ⇔ holds(S1A, Q2)]]]

The consistency proof in Appendix A requires only a small modification to
deal with this new version. However, this version seems to me harder to justify
than the previous version.
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A second alternative, which is in effect equivalent to axiom I.4.A, is to use
the axioms WRONG.1 and WRONG.2 and modify the comprehension axiom
to state that there is a fluent corresponding to every property of situations at
some particular time T :

I.5.B: Let α(S) be a first-order formula in L with exactly one free variable S

of sort “situation”, in which the variable Q does not appear free. (α may have
other free variables of other sorts.) Then the closure of the following formula
is an axiom:

∀T ∃Q ∀S holds(S, Q) ⇔ α(S) ∧ time(S)=T .

3.5 The frame inference

Finally, it would be desirable to carry out the frame inference over knowledge
and ignorance.

The frame axiom over knowledge is just the axiom of memory, axiom K.4;
if A knows in S that φ is true, then he remembers in all later situations
that φ was true. Since we have no actions or events that cause forgetting, this
simple formulation suffices. Note that “knowing φ” is represented as “all worlds
in which φ is false are inaccessible.” Hence preserving knowledge amounts
to saying that if situation SB is inaccessible from SA then any temporal
descendant of SB is inaccessible from the corresponding descendant of SA.

The frame axiom over ignorance is the reverse: Given that A does not know
φ in S0, and given that nothing occurs between S0 and S1 that would cause
him to learn φ, we wish to infer that he still does not know φ in S1. Since
“not knowing φ in S” is represented as “there are possible worlds accessible
from S in which φ is false,” this frame inference should have the following
general form: If S0A is accessible from S0, S1 > S0, S1A > S0A, and as
far as A’s sources of knowledge are concerned, the interval between S0 and
S1 is indistinguishable from the interval between S0A and S1A, then S1A is
accessible from S1.

Stating this formally is mostly a matter of collecting all the necessary sources
of knowledge. Our theory requires that agent A gains knowledge in S under
the following circumstances

1. If A begins action E in S1, and S2 is on a branch in which E is executed,
then in S2, A knows that E is executed. If E is completed at or before S2,
then in S2 A knows when it was completed.

2. If action E is feasible for A in situation S, then A knows that E is feasible
in S.
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3. If A receives a communication from AS in S then A knows in S that he has
received a communication.

We also assume that there are domain-specific axioms of knowledge produc-
tion. In an S5 logic, it is reasonable to assume that these are all of the following
form: In all situations S, A knows whether Φ(A, S), where Φ is a formula that
can refer only to present or past physical states or to past (but not present)
knowledge states. 10 Formally, we impose the following conditions on Φ(A, S):

• The only free variables in Φ(A, S) are A and S.
• If S1 is a quantified variable other than S appearing in Φ, and S1 is used

as either the second-to-last or last argument for either k acc or sk acc, then
the quantification of S1 imposes the restriction S1 < S.

• If S1 is a quantified variable other than S appearing in Φ, and S1 is not
used as an argument for either k acc or sk acc, then the quantification of
S1 imposes the restriction S1 ≤ S.

Thus we assume the existence of a finite collection of axioms of the form

∀A,S [[∀SA k acc(A, S, SA) ⇒ Φi(A, S)] ∨
[∀SA k acc(A, S, SA) ⇒ ¬Φi(A, S)]]

For example, Scherl and Levesque [36] propose the use of an action “SENSEQ”
which informs the actor whether fluent Q is true. We can achieve that in the
above framework by choosing Φ(A, S) to be the condition that A has executed
SENSEQ and Q holds:

Φ(A, S) ⇔ ∃S1 occurs(SENSEQ,S1, S) ∧ holds(S, Q).

We now posit that every agent always knows whether Φ(A, S). Since, by axiom
K.5, an agent always knows whether he has executed SENSEQ, it follows that,
if an agent has executed SENSEQ, then he knows whether Q is true.

So now we can state the frame axiom I.6 asserting that if none of the above
conditions has been met, then a knowledge accessibility relation persists. (Ta-
ble 4.)

That is: Suppose that S0B is knowledge accessible from S0A relative to A,
S1A follows S0A, S1B follows S1A, S1A and S1B have the same clock-time,
and the following conditions are met:

(1) If A executes actional Z, either completing it or starting it between S1A or
beginning it at S2A, then he executes the same action at the corresponding

10 Actually, I conjecture that these restrictions are not necessary, and that it is
consistent to allow Φ to be any formula, but I have not proven it.
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I.6: [k acc(A,S0A,S0B) ∧ S0A < S1A ∧ S0B < S1B ∧ time(S1B)=time(S0B) ∧

(1) [∀S2A,S3A,Z [occurs(do(A,Z),S2A,S3A) ∧ S2A ≤ S1A ∧ S0A < S3A ∧
ordered(S1A,S3A)] ⇒
∃S2B,S3B occurs(do(A,Z),S2B,S3B) ∧ time(S2B)=time(S2A) ∧

[[S1A < S3A ∧ S1B < S3B] ∨
[S3B ≤ S1B ∧ time(S3B) = time(S3A)]]] ∧

(2) [∀S2B,S3B,Z [occurs(do(A,Z),S2B,S3B) ∧ S2B ≤ S1B ∧ S0B < S3B ∧
ordered(S1B,S3B)] ⇒
∃S2A,S3A occurs(do(A,Z),S2A,S3A) ∧ time(S2A)=time(S2B) ∧

[[S1B < S3B ∧ S1A < S3A] ∨
[S3A ≤ S1A ∧ time(S3A) = time(S3B)]]] ∧

(3) [∀S2A,S3A,AS,Q [occurs(do(AS,inform(A,Q)),S2A,S3A) ∧ S3A ≤ S1A] ⇒
∃S2B,S3B occurs(do(AS,inform(A,Q)),S2B,S3B) ∧ S3B < S1B ∧

time(S2B)=time(S2A) ∧ time(S3B)=time(S3A)] ∧

(4) [∀S2B,S3B,AS,Q [occurs(do(AS,inform(A,Q)),S2B,S3B) ∧ S3B ≤ S1B] ⇒
∃S2A,S3A occurs(do(AS,inform(A,Q)),S2A,S3A) ∧ S3A < S1A ∧

time(S2A)=time(S2B) ∧ time(S3A)=time(S3A)] ∧

(5) [∀S2A,S2B [S2A ≤ S1A ∧ S2B ≤ S1B ∧ time(S2A)=time(S2B)] ⇒∧
i [Φi(S2A)⇔Φi(S2B)]]

]

⇒ k acc(A,S1A,S1B).
Table 4
Frame action for ignorance

times in the interval [S0B, S1B]. (If the action ends after S1A and S1B,
then the clock-times of the endings need not be the same.)

(2) The reverse of 1; if A executes an action in the “B” interval then he executes
the same action at the corresponding time in the “A” interval.

(3) If AS tells A of Q and completes this action between S0A and S1A, then
the same thing happens between S0B and S1B.

(4) The reverse of (3): If AS tells A of Q and completes this action between
S0B and S1B, then the same thing happens between S0A and S1A.

(5) All of the facts Φi have the same truth value from S0A to S1A.

Then nothing that A knows about has occurred to distinguish the interval
[S0B, S1B] from the interval [S0A, S1A], and therefore S1B is knowledge
accessible from S1A.

Well, there it is. It is not a candidate for any “Top 10 most elegant axioms”
lists.
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A more serious problem is that it doesn’t give us what we want. What we want
is: Given that in s0, Sam doesn’t know whether Herbert Hoover invented the
vacuum cleaner (P ), and given that the only thing that happens between s0
and s1 is that Jack tells Sam that tea is selling for $2 a pound in Shanghai (Q),
we should be able to infer that Jack still doesn’t know whether Herbert Hoover
invented the vacuum cleaner. But that inference is not valid. The problem is
that it is consistent with the givens that Sam originally knows ¬P⇔Q, and
so, when Jack tells him Q he finds out ¬P . Alternatively, Sam may originally
know the weaker statement, ”If Jack knows Q, then P ;” again, when Jack tells
him Q he can infere that Jack knows Q and therefore P .

The problem here is not with the frame axiom; the frame axiom is fine. The
problem is with the specification of the initial state. You need to add the
condition that the agent does not know anything except the givens. Halpern
[17] presents a multi-agent model in which an agent knows only a specific col-
lection of statements and their logical consequences, and nothing more about
the world including other agents’ knowledge (more precisely, he presents a col-
lection of such theories corresponding to different models of knowledge); and
similar studies have have been done by Levesque [20]. The problem, though,
is that these theories only work in the case where we can specify everything
that the agent knows. In most real cases, we do not know everything that
Sam knows, but we still want to make the inference. How this inference can
be characterized is entirely an open question; and once it is solved (perhaps
non-monotonically) it is unclear whether it would use axiom I.6 at all. It would
be hard to find any plausible commonsense inference problems where axiom
I.6 was useful.

4 Sample Inferences

We now illustrate the power of the above theory by showing how the sample
scenarios in the introduction can be represented, and how three toy inferences
can be justified.

To help make the representations more readable and more elegant, we will be-
gin by defining four further notations (Table 5). First we define “know(A, Q)”
as a function mapping agent A and fluent Q to the fluent of A knowing that
Q holds in S; that is, Q holds in all situations accessible from S (definition
KD.1).

The existence of such a fluent is guaranteed by the comprehension axiom. Let
α(S) be the open formula “∀SA k acc(A, S, SA) ⇒ holds(SA, Q1).” Then the
comprehension schema asserts
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Definitions:

KD.1 holds(S,know(A,Q1)) ≡ [∀SA k acc(A,S, SA) ⇒ holds(SA,Q1)].

KD.2 holds(S,not(Q1)) ≡ ¬holds(S,Q1).

KD.3 holds(S,know whether(A,Q1)) ≡
holds(S,know(A,Q1)) ∨ holds(S,know(A,not(Q1)))

KD.4 Let β(S) be a formula with a free variable S (and possibly other free variables).
Let µ be a variable of sort “fluent” that does not appear free in β and let Φ(µ)
be a formula. The expression “Φ(λ(S)β(S))” should be expanded to read

∃µ [∀S holds(S, µ) ⇔ β(S)] ∧ Φ(µ).

In an expression with multiple lambda expressions, the expressions should be
expanded from left to right, from outside to inside.

Table 5
Notational extensions

∀A,Q1 ∃Q ∀S holds(S, Q) ⇔ ∀SA k acc(A, S, SA) ⇒ holds(SA, Q1)

For any particular A and Q1, the fluent Q satisfying this property has the
property we need for know(A, Q1). Note that, in this construal “know” is a
garden-variety first-order function both in its syntax and its semantics.

Second, we define “not(Q)” as the function mapping fluent Q to the fluent of
Q not holding. Third, we define “know whether(A, Q)” as a function mapping
agent A and fluent Q to the fluent of A knowing whether or not Q is true.
Again, the existence of such fluents is guaranteed by the comprehension axiom,
and these are simple first-order functions.

The final notation is a macro extension to first-order syntax (“syntactic sugar”).
We will use expressions of the form λ(S)β(S) to denote the fluent that holds
in situation S just if formula β holds of S. Thus, for examples, the fluent that
Joe has just completed putting block A on B can be denoted by the expression

λ(S)∃S0 occurs(do(joe,puton(a,b)),S0, S)

The statement that Sam knows in situation s1 that Joe has just completed
putting block A onto B can thus be expressed

holds(s1,know(sam,λ(S)∃S0 occurs(do(joe,puton(a,b)),S0, S)))

These lambda expressions are defined within our theory as macros that ex-
pand into first-order formulas. (It should be emphasized that we are not here
defining a general lambda calculus, just lambda expressions with one situa-
tional argument and a fluent value.) The expansion rule is given in definition
KD.4 in table 5.
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For example, the formula
holds(s1,know(sam,λ(S)∃S0 occurs(do(joe,puton(a,b)),S0, S)))
expands to the formula

∃Q [∀S holds(S, Q) ⇔ ∃S0 occurs(do(joe,puton(a,b)),S0, S)] ∧
holds(s1,know(sam,Q))

Using the definition of “know”, this is equivalent to

∃Q [∀S holds(S, Q) ⇔ ∃S0 occurs(do(joe,puton(a,b)),S0, S)] ∧
∀S1A k acc(sam,s1,S1A) ⇒ holds(S1A, Q).

Since the existence of a fluent Q satisfying this first line is guaranteed by the
comprehension axiom, this is equivalent to

∀S1A k acc(sam,s1,S1A) ⇒
∃S0 occurs(do(joe,puton(a,b)),S0, S1A).

In the examples that follow, we will give both the compacted representation
(with “know” and lambda expressions) and the expanded versions without
them.

4.1 Sample Representations

We illustrate the expressive power of our representation using the examples
from the introduction.

4.1.1 Sample Representation 1

Alice tells Bob that all her children are asleep.

occurs(do(alice,inform(bob,
λ(S) ∀C holds(S,child(C,alice)) ⇒ holds(S,asleep(C)))),

s0,s1).

In expanded form:

∃Q occurs(do(alice,inform(bob,Q)),s0,s1) ∧
∀S holds(S,Q) ⇔
[∀C holds(S,child(C,alice)) ⇒ holds(S,asleep(C))].

4.1.2 Sample Representation 2

Alice tells Bob that she doesn’t know whether he locked the door.
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occurs(do(alice,inform(bob,
λ(S) holds(S,not(know whether(alice,

λ(SA) ∃S1A,S2A occurs(do(bob,lock door),S1A,S2A) ∧ S1A < SA

))))),
s0,s1)

Expanding and rearranging gives

∃Q occurs(do(alice,inform(bob,Q)),s0,s1) ∧
∀S holds(S,Q) ⇔

[∃SA k acc(alice,S, SA) ∧
∃S1A,S2A S1A < S2A < SA ∧

occurs(do(bob,lock door),S1A,S2A)] ∧
[∃SA k acc(alice,S, SA) ∧

¬∃S1A,S2A S1A < S2A < SA ∧
occurs(do(bob,lock door),S1A,S2A)].

4.1.3 Sample Representation 3

Alice tells Bob that if he finds out who was in the kitchen at midnight, then
he will know who killed Colonel Mustard. (Note: The interpretation below
assumes that exactly one person was in the kitchen at midnight.)

occurs(do(alice,inform(bob,
λ(S) ∀SA [S < SA ∧

∃PK holds(SA,know(bob,
λ(SC) ∃S3C S3C < SC ∧ time(S3C)=midnight ∧

holds(S3C,in(PK,kitchen))))]
⇒
∃PM holds(SA,know(bob,

λ(SB) ∃S2B,S3B S3B < SB ∧
occurs(do(PM ,kill(mustard)),S2B,S3B))))),

s0,s1).

Expanding and rearranging gives:

∃Q occurs(do(alice,inform(bob,Q)),s0,s1) ∧
∀S holds(S,Q) ⇔

∀S2 [S2 > S ∧
∃PK ∀S2A k acc(bob,S2, S2A) ⇒

∃S3A S3A < S2A ∧ midnight(time(S3A)) ∧
holds(S3A,in(PK,kitchen))] ⇒

[∃PM ∀S2B k acc(bob,S2, S2B) ⇒
∃S3B,S4B S3B < S4B < S2B ∧

occurs(do(PM ,murder(mustard)),S3B,S4B)]
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4.1.4 Sample Representation 4

Alice tells Bob that no one had ever told her she had a sister.

occurs(do(alice,inform(bob,
λ(S) ¬∃AP,S1,S2 S2 < S ∧

occurs(do(AP ,inform(alice,
λ(SA) ∃P2 holds(SA,sister(P2,alice))))
S1, S2)))

s0,s1).

Expanding and rearranging,

∃Q occurs(do(alice,inform(bob,Q)),s0,s1) ∧
∀S holds(S,Q) ⇔

¬∃S2,S3,Q1,P1 S2 < S3 < S ∧
occurs(do(P1,inform(alice,Q1)),S2, S3) ∧
∀SX holds(SX,Q1) ⇒ ∃P2 holds(SX,sister(P2,alice)).

4.1.5 Sample Representation 5

Alice tells Bob that he has never told her anything she didn’t already know.

occurs(do(alice,inform(bob,
λ(S) ∀S2,S3,Q S3 ≤ S ∧ occurs(S2, S3,do(bob,inform(alice,Q))) ⇒

holds(S2,know(alice,Q))))
s0,s1).

Expanding and rearranging gives:

∃Q occurs(do(alice,inform(bob,Q)),s0,s1) ∧
∀S holds(S,Q) ⇔

∀S2,S3,Q1

[S2 < S3 ≤ S ∧
occurs(do(bob,inform(alice,Q1)),S2, S3)] ⇒
∀S2A k acc(alice,S2, S2A) ⇒ holds(S2A,Q1).

4.2 Sample Inferences

We next illustrate the inferential power of the above theory with three toy
problems.
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4.2.1 Sample Inference 1:

Given:

X.1: Sam knows in s0 that it will be sunny on July 4.

holds(s0,know(sam,λ(S) ∀SJ S < SJ ∧ time(SJ)=july4 ⇒ holds(SJ ,sunny))).

Expanding gives
[k acc(sam,s0,S0A) ∧ S0A < S1A ∧ time(S1A)=july4] ⇒ holds(S1A,sunny).

X.2: In any situation, if it is sunny, then Bob can play tennis.
∀S holds(S,sunny) ⇒ feasible(occurs(do(bob,tennis),S)

X.3: Sam can always communicate with Bob.
∀S1 feasible(do(sam,communicate(bob)),S1).

Infer:

X.P: Sam knows that there is an action he can do (e.g. tell Bob that it will
be sunny) that will cause Bob to know that he will be able to play tennis on
July 4.

holds(s0,know(sam, λ(S)
∃Z feasible(do(sam,Z),S) ∧

∀S2A occurs(do(sam,Z),S, S2A) ⇒
holds(S2A,know(bob, λ(S2B)

∀S3B S2B < S3B ∧ time(S3B)=july4 ⇒
feasible(do(bob,tennis),S3B))))).

Expanding gives

k acc(sam,s0,S0A) ⇒
∃Z feasible(S0A,do(sam,Z)) ∧

∀S2A,S2B,S3B [occurs(do(sam,Z),S0A,S2A) ∧ k acc(bob,S2A,S2B) ∧
S2B < S3B ∧ time(S3B)=july4] ⇒

feasible(do(bob,tennis),S3B).

Proof:

By the comprehension axiom I.5 there is a fluent q1 that holds in any situation
S just if it will be sunny on July 4 following S.
P.1: ∀S holds(S,q1) ⇔ [∀S1 [S < S1 ∧ time(S1)=july4] ⇒ holds(S1,sunny)].

Let z1=inform(bob,q1). By axioms I.2, X.1, and X.3, do(sam,z1) is feasible in
s0;
P.2: feasible(do(sam,z1),s0).
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By axiom K.5, Sam knows in s0 that do(sam,z1) is feasible.
P.3: ∀S0A k acc(s0,S0A) ⇒ feasible(do(sam,z1),S0A).

Let s0a be any situation such that k acc(sam,s0,s0a).
By P.3, there exists a situation s1a such occurs(do(sam,z1),s0a,s1a).
Let s2a be any situation such that occurs(do(sam,z1),s0a,s2a).
Let s2b be any situation such that k acc(bob,s2a,s2b).

By Lemma 3.2, there exists s1b such that occurs(do(sam,z1),s1b,s2b) and
holds(s1b,q1).
Let s3b be any situation such that s2b < s3b and time(s3b)=july4.
By T.8 and T.4, s1b < s3b.
By P.2, holds(s3b,sunny).
By X.2, feasible(do(bob,tennis),s3b).
Applying universal abstraction over s0a, s2a, s2b, and s3b and existential
abstraction over z1 and s1a gives us formula X.P.

4.3 Sample Inference 2

Given:

Y.1: Bob confesses to Alice that he has cheated on her.

occurs(do(bob,inform(alice,
λ(S) ∃S2,S3 S3 < S ∧ occurs(do(bob,cheat),S2, S3))),

s0,s1).

This expands to
∃Q occurs(do(bob,inform(alice,Q)),s0,s1) ∧

∀S holds(S,Q) ⇔ ∃S2,S3 S3 < S ∧ occurs(do(bob,cheat),S2, S3).

Y.2: Alice responds that Bob has never told her anything she didn’t already
know.

As in sample representation 5, above, in expanded form this is:

∃Q occurs(do(alice,inform(bob,Q)),s1,s2) ∧
∀S holds(S,Q) ⇔

∀S3,S4,Q1

[S3 < S4 ≤ S ∧ occurs(do(bob,inform(alice,Q1)),S3, S4)] ⇒
∀S3A k acc(alice,S3, S3A) ⇒ holds(S3A,Q1).
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Y.P: Bob now knows that Alice had already known, before he spoke, that he
had cheated on her.

holds(s2,know(bob,
λ(S2A) ∃S0A,S1A,Q1 S1A < S2A ∧

occurs(do(bob,inform(alice,Q1)),S0A,S1A) ∧
holds(S0A,know(alice,

λ(S0B) ∃S3B,S4B S4B < S0B ∧
occurs(do(bob,cheat),S3B,S4B))))).

Expanding and rearranging gives:

∀S2A k acc(bob,s2,S2A) ⇒
∃S0A,S1A,Q1 S1A < S2A ∧ occurs(do(bob,inform(alice,Q1)),S0A,S1A) ∧

[∀S0B k acc(alice,S0A,S0B) ⇒
∃S3B,S4B S4B < S0B ∧ occurs(do(bob,cheat),S3B,S4B)].

Proof:

Let q1 be the content of Bob’s statement in Y.1, and let q2 be the content of
Alice’s statement in Y.2. By axiom I.5, both these fluents exist.

By K.4, Bob knows in s2 that he has informed Alice of q1.
Q.1: ∀S2A k acc(bob,s2,S2A) ⇒

∃S0A,S1A S1A < S2A ∧ occurs(do(bob,inform(alice,q1)),S0A,S1A).

By Lemma 3.2, Bob knows in s2 that q2 held when Alice started to speak.
Q.2: k acc(bob,s2,S2A) ⇒

∃S1A occurs(do(alice,inform(bob,q2)),S1A,S2A) ∧ holds(S1A,q2).

Let s2a be any situation such that k acc(bob,s2,s2a), and let s1a be a corre-
sponding value of S1A satisfying Q.2. Then holds(s1a,q2).

By definition of q2, we have that in s1a, whenever Bob had previously told
Alice anything (Q3), she had already known it.
Q.3: ∀S3,S4,Q3 [S3 < S4 ≤ s1a ∧ occurs(do(bob,inform(alice,Q3)),S3, S4)] ⇒

∀S3A k acc(alice,S3, S3A) ⇒ holds(S3A,Q1).

By K.4 and Y.3, Bob knows in s1 that he has informed Alice of q1.
Q.4: ∀S1A k acc(bob,s1,S1A) ⇒

∃S0A occurs(do(bob,inform(alice,q1)),S0A,S1A).

In particular, therefore, Q.4 is true of S1A=s1a.
Q.5: ∃S0A occurs(do(bob,inform(alice,q1)),S0A,s1a).

Let s0a be a situation satisfying Q.5. Applying Q.3, with S3→s0z, S4→s1a,
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and Q3→q1, gives
Q.6. ∀S0B k acc(alice,s0a,S0B) ⇒ holds(S0B,q1).

Applying the definition of q1, we get the desired result.

4.4 Sample Inference 3

Given:

Z.1: Anne does not know that she has a sister.
¬holds(s0,know(anne,λ(S) ∃Y holds(S, sister(Y ,anne)))).

This expands to
¬[∀S0A k acc(anne,s0,S0A) ⇒ ∃Y holds(S0A,sister(Y ,anne))].

Z.2: Anne knows that, if she had a sister, someone would have told her about
him.

holds(s0,know(anne,
λ(S) ∀Y holds(S,sister(Y ,anne)) ⇒

∃S1,S2,AS S2 < S ∧ occurs(do(AS,inform(anne,sister(Y ,anne))), S1, S2)))

Expanding and rearranging,

∀S0A k acc(anne,s0,S0A) ⇒
∀Y holds(S0A,sister(Y ,anne)) ⇒

∃S1A,S2A,AS S2A ≤ S0A ∧
occurs(do(AS,inform(anne,sister(Y ,anne)),S1A,S2A)

Z.3: Sisterhood is forever.
S0 < S1 ∧ holds(S0,sister(X,Y )) ⇒ holds(S1,sister(X,Y ))

Infer: Anne knows that she has no sister.
holds(s0,know(anne,λ(S) ¬∃Y holds(S,sister(Y ,anne)))

Expands to:
Z.4: ∀S0A k acc(anne,s0,S0A) ⇒ ¬∃Y holds(S0A,sister(Y ,anne)).

Note: This is a monotonic variant of the “auto-epistemic” inference [27].

Proof by contradiction: Suppose that Z.4 is false and Anne does not know
that she does not has a sister — in other words, as far as she knows she might
have a sister.
R.1: ∃S0A,Y k acc(anne,s0,S0A) ∧ holds(S0A,sister(Y ,anne))
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Let sb and yb be values satisfying R.1. Thus k acc(anne,s0,sb) and holds(sb,sister(yb,anne)).
By Z.2, in sb someone would have already told her that she had a sister.
R.2: ∃S1A,S2A,AS S2A ≤sb ∧ occurs(do(AS,inform(anne,sister(yb,anne)),S1A,S2A)

By Lemma 3.2, Anne would know in sb that she had previously had a sister.
R.3: ∀SC k acc(anne,sb,SC) ⇒

∃S1C S1C < SC ∧ holds(S1C,sister(yb,anne)).

Let s0x be any situation such that k acc(anne,s0,s0x). By K.2 and K.3 k acc(anne,sb,s0x).
By R.3 and X.3, holds(s0x,sister(yb,anne)). Applying universal abstraction to
s0x we have
R.4: ∀S0X k acc(anne,S0, S0X) ⇒ holds(S0X,sister(yb,anne)).

But this contradicts X.1.

5 Paradox

The following Russell-like paradox seems to threaten our theory: 11

Paradox: Let Q be a fluent. Suppose that over interval [S0, S1], agent a1
carries out the action of informing a2 that Q holds. Necessarily, Q must hold
in S0, since agents are not allowed to lie (axiom I.2). Let us say that this com-
munication is immediately obsolete if Q no longer holds in S1. For example,
if it is raining in s0, the event of a1 telling a2 that it is raining occurs over
[s0,s1], and it has stopped raining in s1, then this communication is immedi-
ately obsolete. Now let us say that a1 has “misled” a2 in S if S is the end
of an immediately obsolete communication. (There is no suggestion intended
here, of course, that a2 has any false beliefs.) Since “a1 having misled a2” is
a property of a situation, by the comprehension axiom it should be definable
as a fluent. Symbolically,

holds(S,misled(A1, A2)) ≡
∃Q,A1,A2,S0 occurs(do(A1,inform(A2, Q)),S0, S) ∧ ¬holds(S, Q)

Now, suppose that, as above, in s0 it is raining; from s0 to s1, a1 tells a2 that
it is raining; and in s1 it is no longer raining and a1 knows that it is no longer
raining. Then a1 knows that “misled(a1,a2)” holds in s1. Therefore, (axiom

11 The comprehension axiom in itself, without the “inform” acts, does not lead
to Russell’s paradox, because a fluent is being defined as in terms of a property
of situations, so that there is no circularity. Formally, we will construct a set of
situations, and then use the standard Zermelo-Fraenkel separation axiom to define
a fluent as a subset. See Lemma 21, p. 67.
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I.2) it is feasible for a1 to tell a2 that “misled(a1,a2)” holds in s1. Suppose that,
from s1 to s2, a1 informs a2 that “misled(a1,a2)” holds. The question is now,
does “misled(a1,a2)” hold in s2? Well, if it does, then what was communicated
over [s1,s2] still holds in s2, so “misled(a1,a2)” does not hold; but if it doesn’t,
then what was communicated no longer holds, so “misled(a1,a2)” does hold
in s2.

The flaw in this argument is that it presupposes the independence axiom
WRONG.1 (p. 15) that we rejected earlier. The argument presumes that
if fluent Q1 6= Q2, and do(A1,inform(A2, Q1)) occurs from s1 to s2, then
do(A1,inform(A2, Q2)) does not occur. (Our English description of the argu-
ment used the phrase “what was communicated between s1 and s2”, which
presupposes that there was a unique content that was communicated.) But
axiom I.4 asserts that many different fluents are communicated in the same
act. Therefore, the argument collapses.

In particular, as we shall show, the clock time (in the sense of “the number
of situations that have elapsed since the start of time) is always common
knowledge among all agents (Theorem 3, appendix A). Now, let q1 be any
fluent, and suppose that occurs(do(a1,inform(a2,q1)),s1,s2). Let t1=time(q1)
and let q2 be the fluent defined by the formula

∀S holds(S,q2) ⇔ holds(S,q1) ∧ time(S)=t1.

By assumption, it is shared knowledge between a1 and a2 that holds(s1,q2) ⇔
holds(s1,q1). Hence, by axiom I.4, occurs(do(a1,inform(a2,q2)),s1,s2). But by
construction q2 does not hold in s1; hence the occurrence of do(a1,inform(as,q2))
from s1 to s2 is immediately obsolete. Therefore “misled(a1,a2)” holds any

time a1 communicates with a2.

Changing the definition of misled to use the universal quantifier, thus:

holds(S,misled(A1, A2)) ≡
∀Q,A1,A2 occurs(do(A1,inform(A2, Q)),S0, S) ∧ ¬holds(S, Q)

does not rescue the contradiction. One need only change the definition of q2
above to be

∀S holds(S,q2) ⇔ holds(S,q1) ∨ time(S) 6=t1.
Clearly, the new definition of “misled(a1,a2)” never holds after any informa-
tive act.

Of course, if we extend the theory to include the underlying locutionary act,
then this paradox may well return, as the locutionary act that occurs pre-
sumably is unique. However, as the content of a locutionary act is a quoted
string, we can expect to have our hands full of paradoxes in that theory; this
“misled” paradox will not be our biggest problem [28].
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6 Unexpected Hanging

The well-known paradox of the unexpected hanging (also known as the sur-
prise examination) [16,31] can be formally expressed in our theory; however,
the paradox does not render the theory inconsistent. (The analysis below is
certainly not a philosophically adequate solution to the paradox, merely an
explanation of how our particular theory manages to side-step it.)

The paradox can be stated as follows:

A judge announces to a prisoner, “You will be hung at noon within 30 days;
however, that morning you will not know that you will be hung that day.”
The prisoner reasons to himself, “If they leave me alive until the 30th day,
then I will know that morning that they will hang me that day. Therefore,
they will have to kill me no later than the 29th day. So if I find myself alive
on the morning of the 29th day, I can be sure that I will be hung that day.
So they will have to kill me no later than the 28th day . . . So they can’t kill
me at all!”

On the 17th day, they hung him at noon. He did not know that morning
that he would be hung that day.

Let kill today be the fluent that the prisoner will be hung today. Then the
judge’s statement can be represented as follows:

occurs(do(judge,inform(prisoner,
λ(S) ∀SX [S < SX ∧ time(SX) = time(S)+31] ⇒

∃SH S < SH < SX ∧ holds(SH,kill today) ∧
¬holds(SH,know(prisoner,kill today)))),

s0,s1).

Expanding and rearranging, this becomes

∃Q occurs(do(judge,inform(prisoner,Q)),s0,s1) ∧
∀S holds(S,Q) ⇔

∃SH,SHA S < SH < SX ∧ holds(SH,kill today) ∧
k acc(prisoner,SH,SHA) ∧ ¬holds(SHA,kill today)

We further posit the axioms that the prisoner has never been killed before s0,
and that if an agent has never been killed, he knows that he has never been
killed. 12

¬ ∃S S <s0 ∧ holds(S,kill today).

12 In S5, it is a logical consequence of this axiom that if he has been killed, he knows
he has been killed; but that is beyond the scope of this paper.
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∀S2 [∀S1 S1 < S2 ⇒ ¬holds(S1,kill today)] ⇒
holds(S2,know(prisoner,λ(S) ∀S1 S1 < S ⇒ ¬holds(S1,kill today))).

Let UHlang be the judge’s statement in English and let UHlogic be the fluent
Q that the judge communicates. Let “kill(K)” be the proposition that the
prisoner will be killed no later than the Kth day. It would appear that UHlang

is true; that the judge knows that in s0 that it is true, and that UHlogic means
the same as UHlang. By axiom I.2, if the judge knows that UHlogic holds in
s0, then he can inform the prisoner of it. How, then, does our theory avoid
contradiction?

The first thing to note is that the prisoner cannot know UHlogic. There is
simply no possible worlds structure in which the prisoner knows UHlogic. The
proof is exactly isomorphic to the sequence of reasoning that prisoner goes
through. Therefore, by Lemma 3.2 above, the judge cannot inform the prisoner
of UHlogic; if he did, the prisoner would know it to be true.

The critical point is that there is a subtle difference between UHlang and
UHlogic. The statement UHlang asserts that the prisoner will not know kill today
— this means even after the judge finishes speaking. In our theory, however,
one can only communicate properties of the situation at the beginning of the
speech act and there is no way to refer to what will happens as distinguished
from one could happen. So what UHlogic asserts is that the prisoner will not
know kill today whatever the judge decides to say or do in s0.

In fact, it is easily shown that either [the judge does not know in s0 that
UHlogic is true], or [UHlogic is false]. It depends on what the judge knows in
s0. Let us suppose that in s0, it is inevitable that the prisoner will be killed
on day 17 (the executioner has gotten irrevocable orders.) There are two main
cases to consider.

• Case 1: All the judge knows is kill(K), for some K > 17. Then the most
that the judge can tell the prisoner is kill(K). In this case, UHlogic is in fact
true in s0, but the judge does not know that it is true, because as far as the
judge knows, it is possible that (a) he will tell the prisoner kill(K) and (b)
the prisoner will be left alive until the Kth day, in which case the prisoner
would know kill today on the morning of the Kth day.

• Case 2: The judge knows kill(17). In that case, UHlogic is not even true in
s0, because the judge has the option of telling the prisoner kill(17), in which
case the prisoner will know kill today on the morning of the 17th day.

Again, we do not claim that this is an adequate solution to the philosophical
problem, merely an explanation of how our formal theory manages to remain
consistent and side-step the paradox. In fact, in the broader context the so-
lution is not at all satisfying, for reasons that may well become serious when
the theory is extended to be more powerful. There are two objections. First,
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the solution depends critically on the restriction that agents cannot talk about
what will happen as opposed to what can happen; in talking about the future,
they cannot take into account their own decisions or commitments about what
they themselves are planning to do. One can extend the outer theory so as
to be able to represent what will happen — in [10], we essentially do this —
but then the comprehension axiom I.5 must be restricted so as to exclude this
from the scope of fluents that can be the content of an “inform” act. We do
not see how this limitation can be overcome.

The second objection is that it depends on the possibility of the judge telling
the prisoner kill(17) if he knows this. Suppose that we eliminate this possi-
bility? Consider the following scenario: The judge knows kill(17), but he is
unable to speak directly to the prisoner. Rather, he has the option of playing
one of two tape recordings; one says “kill(30)” and the other says UHlogic. Now
the theory is indeed inconsistent. Since the prisoner cannot know UHlogic it
follows that the judge cannot inform him of UHlogic; therefore the only thing
that the judge can say is “kill(30)”. But in that case, the formula UHlogic is
indeed true, and the judge knows it, so he should be able to push that button.

To axiomatize this situation we must change axiom I.2 to assert that that the
only possible inform acts are kill(30) and UHlogic.

Within the context of our theory, it seems to me that the correct answer is
“So what?” Yes, you can set up a Rube Goldberg mechanism that creates this
contradiction, but the problem is not with the theory, it is with the axiom
that states that only these two inform acts are physically possible.

(Those readers, if any, who work through the proof of theorem 1 in appendix
A may wonder what prevents this constraint from being incorporated into the
construction of u-situations. After all, all that this amounts to is drastically
restricting the class of “inform” acts that are added on. The answer is that
which of the “inform” acts are allowed to exist now depends on the interpreta-
tion of a formula in the extended language, and that therefore the construction
now involves a vicious cycle. See further the comments on Lemma 21.)

In a wider context, though, this answer will not serve. After all, it is physically
possible to create this situation, and in a sufficiently rich theory of communi-
cation, it will be provable that you can create this situation. However, such a
theory describing the physical reality of communication must include a theory
of locutionary acts; i.e. sending signals of quoted strings. As mentioned above
such a theory will run into many paradoxes; this one is probably not the most
troublesome.
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7 Consistency

Two paradoxes have come up, but the theory has side-stepped them both. How
do we know that the next paradox won’t uncover an actual inconsistency in the
theory? We can eliminate all worry about paradoxes once and for all by proving
that the theory is consistent. We do this by constructing a model satisfying the
theory. More precisely, we construct a fairly broad class of models, establishing
(informally) that the theory is not only consistent but does not necessitate any
weird or highly restrictive consequences. (Just showing soundness with respect
to a model or even completeness is not sufficient for this. For instance, if the
theory were consistent only with a model in which every agent was always
omniscient, and inform acts were therefore no-ops, then the theory would be
consistent but not of any interest.)

As usual, establishing soundness has three steps: defining a model, defining an
interpretation of the symbols in the model, and establishing that the axioms
are true under the interpretation.

Our class of models is (apparently) more restrictive than the theory; 13 that
is, the theory is not complete with respect to this class of models. The major
additional restrictions in our model are:

I. Time must be discrete. We believe that this restriction can be lifted with
minor modifications to the axioms, but this is beyond the scope of this
paper. We hope to address it in future work.

II. Time must have a starting point; it cannot extend infinitely far back. It
would seem to be very difficult to modify our proof to remove this constraint;
at the current time, it seems to depend on the existence of highly non-
standard models of set theory.

III. A knowledge accessibility link always connects two situations whose time
is equal, where “time” measure the number of clock ticks since the start.
In other words, all agents always have common knowledge of the time. In
a discrete structure, this is a consequence of the axiom of memory. There-
fore, it is not, strictly speaking, an additional restriction; rather, it is a
non-obvious consequence of restriction (I). If we extend the construction
to a non-discrete time line, some version of this restriction must be stated
separately.

There are also more minor restrictions; for example, we will define shared
knowledge to be the true transitive closure of knowledge, which is not ex-
pressible in a first-order language.

13 The only way to be sure that the theory is more general than the class of models
is to prove that it is consistent with a broader class of models.
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Theorem 1 below states that the axioms in this theory are consistent with
essentially any physical theory that has a model over discrete time with a
starting point state and physical actions.

Definition 1: A physical language is a first-order language containing the
sorts “situations”, “agents”, “physical actionals”, “physical actions”, “physical
fluents”, and “clock times”; containing the non-logical symbols, “<”, “do”,
“occurs”, “holds”, “time”, and “communicate”; and excluding the symbols,
“k acc”, “inform”, and “sk acc”.

Definition 2: (This is definition 6 of Appendix A). Let L be a physical
language, let T be a theory over L. T is an acceptable physical theory (i.e.
acceptable for use in theorem 1 below) if there exists a model M and an
interpretation I of L over M such that the following conditions are satisfied:

1. I maps the sort of clock times to the positive integers, and the relation
T1 < T2 on clock times to the usual ordering on integers.

2. Axioms T.1 — T.9 in table 1 are true in M under I.
3. Theory T is true in M under I.
4. The theory is consistent with the following constraint: In any situation S,

if any communication act is feasible, then arbitrarily many physically indis-
tinguishable communication acts are feasible.

5. If α is a predicate symbol in L with more than one situational argument,
then α(X1 . . . Xk) holds only if all the situations among X1 . . .Xk are or-
dered with respect to <. (Note that this condition holds both when α is“<”
and α is “occurs”.) If β(X1 . . .Xk) is a function symbol, then the above
condition holds for the relation Xk+1 = β(X1 . . .Xk).

Condition (4) no doubt seems complex, strange, and restrictive. But in fact
any physical model can be easily transformed into one satisfying this condition:
take the original model and, wherever a communicative act occurs, make an
infinite number of identical copies of the subtree following the branch where
the act occurs. Moreover, most reasonable physical theories T will accept this
transformation, or can be straightforwardly transformed into theories that will
accept this transformation. In fact, therefore, condition (4) is not a substantial
restriction on T .

For several reasons, it is unfortunate that condition (5) needs to be included:

• It was not included in the KR-2004 paper.
• I don’t know that it’s necessary; in fact, I suspect that the theorem is true

even if this condition is dropped (certainly not true of the other conditions.)
• This condition is satisfied in most causal theories; generally a causal theory

refers only to situations in a single time line, which is what is required here.
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However, it is hard to be sure that you will never encounter a causal theory
where it would be natural to use a relation that violates this condition.

However, I have not found a proof for languages that violate this condition.

Of course, if L contains a symbol α that violates condition 5, but that is defined
in T using a rule α⇔φ where φ contains only symbols that respect condition
5, then that is not a problem; we can simply replace α by φ throughout T ,
and thus obtain a theory that respects condition 5. The problematic case is
where there are symbols whose interpretation in I violates condition 5, and
that are not reducible to symbols that respect condition 5.

(The KR-2004 paper claims that condition (4) can be stated in a first-order
axiom schema. This is in error. More precisely, I have not found any first-order
axiom schema that can be used to instantiate condition 4 that I can prove to
be sufficient for the theorem below.)

Theorem 1: Let T be an acceptable physical theory, and let U be T together
with axioms K.1 — K.8 and I.1 — I.5. Then U is consistent.

It is possible to strengthen theorem 1 by adding in domain-specific axioms
of knowledge acquisition and the associated frame axiom over accessibilty
relation, as described in section 3.5, plus conditions on the initial knowledge
and ignorance of the agents. Specifically, we have the following theorem:

Theorem 2: Let T be an acceptable physical theory, and let U be the union
of:

A. T ;
B. Axioms K.1 — K.7 and I.1 — I.5.
C. A collection of domain-specific knowledge acquisition axioms of the form

specified in section 3.5.
D. The frame axiom I.6 associated with the axioms in (C).
E. Any set of axioms K specifying knowledge or ignorance at time 0 as long

as:
i. The axioms in K do not refer to any situations of time later than 0.
ii. The axioms in K are consistent with T , axioms K.1 — K.3, K.5 (as regards

knowing the feasibility of actions at time 0); and the axioms in (C).

Then U is consistent.

In appendix A, we sketch how the proof of theorem 1 is modified to give a
proof of theorem 2.
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8 Related Work

The theory presented here was originally developed as part of a larger theory
of multi-agent planning [10]. That theory includes requests as speech acts as
well as informative speech acts. However, our analysis of informative acts there
was not as deep or as extensive in scope.

As far as we know, this is the first attempt to characterize the content of
communication as a first-order property of possible worlds. Morgenstern [28]
develops a theory in which the content of communication is a string of char-
acters. A number of BDI models incorporate various types of communication.
The general BDI model was first proposed by Cohen and Perrault [4]; within
that model, they formalized illocutionary acts such as “Request” and “In-
form” and perlocutionary acts such as “Convince” using a STRIPS-like repre-
sentation of preconditions and effects on the mental states of the speaker and
hearer. Cohen and Levesque [5] extend and generalize this work using an full
modal logic of time and propositional attitudes. Here, speech acts are defined

in terms of their effects; a request, for example, is any sequence of actions that
achieves the specified effect in the mental state of the hearer.

Update logic (e.g. [30,2]) combines dynamic logic with epistemic logic, intro-
ducing the dynamic operator [A!]φ, meaning “φ holds after A has been truth-
fully announced.”. The properties of this logic have been extensively studied.
Baltag, Moss, and Solecki [1] extend this logic to allow communication to a
subset of agents, and to allow “suspicious” agents. Colombetti [6] proposes a
timeless modal language of communication, to deal with the interaction of in-
tention and knowledge in communication. Parikh and Ramanujam [29] present
a theory of messages in which the meaning of a message is interpreted relative
to a protocol.

There is a large literature on the applications of modal logics of knowledge
to a multi-agent systems. For example, Sadek et al. [34] present a first-order
theory with two modal operators Bi(φ) and Ii(φ) meaning “Agent i believes
that φ” and “Agent i intends that φ” respectively. An inference engine has been
developed for this theory, and there is an application to automated telephone
dialogue that uses the inference engine to choose appropriate responses to
requests for information. However, the temporal language associated with this
theory is both limited and awkward; it seems unlikely that the theory could be
applied to problems involving multi-step planning. (The dialogue application
requires only an immediate response to a query.)

The multi-agent communication languages KQML [13] and FIPA [14] provide
rich sets of communication “performatives”. KQML was never tightly defined
[37]. FIPA has a formal semantics defined in terms of the theory of Sadek et
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al. [34] discussed above. However, the content of messages is unconstrained;
thus, the semantics of the representation is not inherently connected with the
semantics of the content, as in our theory.

Other modal theories of communication, mostly propositional rather than
first-order, are discussed in [38,21,32].

9 Fagin, Halpern, Moses, and Vardi

The theory of runs and messages, developed by Fagin, Halpern, Moses, and
Vardi (FHMV) in their book Reasoning about Knowledge [12] and many pa-
pers, presents a constructive model of a system of agents. Each agent is char-
acterized as a infinite sequence. The state of agent A at time T is the prefix
of the first T elements of the corresponding sequence. The global state of the
system at time T is the tuple of the states of all the agents at time T. Two
global system states Q1 and Q2 are knowledge accessible relative to A if the
state of A is the same in Q1 and Q2. A message is an event that modifies the
state of the sender when it is sent and the state of the recipient when received.
There is a protocol that governs under what circumstances a sender may send
a specified message. Messages may be given a semantics, and agents can be
prohibited from sending messages that they know to be false.

Thus, the FHMV theory deals with much the same issues as our theory, and
arrives at many of the same rules: Axioms K.1—K.3, K.7, and K.8 are valid
in all FHMV models, and FHMV have extensively studied classes of models
in which axioms K.4, K.6, I.3, I.6, and the forward implication in I.2 are valid.

Nonetheless there are many major differences between FHMV and our theory.
We divide these differences for the most part into three categories: differences
in purpose, differences in the model, and differences in the representation
language. These three categories interact strongly.

9.1 Differences in purpose

The central objective of FHMV is to establish a theory for characterizing
distributed systems in terms of the “knowledge” of the components and the
communications between them. Such a theory can be used as the foundation
for the formal analysis of such systems; e.g. proving that a given class of
systems is safe, in some sense; that a specified protocol achieves a specified to
some goal; that a given state of knowledge is inevitable or unattainable; and so
on. These proofs might be carried out automatically by reasoning in terms of
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the formal language, but more often FHMV seem to be thinking about proofs
carried out by human reasoners reasoning directly about the model. In most
cases, the construction of the model is the critical issue; the definition of a
formal language and statement of axioms is secondary, or peripheral. Indeed,
in [18] Halpern and Vardi argue strongly in favor of a model-based as opposed
to axiom-based approach to automated reasoning.

By contrast, our central objective here is, primarily, to define a formal lan-
guage capable of representing a wide range of statements about knowledge
in commonsense domains, and, secondarily, to demonstrate the power of this
language by formulating axioms sufficient to justify commonsense inferences.
Ultimately, the language and axioms could serve as the basis for a representa-
tion and rule set in a symbolic knowledge base. The model is secondary, as is
evidenced by the fact that it is only described in the appendix; it is constructed
only in order to enable us to prove that our representation is coherent and our
theory is consistent. (For that reason, the inelegance, not to say ugliness, of
our model does not much matter.)

This difference also underlies our different attitudes toward completeness proofs.
FHMV construct models that are elegant and interesting in themselves; it is
therefore a worthwhile enterprise looking for axiom sets that characterize them
exactly. But our model is constructed out of scotch tape and toothpicks to fit
the axioms: what would be gained by finding a complete axiom set, even if it
were possible? After all, since the theory is first-order and consistent, we can
be sure that there exists a class of models with respect to which the theory is
complete; namely, the class of all models satisfying the theory.

Another difference is that FHMV are much more interested in the properties of
communication itself and communication channels, and have studied in depth
the properties of systems with unreliable channels or with unknown delays.
By contrast, we have been content to deal only with the case of direct speech,
or, more generally, communication across a reliable channel of fixed delay.

9.2 Differences in model

The key difference between the two models might, at first glance, seem to be
a rather technical one: FHMV uses a linear model of time whereas we use
a branching model of time. But that difference has many ramifications. In a
linear model of time, one cannot speak of an actor having options of many
different possible actions. Therefore, it is not possible in the FHMV model
to reason about what an agent can accomplish or communicate. Inferences
such as sample inference 3 (that Sam can cause Bob to know that he will be
able to play tennis) and axioms such as the forward implication of I.2 (that

39



AS can inform AH of anything that AS knows to be true) are not merely
invalid in the FHMV model; it is essentially impossible to formulate them
in that setting. Indeed, almost all the predictive theorems in the FHMV are
universal, asserting that a system must attain particular conditions, or cannot
attain them; there are few existential theorems, asserting that a system can
attain a particular condition. The comprehension axiom over fluents, in this
setting, can be made true, but is essentially irrelevant; since any particular
system contains only a restricted set of messages, the only fluents that need
to exist are those that are the content of these messages.

For that reason, the FHMV model cannot be applied to automated planning
under the usual logical analysis. The usual logical analysis of the planning
problem of states that a deterministic 14 plan P correctly achieves goal G

starting in situation S0, if (1) P is feasible starting in S0; that is, there exists
an S1 > S0 such that P is executed over [S0, S1]; and (2) for all such S1, G

is achieved over [S0, S1]. But in a linear model of time, (1) can never be true
of two alternative but mutually exclusive plans.

Another difference in the model, reflecting to FHMV’s interest in communica-
tion channels, is that where we have a single action “do(AS,inform(AH, Q))”
which involves both the speaker and the hearer, FHMV separate this into two
parts: one agent sends a message, then later another agent receives it. The
FHMV model is much more general.

9.3 Differences in formal language

There are many differences between the FHMV formal language and our for-
mal languages. To some extent, this reflects the difference in the model; to
some extent it reflects the difference in purpose; to some extent it is a mat-
ter of personal preference in representation style. The representational choices
all interact, which makes it difficult to separate out the different motivations
behind the different choices. Among the most conspicuous differences are:

• FHMV use modal languages of time and knowledge where we use a first-
order language. The modal logic formulation has the advantage of support-
ing interesting theorems about computability in the case where the base
language is propositional.

• FHMV very rarely use an explicit representation of actions and events. They
occasionally raise the possibility of using a dynamic logic, in which there is
a modal operator corresponding to each action.

14 The logical analysis of non-deterministic plans such as partially ordered plans is
more complex, but also require non-linear models of time [3].
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• The content of a communication is not a first-order entity in FHMV. Indeed,
there is no representation of a message whose form reflects the meaning of
the message; the meanings of message are set by a meta-level operor σ.

• Agents enter the formal language of FHMV primarily as subscripts on the
modal operator. It is therefore not possible to quantify over agents.

• In general, FHMV aim at a very spare formal language; since our objective
is to maximize expressivity, we tend to aim at a very rich one.

9.4 Other differences

One final difference: FHMV like to study, not a one single theory at a time,
but a sheaf of variant theories, whereas we have presented a single theory. This
difference, I think, is mostly a stylistic difference in research method, and is
not closely related to any of the other differences.

Indeed, FHMV present a set of taxonomic categorizations of different theories
of knowledge and communication [11]. In terms of that taxonomy, our theory
has the following characteristics:

• The system is synchronous.
• Knowledge is cumulative.
• The environment does not determine the initial state of the agents.
• The system is not required to be history independent.
• Process state transitions are not independent of the environment, or of the

initial environment.
• The system is not deterministic.
• The primitive propositions are not determined either by the current global

state or by the initial global state.
• Neither the primitive propositions nor the class of agents is required to be

finite.

10 Conclusions and Open Problems

We have developed a theory of communications which allows the content of
an informative act to include quantifiers and logical operators and to refer to
physical states, events including other informative acts, and states of knowl-
edge; all these in the past, present, or possible futures. We have proven that
this theory is consistent, and compatible with a wide range of physical theo-
ries. We have examined how the theory avoids two potential paradoxes, and
discussed how these paradoxes may pose a danger when these theories are ex-
tended. Elsewhere [10] we have shown that the theory can be integrated with
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a similarly expressive theory of multi-agent planning.

The major technical problem that follows naturally on this work is to find
ways to relax the limitations enumerated in section 1 while preserving the
consistency of the theory. Let us discuss what is involved here a little.

Two related restrictions are particularly significant in terms of limiting the
scope of applications of this theory: first, that the sender AS knows when
a communication has been received (a consequence of axiom K.5) and that
the hearer knows when the communication was sent (a consequence of axiom
I.3). To relax this restriction, it would be necessary, as in FHMV and similar
theories, to separate the action “do(AS,inform(AH, Q))” into an action of
sending a message and an exogenous event of receiving it. The difficulty is
that we have not found a reasonable reformulation of axiom I.4 in a way that
we can prove avoids paradox.

The restriction that the sender and recipient know each other is one that,
in practice, is often enough violated, and it would certainly be interesting to
relax this. If you relax this condition, then a timed communication (i.e. one
satisfying I.4) gives rise to anonymous shared knowledge. That is, the speaker
and hearer know that they share the knowledge of the content; they just don’t
know who they are sharing the knowledge with. (Or one knows and the other
doesn’t.) This is analogous to common knowledge among non-rigid sets ([12]
section 6.4) but the different setting here raises different issues.

The restriction to discrete time obviously impedes the integration of this the-
ory with physical theories that use continuous time. The problem is that that
the construction of the model in our consistency proof is inherently iterative
over time, and there does not seem to be any easy way to modify this itera-
tive structure. The proof will work if one makes strong assumptions about the
discreteness of communicative acts; e.g. one posits that it is only physically
possible to begin a communication in a situation whose clock time is a non-
negative integer. It is conceivable that such a theory would suffice for most
applications; one would have to look over examples of reasoning that integrate
continuous physical reasoning with communication, which I have not yet done.
I would conjecture that axioms K.1 — K.7 and I.1 — I.6 are in fact consis-
tent with a continuous model of time, without modification, and without the
need to impose strong conditions on the physics of communication, but I am
certainly far from a proof.

Other, more far-reaching, problems include:

• Our work on integrating the theory here with a theory of planning [10]
involves some rather restrictive constraints on the protocols between agents.
We would like to study how the theory can be modified to weaken these.

• To my mind, the brass ring in this field would be to integrate the above
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theory of illocutionary acts, which describes the content of communications,
with a theory of locutionary acts, which would describe the form of com-
munications. Achieving a theory that is both general and consistent would
be a major accomplishment.
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Appendix A: Proof of Theorem 1

This appendix contains a proof of theorem 1. Specifically, we prove that if
T is a physical theory over integer-valued time satisfying a few, not very
restrictive, constraints, then T is consistent with our axioms of knowledge
and of communication.

Outline of paper: In section A.1 we give a formal definition of what we mean
by a physical theory. In section A.2, we show how a model of a physical theory
can be extended to incorporate knowledge relations and informative actions.
In section A.3, we define the interpretation of our theory over the new model.
In section A.4, we prove that this interpretation over this model satisfies both
the original physical theory and the axioms of knowledge and communication.
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A.1: A Physical Theory

A physical theory is a set of constraints on actions and fluents. A communica-
tive action may have physical preconditions, effects, or other constraints, but
these may not depend on the content of the communication. That is, from the
physical point of view, communicative actions are distinguished only by the
identity of the speaker and hearer, not the content. Physical theories do not
refer to knowledge states.

Our objective here is to prove that any reasonable physical theory is consis-
tent with our theory of knowledge and communication. To do this, we have
to ensure that the two theories “join up”, so to speak; specifically, that the
physical theory does not impose any constraints that are incompatible with
the epistemic theory. There are three potential sources of trouble.

• Axiom I.1, I.2, and I.4 together imply that, if AS can communicate with
AH then, in general, there are a large number of different possible commu-
nicative acts that AS can perform. Specifically, in any situation S, if Q1
and Q2 are fluents such that (a) AS knows that both Q1 and Q2 hold; but
(b) it is not shared knowledge between AS and AH that Q1⇔Q2, then the
act of AS informing AH that Q1 different from the act of AS informing
AH that Q2. The physical theory could make this impossible by asserting
that only a small number of different communicative acts are feasible in S.
For instance, the statement that only two different communicative acts are
feasible in s0 could be stated in the formula
∃S1a,S1b occurs(do(as,communicate(ah)),s0,S1a) ∧
occurs(do(as,communicate(ah)),s0,S1b) ∧ S1a 6= S1b ∧
∀S1 occurs(do(as,communicate(ah)),s0,S1) ⇒ [S1 = S1a ∨ S1 = S1b]
To block this, we impose condition (4) in definition 6 below: A physical

theory must be consistent with the constraint that, if any communicative
action is feasible in a situation, then infinitely many physically indistin-
guishable actions are feasible in that situation.

• Axiom I.5 asserts the existence of a large number of fluents. The physical
theory could assert that only a limited class of fluents exist. E.g. the follow-
ing axiom asserts that the only fluents have the form “on(A, B)” where A

and B are blocks.
∀Q ∃A,B block(A) ∧ block(B) ∧ Q=on(A, B).
This is not at all far-fetched; one approach to the frame problem is to

assert “The only fluents changed by action A are Q1 . . . Qk,” which leads
to the same kind of problem.

We get around this problem by distinguishing between physical fluents

and general fluents, and requiring that a physical theory can only refer to
physical fluents.

• Similarly, the theory of communication requires the existence of actionals
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“inform(AH, Q)” and of actions “do(AS,inform(AH, Q)).” We have to make
sure that the physical theory does not simply prohibit these; e.g. assert
that the only possible actionals have the form “communicate(AH)” and
“puton(A, B)”. To insure this, we require that the physical theory can only
refer to physical actions and actionals.

Definition 1: A physical language is a first-order language containing the
sorts “situations”, “agents”, “physical actionals”, “physical actions”, “physical
fluents”, and “clock times”; containing the non-logical symbols, “<”, “do”,
“occurs”, “holds”, “time”, and “communicate”; and excluding the symbols,
“k acc”, “inform”, and “sk acc”. (The language may or may not contain any
sort or non-logical symbol other than those mentioned above.)

Definition 2: Let L be a physical language. Let M be a model and let I be
an interpretation of L in M. Let s0 and s1 be situations in M. Situation s1 is
a successor of s0 if s0 < s1 and there is no situation sm such that s0<sm<s1

Here, and in subsequent definitions, we implicitly use I to apply nomenclature
from L to entities in M. More formal statements of the condition “s0 < s1”
above would be, “The pair 〈s0,s1〉 ∈ I(‘<’)” or “The open formula SA < SB

is true in M under I under the valuation SA→s0, SB→s1.”. We will use the
shorter form when it is clear; when necessary, we will be more precise.

Definition 3: Let L, M, I be as above. Let s0,s1 be situations in M.
We say that s1 is a communication successor of s0 if s1 is a successor of
s0 and there exist agents as,ah and a situation sz such that s1≤sz and oc-
curs(do(as,communicate(ah)),s0,sz).

Definition 4: Let L, M, I be as above. Let τ be a function from M to
itself which is one-to-one and onto. The function τ is said to be a situational

automorphism if the following conditions hold:

1. If X is not a situation, then τ(X) = X.
2. Let α be a predicate symbol in L with k arguments or a function symbol

with k − 1 arguments. Note that, under standard Tarskian semantics, I(α)
is a set of k-tuples of elements of M. A tuple 〈x1 . . . xk〉 ∈ I(α) if and only
if 〈τ(x1) . . . τ(xk)〉 ∈ I(α).

Definition 5: Two situations SA and SB are indistinguishable if the following
holds: Let SSA be the part of the time structure following SA and SSB be
the part of the time structure following SB.
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SSA= { S ∈ M | SA ≤ S }
SSB= { S ∈ M | SB ≤ S }

Then there exists a situational automorphism τ over M such that τ(SSA) =
SSB, τ(SSB) = SSA, and for any situation S which is not in SSA and SSB,
τ(S) = S.

Definition 6: Let L be a physical language, and let T be a theory over L.
T is an acceptable physical theory (i.e. acceptable for our discussion here) if
there exists a model M and an interpretation I of L over M such that the
following conditions are satisfied:

1. I maps the sort of clock times to the positive integers, and the relation
T1 < T2 on clock times to the usual ordering on integers.

2. M satisfies Axioms T.1 — T.9 in table 1 under T , where T.8 and T.9 are
restricted to physical actions.

3. M satisfies theory T under I.
4. For any situations s0,s1 and agents as,ah in M, if s1 is a communication

successor of s0, then there are infinitely many successors of s0 that are
physically indistinguishable from s1.

5. If α is a predicate symbol in L with more than one situational argument,
then α(X1 . . . Xk) holds only if all the situations among X1 . . .Xk are or-
dered with respect to <. (Note that this condition holds both when α is“<”
and α is “occurs”.) If β(X1 . . .Xk) is a function symbol, then the above
condition holds for the relation Xk+1 = β(X1 . . .Xk).

We can now state precisely the theorem that is the objective of this appendix.

Theorem 1:

Let T be an acceptable physical theory, and let A be T together with axioms
K.1 — K.8 and I.1 — I.5, and with T.8 and T.9 extended to arbitrary actions.
Then A is consistent.

Sections A.2-A.4 give the proof of this theorem.

A.2: Model construction

Sketch of model construction

The main sticking point of the proof is as follows: In order to satisfy the
comprehension axiom, we must define a fluent to be any set of situations.
However, if Q is a fluent, then the act of AS informing AH of Q in S1 generates
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a new situation; and if we generate a separate “inform” act for each fluent,
then we would have a unsolvable vicious circularity.

We are rescued here by axiom I.4 together with the theorem, proven in theo-
rem 3 below, that, in a discrete time structure satisfying the axiom of mem-
ory (K.4), knowledge accessibility relations can only connect situations of the
same time, and therefore the current time is always common knowledge be-
tween all agents. Let q1 be any fluent that holds in situation s1. By axiom I.4,
if AS informs AH of q1 over the interval [s1,s2] and AS and AH have shared
knowledge that q1⇔q2 in s1, then the same act can be characterized as AS in-
forming AH of q2. Let t1=time(s1). Let q2 be the fluent such that holds(S,q2)
⇔ holds(S,q1) ∧ time(S)=t1. Then AS and AH have shared knowledge in s1
that q1 is equivalent to q2. Therefore, it suffices to generate an occurrence of
an inform act starting in S1 only for fluents like q2 that specify the current
time, and such a fluent can be identified with a set of situations of the same
time as S1. This limitation allow us to break the circularity in the construction
of situations and informative acts: the content of informative acts starting at
time K is a subset of the situations whose time is K; informative acts starting
in time K generate situations whose time is K + 1.

Therefore, we can use the “algorithm” shown in table 6 to construct a model of
the theory A. The main difference between the model M of theory T and the
model U of A is that U contains many more situations. To avoid confusion,
we will call the situations of M “p-situations” and call the situations of U
“u-situations”. Each u-situation US has a corresponding p-situation, denoted
PHYS(US), which is physically indistinguishable from US. The difference is
that US may associate specific contents with some of the communication ac-
tions that precede PHYS(US).

Theorem 3: If the set of clocktimes is equal to the positive integers, then for
any situations SA, SB, if k acc(A, SA, SB) then time(SA)=time(SB).

Proof: Suppose that time(SA) < time(SB)=k. By axioms T.7, T.6 and T.5,
there exist situations SB0 < SB1 < . . . SBk−1 < SB such that time(SBi)=i.
By axiom K.4 there exist SA0 . . . SAk−1 such that k acc(A, SAi, SBi), SAi−1 <

SAi and SAk−1 < SA; but this is impossible, since time(SA) < k.

Formal construction of the model

The definitions in this section essentially amount to a formalized re-statement
of the “algorithm” in table 6.

Let L be a physical language. Let T be an acceptable physical theory over L.
Let M be a model and let I be an interpretation of L satisfying the conditions
of definition 6.
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Constructing a model

procedure model construct(in T : an acceptable physical theory;
M : a model of theory T )

return a structure of u-situations over which we will define
a model of the extended theory.

for each p-situation PS in M, construct a u-situation US.
Label PHYS(US) = PS, time(US)=0.

for (each agent A), define the relation K ACC(A, ·, ·)
to be some equivalence relation over the u-situations constructed above.

for (K=0 to ∞) do {
for (each u-situation S of time K) do {

for (each p-situation PS following PHYS(S) in M)
construct a new u-situation S1 and mark PHYS(S1)=PS;

for (each pair of agents AS,AH) do {
if (in M there is an act starting in S of AS communicating to AH)
then {

SSL := the set of u-situations knowledge-accessible from S
relative to the knowledge of AS;

SSU := the set of u-situations knowledge-accessible from S
relative to the shared knowledge of AS and AH;

for (each set SS that is a subset of SSU and a superset of SSL) do {
construct an action “do(AS,inform(AH,SS))” starting in S;
construct a successor S1 of S corresponding to the execution of this action;
label PHYS(S1) to be a u-situation in M following a communicate action in PHYS(S);

}
} } }

use the axioms of knowledge to construct a valid set of
knowledge accessibility relations over the new u-situations

} return (the set of u-situations plus the set of knowledge accessibility relations)
Table 6
Construction of a model

The remaining definitions in this section are relative to a fixed choice of L, T ,
M, and I.

For convenience, for each symbol τ in T , including sorts, we use the same
symbol in block capitals to denote the image of τ under I; this is an individual,
a subset, a mapping, or a relation over M. Thus, for example, AGENTS is
the image under I of the sort “agents”; TIME is the image under I of the
function symbol “time” and so on.

We now proceed to building up the set of u-situations. This construction is
recursive over time. Naturally, the base case is at time 0.

The most important and complex part of the construction is the wider class
of situations that we will need. In general a u-situation US is a pair 〈S1,MM〉
where:
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• S1 is a p-situation. We will write S1=PHYS(US).
• MM is a set of 4-tuples 〈AS,AH,USSQ,SX〉. AS and AH are agents; USSQ

is a set of u-situations; and SX is a p-situation such that SX < S1 and
such that OCCURS(DO(AS,COMMUNICATE(AH)),SX,SZ), for some SZ
that is ordered with respect to S1 Such a tuple asserts that an action of AS
informing AH of content USSQ began in a u-situation USX < US. We write
MM=MM(US).

It will be convenient to posit the existence of an atomic entity INFORM,
which is not in M, and of an entity DO.

Definition 7: Let PS be a p-situation such that TIME(PS)=0. A u-situation

at time 0 is a pair of the form US=〈PS,∅〉. The function ANCESTOR(US)
maps a u-situation US to a set of u-situations, the ancestors of US in the time
structure.

Definition 8: A time structure of depth 0 TS is a pair:

• The set of u-situations U SITS = { 〈PS,∅〉 | PS∈SITUATIONS, TIME(PS)=0}
with one u-situation for each p-situation at time 0.

• A function K ACC mapping any agent A ∈ AGENTS to an equivalence
relation over U SITS.

Definitions 9 through 15 are mutually recursive over the depth k, successively
building up the model forward in time.

Definition 9: Let TS be a time structure of depth K. Let US be a u-situation
of time K in TS. Let S1=PHYS(US). Let MM be a collection of 4-tuples as
described above. Let S2 be a successor to S1. The simple successor to US
parallel to S2 is the pair 〈S2,MM〉.

Definition 10: Let TS=〈U SITS,K ACC〉, US, S1, MM be as above. Let AS
and AH be agents. A possible communicative content from AS to AH is a set
of u-situations USSQ of time K in U SITS satisfying the following: Let USSL
be the set of u-situations USA in TS such that 〈US1,USA〉 ∈ K ACC(AS).
Let USSU be the set of u-situations USA in USSL such that there exist US0

= US, US1, US2 ... USN = USA, such that for each J, 〈USJ , USJ+1〉 is either
in K ACC(AS) or in K ACC(AH). Then USSL ⊆ USSQ ⊆ USSU.

The 4-tuple 〈AS,AH,USSQ,S1〉 is called an inform indicator starting in S1.
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Definition 11: Let TS, US, S1, MM be as above. Let S2 be a successor of
S1. Let I=〈AS,AH,USSQ,S1〉 be an inform indicator starting in S1. I possibly

leads toward S2 if there exists SZ≥S2 such that
OCCURS(DO(AS,COMMUNICATE(AH)),S1,SZ). An informative sheaf in
US toward S2 is a set MMX of inform indicators in US toward S2 such that
no two elements of MMX have the same speaker and the same hearer. An
informative successor to US toward S2 is a pair 〈S2,MM2〉 where MM2 is the
union of MM with some informative sheaf in US toward S2.

Definition 12: Let TS, US, S1, S2 be as above. A u-successor set for US
toward S2 is the union of

• The simple successor to US,S2.
• A set USS of informative successors to US,S2 with the following property: If

M is any inform indicator in S1, then there exists an element 〈S2,MM〉 ∈USS
such that M∈MM. That is, every inform indicator is attached to at least
one successor of US.

A u-successor of a u-situation at time K is a u-situation at time K +1. If US1
is a u-successor of US then
ANCESTOR(US1) = ANCESTORS(US) ∪ { US }.

Definition 13: Let TS be a time-structure of depth K. A u-situation successor

space for TS is the union over [all u-situations US of depth K in TS] and [all
successors S2 of PHYS(US))] of some u-successor set for US,S2.

Definition 14: Let TS=〈U SITS,K ACC〉 be a time-structure of depth K. Let
USA and USB be u-situations of depth K in TS. Let US1A be a u-successor of
USA and let US1B be a u-successor of USB. Let A be an agent. Then US1B
is possibly knowledge accessible from US1A relative to A if all the following
conditions hold:

• 〈USA,USB〉 ∈ K ACC(A).
• For any actional Z and p-situations SXA,SYA, if OCCURS(DO(A,Z),SXA,SYA)

and SXA≤PHYS(USA), then
· If SYA < PHYS(USA), then there exist SXB, SYB such that

OCCURS(DO(A,Z),SXB,SYB) and SYB < PHYS(USB).
· If SYA=PHYS(USA), then there exists SXB such that

OCCURS(DO(A,Z),SXB,PHYS(USB)).
· If SXA < PHYS(USA) < SYA, then there exist SXB, SYB such that

OCCURS(DO(A,Z),SXB,SYB) and SXB < PHYS(USB) < SYB.
· If SXA=PHYS(USA) < SYA, then there exists SYB such that

OCCURS(DO(A,Z),PHYS(USB),SYB).

52



• If there exists a tuple 〈AS,A,USSQ,SX〉 in MM(USA) and
OCCURS(DO(AS,COMMUNICATE(AH)),SX,PHYS(USA)) then there ex-
ists a p-situation SXB and a tuple 〈AS,A,USSQ,SXB〉 in MM(USB) and
OCCURS(DO(AS,COMMUNICATE(AH)),SXB,PHYS(USB)). (That is, if
AS has completed informing A of USSQ, then A knows that AS has com-
pleted informing him of USSQ.)

Definition 15: Let TS be a time-structure of depth K. A possible successor

to TS is a pair TS1=〈U SITS1, K ACC1〉 where

• U SITS1 is a u-situation successor space for TS.
• for each agent A ∈ AGENTS, K ACC1(A) is an equivalence relation over

U SITS1, which is a subset of the relation, “USB is possibly knowledge
accessible from USA.” (Note that, since all the conditions on “possibly
knowledge accessible” have the form “Some property holds on US1A iff the
corresponding property holds on US1B,” the relation “possibly knowledge
accessible relative to (A)” is itself always an equivalence relation.)

TS1 is said to be of depth K+1.

Finally, we let this construction go from time 0 to infinity.

Definition 16: Let TS0 = 〈U SITS0, K ACC0〉, TS1 = 〈U SITS1, K ACC1〉,
. . . be a sequence such that TS0 is a time structure of depth 0 and for each i,
TSi+1 is a possible successor for TSi. Then the pair TS∞ = 〈U SITS∞, K ACC∞〉
= 〈∪iU SITSi,∪jK ACCj〉 is a communicative model extension of M, I.

A.3: Interpretation

Let L, M and I be as in the previous section. Let W be the language L
combined with the following additional elements:

• The sorts “fluent”, “actional” and “actions”, which are super-categories
of the sort “physical fluent”, “physical action”, and “physical actional”,
respectively.

• The symbols “k acc”, “sk acc”, and “inform”.

Let TS∞ = 〈U SITS∞, K ACC∞〉 be a communicative model extension of
M, I.

In this section, we define an interpretation J of W in terms of constructions
over TS∞ and M. For notational convenience, we will write the image of
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a symbol under J by writing it in lower-case boldface; thus, for example,
sk acc = J (“sk acc”). We will use ordinary Roman font where symbols are
used in prefix notation and are interpreted under J . For example, if we write
“occurs(E, S1, S2)” we mean the interpretation of “occurs” under J . Note
that, if a symbol is in L, then its interpretation under I may be different than
its interpretation under J .

We will first discuss the construction of J informally and then proceed to the
formal definition.

The first issue is fluents. On the one hand, axiom I.5 asserts that every property
of situations α(S) has an associated fluent Qα such that Qα holds in just
those situations satisfying S. The usual extensionalizing trick, therefore, is
to identify Qα with the set of u-situations satifying α; generally, to identify
fluents with sets of situations. On the other hand, to extend the theory T to
the new model, we must make sure that every physical fluent in T is still a
fluent in the new theory. Moreover it is possible that T involves the existence
of two different fluents that are in fact coextensional in terms of the situations
where they hold, but differ in terms of some other property of interest to
T . Therefore, we define a general fluent as a pair of a label and a set of u-
situations. For a physical fluent that is, so to speak, grandfathered from T , the
label is just the physical fluent; for all other fluents, the label is immaterial.
A physical fluent Q holds in u-situation S just if Q holds in PHYS(S).

The second issue is the occurrence of actions. For physical actions, as for physi-
cal fluents, we use the “PHYS” mapping to guide us; a physical action E occurs
from US1 to US2 if E occurs from PHYS(US1) to PHYS(US2). For informative
events, there are two steps. First, axiom I.4 asserts that “do(as,inform(ah,q1))”
and “do(as,inform(ah,q2))” co-occur from us1 to us2 if the intersection of q1
with the set of u-situations that are sk-accessible relative to as,ah from us1
is the same as the intersection of us2 with that set. Second, the occurrence
from us1 to us2 of the act “do(as,inform(ah,q0))” where q0 is a subset of the
sk-accessible situations is indicated in the second (MM) field of the u-situation
us1.

Finally for simplicity we assume that there are no “pointless coincidences”
between M and the constructions we will use in J . That is to say: It is
conceivable that M itself happens to contain, as an entity, some tuple that
we will want to define as an entity in the denotation of J . Such a coincidence
would cause propositions to be true and false in ways that we don’t intend.
One could block this by modifying definition 20 below as follows: Whereever
the definition constructs an tuple, add an additional element that is not an
element of M (e.g. M itself.) That will block any such coincidences. For the
sake of readability, I have omitted these.
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Otherwise, the definition is pretty much straightforward.

Definition 17: A general fluent is a pair 〈LABEL,USS〉 where LABEL is
either a physical fluent or 0, and USS is a set of u-situations.

Definition 18: For any PF in PHYSICAL-FLUENTS, define PF MAP(PF)
to be the pair
〈PF, { US | US∈U-SITUATIONS ∧ HOLDS(PHYS(US),PF)} 〉.
Define PF IMAGES = { PF MAP(PF) | PF ∈ PHYSICAL-FLUENTS}

Definition 19: We define a general mapping “U2P MAP” from constructions
over TS∞ to entities in M as follows:

• If U is a u-situation, then U2P MAP(U)=PHYS(U).
• If U=〈PF,USS〉 ∈ PF IMAGES then U2P MAP(U)=PF.
• If U ∈ M then U2P MAP(U)=U.
• Else U2P MAP(U) is undefined.

In reading definition 20 below, keep in mind that, in the standard Tarskian
semantics for first-order logic, the denotation of a function or a predicate
symbol is a set of tuples. Similarly, we take the denotation of a sort to be a
set of entities.

Definition 20: (Long) Let L, M, I, W, U be as above. We define the function
J over the sorts and symbols of W as follows:

Sorts:

J (the sort “clock time”) = the non-negative integers.

J (the sort “agent”) = I(“agent”).

J (the sort “situation”) = the set of u-situations in U .

J (the sort “fluent”) = the set of general fluents.

J (the sort “physical fluent”) = PF IMAGES.

J (the sort “physical actional”) = I(“physical actional”)

J (the sort “physical action’) = I(“physical action”)
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Let informative actionals ≡ { 〈INFORM,AH,Q〉 | AH ∈ agent ∧ Q ∈
fluent }.

Let informative actions ≡ { 〈DO, A,Z〉 | Z ∈ informative actionals }

J (the sort “actional”) = I(“physical actional”) ∪ informative actionals.

J (the sort “action”) = I(“physical action”) ∪ informative actions.

If σ is any other sort used in L, then J (σ) = I(σ).

Non-logical symbols:

J (“<”) (as a predicate on clock times) = the usual ordering on integers.

J (“<”) (as a predicate on situations) = { 〈S1, S2〉 | S1, S2 ∈ situation and
S1 is an ancestor of S2. }

J (“holds”) = { 〈S, Q〉 | S ∈ situation, Q = 〈PF, USS〉 ∈ fluent and S ∈
USS. }

J (“time”) = { 〈S, T 〉 | S ∈ situation, T ∈ clocktime and S is of time T }.

J (“communicate”) = I(“communicate”)

J (“do”) = I(“do”) ∪ { 〈 A,Z, 〈DO,A,Z〉〉 | A ∈ agent and Z ∈ informa-

tive actionals }

J (“inform”) = { 〈AH,Q, 〈INFORM,AH,Q〉〉 | AH∈agent and Q∈fluent }

J (“k acc”) = { 〈A,S1,S2〉 | A ∈agents and 〈S1,S2〉 ∈ K ACC∞(A). }

J (“sk acc”) =
{ 〈AS,AH,SA,SB〉 |

exists(S0 = SA, S1 . . . Sk = SB) such that
for (i = 1 . . . k) either k acc(AS, Si−1, Si) or k acc(AH, Si−1, Si)

}.

J (“occurs”) =
{ 〈E,US1,US2〉 |

E∈action and US1,US2∈situation and US1 < US2 and
either [E ∈ I(“physical action”) and OCCURS(E,PHYS(US1),PHYS(US2))] or

[there exist (A,AH ∈ agent; Q1,Q2 ∈ fluent; USS1,USS2) such that
E=〈DO,AS,〈INFORM,AH,Q1〉〉 and
Q1=〈PF1,USS1〉, Q2=〈PF2,USS2〉;
USS2 = { US ∈ USS1 | 〈AS,AH,US1,US〉 ∈ sk acc },
OCCURS(DO(AS,COMMUNICATE(AH)),PHYS(US1),PHYS(US2)) and
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〈AS,AH,USS2,PHYS(US1)〉 ∈ MM(US2)
]

}

Let α be any symbol in L other than those enumerated above. I(α) is a set
of tuples of entities in M. A tuple T ′ is a replacement for tuple T if, for each
index I, U2P MAP(T ′[I]) = T [I]. Then J (α) is the set of all replacements R

for the tuples in I(α), such that any two situations in R are ordered under
J (“ < ”).

End of definition 20.

Definition 21: The model U is the union of clocktime, agent, situation,
fluent, actional, action and M.

Note that the function U2P MAP(X) is defined for exactly those entities X
which are in J (σ) where σ is one of the sorts in the physical language (clock
times, situations, agents, physical fluents, physical actionals, physical actions,
and other sorts in L).

A.4: Soundness

Throughout this section: Let L be a physical language. Let T be an acceptable
physical theory over L. Let M be a model and let I be an interpretation of
L in M that satisfies T . Let U and J be defined as above.

We will assume that L is strongly sorted; in particular, that every variable
in L is labelled with its sort. A valuation over variables in L is required to
respect the sort constraint. That is, if µi is a variable of sort σi, and V is a
valuation of µi in M then V(µi) ∈ I(σi). If W is a valuation of µi in U then
W(µi) ∈ J (σi).

Lemma 1: For every p-situation PS in M there exists a u-situation US in U
such that PHYS(US)=PS.

Proof by induction on TIME(PS). If TIME(PS)=0 then there exists a corre-
sponding u-situation by definition 8. Suppose the statement is true for all PS
such that TIME(PS)=k. Let PS1 be a p-situation such that TIME(PS1)=k+1.
By axiom T.7, PS1 is the successor of some situation PS0 such that TIME(PS0)
= k. By the induction hypothesis, there is a situation US0 such that PHYS(US0)=PS1.
By definition 9 there is a simple successor US1 of US0 such that PHYS(US1)=PS1.
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Lemma 2: For any u-situation U, TIME(PHYS(U)) = TIME(U). For any
two u-situations U1, U2 if U1 < U2 then PHYS(U1) < PHYS(US2).

Proof: Immediate from the definition of J (“<”) in definition 20 and the
definition of “ANCESTORS” in definitions 7 and 12.

Lemma 3: Let µ1 . . . µk be variables in L. Let V be a valuation mapping
each variable µi into I(σi). Then there exists a valuation W into U such that
U2P MAP(W(µi)) = V(µi).

Proof: Immediate from Lemma 1 together with the construction of U2P MAP
and the fact that, for each sort σ, U2P MAP maps an element of J (σ) to an
element of I(σ).

Lemma 4: Let α(µ1 . . . µk) be a predicate symbol in L, including equality,
where µ1 . . . µk have sorts in L. Let W be a valuation from µi into U . Define
V(µi) = U2P MAP(W(µi)). Then α(µ1 . . . µk) holds in U under J , W if and
only if (a) α(µ1 . . . µk) holds in M under I,V and (b) any two situations W(µi)
and W(µj) are ordered under J (“<”).

Proof: We must consider separately the cases where α is (A) equality over
non-situations; (B) equality over situations; (C) the symbol “<” over clock
times; (D) the symbol “<” over situations; (E) the symbol “occurs”; (F) the
symbol “holds”; (G) any other predicate symbol in L.

(A) Equality over non-situations: from definitions 19 and 20.

(B) Equality over situations: Following definitions 19 and 20, this amounts
to the claim that US1=US2 if and only if PHYS(US1)=PHYS(US2) and
US1 and US2 are ordered. The implication from left to right is trivial. For
the implication from right to left, consider that, if US1 and US2 are or-
dered but US1 6=US2, then either US1<US2 or US2<US1. If US1<US2, then
time(US1)<time(US2) so by lemma 2, PHYS(US1)6=PHYS(US2); and likewise
if US2<US1.

(C) The symbol “<” over clock times: From the fact that the interpretation
is the same under J as under I (Definition 20).

(D) The symbol “<” over situation: Analogous to (B) above.

(E) The symbol “occurs”. By definition 20, if E is a physical action then
occurs(E, S1, S2) occurs under J if and only if occurs(E,PHYS(S1),PHYS(S2))
under I.
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(F) Let µ1, µ2 be variables of sorts “situation” and “physical fluent” respec-
tively. Let PF=V(µ1). Since U2P MAP(W(µ2)) = V(µ2) = PF, by definition
19 W(µ2) ∈ PF IMAGES, which, by definition 18 and 19, means that W(µ2)
= 〈PF , { US ∈U-SITUATIONS | HOLDS(PHYS(US),PF) }〉 By definition
20 it follows that 〈W(µ1), W(µ2)〉 ∈ J (“holds”) if and only if 〈V(µ1), PF)〉 ∈
I(“holds”)

(G) α is any other predicate symbol in L. Immediate from definition 20.

Lemma 5: Let β(µ1 . . . µk) be a function symbol in L, where µ1 . . . µk have
sorts in L. Let W be a valuation from µi into U such that, for any two sit-
uational variables µp and µq, W(µp) and W(µq) are ordered with respect to
J (“<”). Define V(µi) = U2P MAP(W(µi)). Then the value of β(µ1 . . . µk) in
M under I, V is the image under U2P MAP of the value of β(µ1 . . . µk) in U
under J ,W.

Proof: As in the proof of lemma 4, we must consider separately the cases
where β is (A) the function symbol “do”; (B) the function symbol “time”; (C)
any other function symbol in L.

(A) By definitions 19 and 20, if A is an agent and Z is a physical actional then
U2P MAP(J (do(A,Z))) = J (do(A,Z)) = I(do(A,Z)) =
I(do(U2P MAP(A),U2P MAP(Z))). (Again, we are mildly abusing notation.)

(B) By definitions 19 and 20, if US is a u-situation then U2P MAP(J (time(US)))
= J (time(US)) = I(time(PHYS(US))) = I(time(U2P MAP(US))).

(C) Let β be any other function symbol. Let 〈x1 . . . xk, y〉 be any tuple where
the xi and y are entities in the image under J of the sorts in L. Then by the
last part of definition 20,

〈x1 . . . xk, y〉 ∈ J (β) iff
〈 U2P MAP(x1) . . . U2P MAP(xk), U2P MAP(y)〉 ∈ I(β).
But for any terms γ1 . . . γk and any valuation W from the variables in the γ’s
to U , the denotation of β(γ1 . . . γk) under J ,W is equal to y just if the tuple
〈J (γ1) . . .J (γk), y〉 is in J (β); and likewise for I.

Unfortunately, U2P MAP does not preserve truth-values of predicates over
unordered u-situations; it is possible that U2P MAP(US1)=U2P MAP(US2)
even though US1 6=US2, or that U2P MAP(US1) < U2P MAP(US2) even if
US1 and US2 are unordered. There is, moreover, in general no way to modify
U2P MAP to preserve inequality, since the cardinality of the set of u-situations
may be larger than the cardinality of p-situations. Therefore, in establishing
below that if an open formula with inequalities or orderings is satisfiable in
J then it is also satisfiable in I, it is necessary to continuously “patch” the
mapping U2P MAP by mapping a u-situation US into some p-situation that
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is physically indistinguishable from U2P MAP(US). Fortunately, we had the
foresight to provide ourselves with plenty of these. Stating this exactly is a
little involved; definitions 22-24 and corollary 6 through lemma 9 accomplish
this.

Definition 22: Let τ be a function from U to itself which is one-to-one and
onto. The function τ is said to be a physical automorphism over U if the
following conditions hold:

1. If X is not a u-situation, then τ(X) = X.
2. Let α(µ1 . . . µk) be any atomic formula in L with free variables µ1 . . . µk. Let

W and Y be valuations from µi to U such that Y(µi) = τ(W(µi)). Then Y
satisfies α only if W satisfies α.

Note that condition (2) only applies to formulas in the physical language L,
not in the broader language.

Definition 23: Let S1, S2 be either two p-situations or two u-situations. Situ-
ation S is the latest common ancestor (LCA) of S1 and S2, if S≤S1, S≤S2 and
S is the latest situation with that property. Since the order relation on situa-
tions is a forest of trees, any two situations have at most one latest common
ancestor.

Definition 24: Let 〈µ1 . . . µk〉 be a k-tuple of variables. Let W be a valuation
of the µ’s to U and let V be a valuation of the µ’s to M. V is said to be an
image of W if the following conditions hold:

• If µ is not a situational variable, then V(µ) = U2P MAP(W(µ)).
• There exists a physical automorphism τ over U such that, for each pair

of situational variables µi, µj, if S is the latest common ancestor of W(µi),
W(µj) then PHYS(τ(S)) is the LCA of V(µi), V(µj); and if W(µi) and
W(µj) have no common ancestor, then V(µi) and V(µj) have no common
ancestor.

We say that the automorphism τ establishes the correspondence between W
and V.

Corollary 6: Let µ1 . . . µk, W, V, and τ be as in definition 24. For each i,
V(µi) = U2P MAP(τ(W(µi))).

If µi is a situational variable, then applying definition 24 and choosing j = i,
since W(µi) is the LCA of W(µi) and itself, we have U2P MAP(τ(W(µi))
= PHYS(τ(W(µi)) = LCA(V(µi),V(µi)) = V(µi). If µi is not a situational
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variable, then the result is immediate.

Lemma 7: Let µ1 and µ2 be situational variables in L. Let W and V be
valuations of µ1, µ2 to U and M respectively, and let V be an image of W.
Then W(µ1) = W(µ2) if and only if V(µ1) = V(µ2) and W(µ1) < W(µ2) if
and only if V(µ1) < V(µ2)

Proof: Let τ be an automorphism that establishes the correspondence be-
tween W and V. If W(µ1) = W(µ2) then V(µ1) = V(µ2), since V(µ) =
PHYS(τ(W(µ)) and is thus a function of W(µ). If W(µ1) < W(µ2) then by
lemma 2, V(µ1) < V(µ2).

Suppose that V(µ1)= V(µ2). Thus, LCA(V(µ1), V(µ2)) = V(µ1) = V(µ2). By
definition 24 LCA(W(µ1), W(µ2)) = W(µ1) = W(µ2).

Suppose that V(µ1) < V(µ2). Thus, LCA(V(µ1), V(µ2)) = V(µ1). By definition
24, LCA(W(µ1), W(µ2)) = W(µ1). Therefore W(µ1) ≤ W(µ2). Since V(µ1)
6= V(µ2), it follows from the earlier part of this lemma that W(µ1) 6= W(µ2);
hence W(µ1) < W(µ2).

Lemma 8: Let α(µ1 . . . µk) be a predicate symbol in L. Let W be a valuation
of the µ’s to U and let V be an image of W. Then α holds in U under W if
and only if α holds in M under V.

Proof: Let τ be an automorphism that establishes the correspondence be-
tween W and V. Let Q(µi) = τ(W(µi)). By definition 22, α(µ1 . . . µk) holds
under J ,W if and only if it holds under J ,Q. By lemma 4, α(µ1 . . . µk) holds
under J ,Q if and only if it holds under I,V and for any two situational vari-
ables µa, µb, Q(µa) and Q(µb) are ordered. By lemma 7, Q(µa) and Q(µb) are
ordered if and only if V(µa) and V(µb) are ordered; and by condition 5 of
definition 6, α(µ1 . . . µk) holds under I,V only if V(µa) and V(µb) are ordered.
Putting these together, it follows that α(µ1 . . . µk) holds under J ,W if and
only if it holds under I,V.

Lemma 9: Let β(µ1 . . . µk) be a function symbol in L, and let µk+1 be another
variable. Let W be a valuation of the µ’s to U and let V be an image of W.
Then the equation µk+1 = β(µ1 . . . µk) holds in U under W if and only if it
holds in M under V.

Proof: Exactly analogous to the proof of lemma 8, substituting lemma 5 for
lemma 4.

61



Lemma 10: Let α(µ1 . . . µk) be a quantifier-free formula in L. Let W be a
valuation of the µ’s to U and let V be an image of W. Then α holds in U
under W if and only if α holds in M under V.

Proof: Straightforward structural induction over the form of α, using lemmas
8 and 9.

Lemma 11: Let µ1 . . . µk be variables whose sorts are in L. Let W be a
valuation from variables µ1 . . . µk to U and let V be an image of W . (We will
include here the case where k = 0; in that case, W and V are null valuations.)
Let µk+1 be a new variable of sort σk+1.

1. Let A be an entity in J (σk+1). Let W′ = W ∪ { µk+1→A }. Then there
exists B in M such that V′ = V ∪ { µk+1→B } is an image of W′.

2. Let B be an entity in I(σk+1). Let V′ = V ∪ { µk+1→B }. Then there exists
A in U such that V′ is an image of W′ = W ∪ { µk+1→A }.

Proof:

Let τ be a physical automorphism over U that establishes the correspondence
of W and V. If the sort of µk+1 is not a situation, then both (1) and (2)
are trivial; one can take A=B, leave the automorphism τ unchanged, and the
result is immediate from the definitions. Therefore, we may assume that the
sort of µk+1 is a situation, and therefore A is a u-situation and B is a p-
situation. Without loss of generality, renumber the variables µ1 . . . µk so that
µ1 . . . µm are situational variables and the rest are not situational variables.

In both halves of the lemma, in order to show that W′ is an image of V′ we
must exhibit an automorphism τ ′ that establishes this correspondence.

Let us write PT(S) = PHYS(τ(S)), and Si = W (µi) for i = 1 . . .m.

Part 1. There are three cases:

Case A. m = 0. In this case, one can choose B=PHYS(A), and τ ′ to be the identity
automorphism.

Case B. Suppose that A≤ Si for some i. Let τ ′ = τ , and let B=PT(A). For any j,
let S be the LCA of Sj and A. There are four cases:

B.i. Sj ≤ A. In this case S = Sj . Since W is an image of V under τ , PT(S) =
PT(Sj) = V(µj).

B.ii. A≤ Sj . In this case S=A. Since τ is an automorphism, τ(S) ≤ τ(Sj). By
lemma 2, PT(S) = PT(A) ≤ PT(Sj) so PT(S) is the LCA of PT(A) and
PT(Sj)

B.iii. A and Sj are unordered but have LCA S. Then S is the LCA of Si and
Sj , so PT(S) is the LCA of PT(Si) and PT(Sj). Since PT(S) < PT(A)
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≤ PT(Si), it follows that PT(S) is the LCA of PT(A) and PT(Sj).
B.iv. A and Sj have no common ancestor. Hence Si and Sj have no common

ancestor. Hence PT(Si) and PT(Sj) have no common ancestor. Hence
PT(A)<PT(Si) and PT(Sj) have no common ancestor.

Case C. Suppose that A does not precede any of the Sj. Consider the set LL=LCA(A,S1)
. . . LCA(A,Sm). If LL is non-empty, let S be the latest situation in LL. We
have three cases:

C.i. LL is empty; that is, none of the Sj are ordered with respect to A. Then
none of the values of τ(Sj) are ordered with respect to τ(A), so by lemma
4, none of the values of PT(Sj) are ordered with respect to PT(A). Hence,
we may choose τ ′ = τ and B=PT(A).

C.ii. S is equal to one of the Si. Then for each Sj , LCA(A, Sj) = LCA(Si, Sj).
Thus, again, we may may choose τ ′ = τ and B=PHYS(τ(A)).

C.iii. S is not equal to any of the Si. Note that at least there must be one of
the Sj > S; call this Sx. Let Q be the successor of S such that Q ≤ A.
There are two cases:

C.iii.a. Q is not a communicative successor of S. Then τ(Q) is not a com-
municative successor of τ(S). For any Sj , if S < Sj, let Qj be the
successor of S such that Qj ≤ Sj. By the construction in definitions
9-12, it follows that PT(Q) is not equal to PT(Qj). Therefore PT(S)
is the LCA of PT(A) and PT(Sj). If Sj is not ordered with respect
to S, then the LCA of Sj and A is the same as the LCA of Sj and Sx

(or neither of these LCA’s exists), so again LCA(PT(A),PT(Sj)) =
LCA(PT(Sx),PT(Sj)) = PHYS(LCA(τ(Sx), τ(Sj)) = PHYS(LCA(τ(A), τ(Sj)).
Therefore we can choose τ ′ = τ and B=PHYS(τ(A)).

C.iii.b. Q is a communicative successor of S. Here, finally, is the case where
τ may need to be modified. Let Q1 . . . Qp be all the successors of
S that precede one of the Si. By property (4) of definition 6, there
are infinitely many successors of PT(S) that are physically indistin-
guishable from PT(Q). Let C be one such that is not equal to PT(Qi)
for any i. Let ω be the automorphism of M that interchanges the
subtree of p-situations following C with the subtree of p-situations
following PT(Q) and leaves the rest of M the same (see definition
5). Let τ ′ = τ ◦ ω. Let B=PHYS(τ ′(A)).

Now, suppose Sj > S. Then the LCA of Sj and A = S. Since
PHYS(τ ′(A)) is a descendant of C, which is a successor of PHYS(τ(S))
and PHYS(τ ′(Sj)) is a descendant of PHYS(τ(Qj) which is a different
successor of PHYS(τ(S)), it follows that the LCA(PHYS(τ ′(A)),PHYS(τ ′(Sj)))
= PHYS(τ(S)). Alternatively, if Sj is not ordered with respect to S,
then we still have LCA(PHYS(τ(A)),PHYS(τ(Sj))) = PHYS(LCA(τ(A), τ(Sj))),
by exactly the same argument as in case C.iii.a.

Part 2. The proof of part 2 is exactly analogous to that of part 1, but going
in the opposite direction. .
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Lemma 12: Let α be a prenex formula in L with m quantifiers and k free
variables µ1 . . . µk. Let W be a valuation from variables µ1 . . . µk to U and let
V be an image of W . Then α is true under J ,W if and only if it is true under
I,V.

Proof by induction on m, the number of quantifiers.

If m = 0, then the statement is just lemma 10.

Suppose the statement is true for all formulas with m quantifiers. Let α be a
formula with m + 1 quantifiers. There are four cases:

Case 1: α is true under J ,W and α has the form “∃Xβ(X)”, where β is a formula
with m quantifiers and k + 1 free variables. Since α is true, there exists an
entity A ∈ U and a valuation W′ = W ∪ { X→A} such that β is true under
J , W′. By lemma 11 there exists a valuation V′ that is an image of W′. By
the inductive hypothesis, β is true under I, V′. Hence α (that is, ∃Xβ) is
true under I,V.

Case 2: α is true under I,V and α has the form “∃Xβ(X)”. Since α is true, there
exists an entity B ∈ M and a valuation V′ = V ∪ { X→B} such that β is
true under I, V′. By lemma 11 there exists a valuation W′ such that V′ is
an image of W′. By the inductive hypothesis, β is true under J , W′. Hence
α is true under J ,W.

Case 3: α is true under J ,W and α has the form “∀Xβ(X)”. Let γ be the transfor-
mation into prenex form of ¬α. Then γ is false under J ,W, and γ has the
form “∃Xδ” where δ is the prenex form of ¬β. By the contrapositive to case
2 above, γ is false under I,V; hence α is true under I,V.

Case 4: α is true under I,V and α has the form “∀Xβ(X)”. Exactly analogous to
case (4), but using the contrapositive to case 1.

Corollary 13: All the physical axioms of T , axioms T.1-T.7, and axioms T.8
and T.9 restricted to physical actions are true in U under interpretation J .

Proof: Immediate from lemma 12, taking k = 0. and using the fact that the
axioms in T and axioms T.1-T.9 are true in M (by definition of M.)

Lemma 14: If PS1=PHYS(US1) and PS1 and PSZ are ordered, then there
exists USZ such that US1 and USZ are ordered, and PSZ=PHYS(USZ).

Proof: If PS1=PSZ then USZ=US1.

If PSZ<PS1, then let USZ be the ancestor of US1 at time TIME(PSZ).

If PS1<PSZ, then let s1 = PS1, s2 . . . sk = PSZ be p-situations such that
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si+1 is a successor of si. Using definition 9 iteratively, let US2 be the simple
successor to US1 parallel to PS2, let US3 be the simple successor to US2

parallel to PS3, and so on. Then USk satisfies the desired conditions on USZ.

Lemma 15: Axioms T.8 extended to general actions and K.1—K.8 are true
in U under J . (I’m just bunching together the axioms whose proof is easy.)

Proof:

T.8 Immediate from the definition of J (“occurs”) (Definition 20).
K.1–K.3. Immediate from definition 15, which requires K-ACC(A) to be an equiva-

lence relation on u-situations.
K.4–K.6 Immediate from definition 14, which restricts the “possibly accessible” on

situations that hold on the left-hand side of each of these relations to those
that satisfy the conditions on the right-hand side of these implications; plus
definition 15, which states that the actual knowledge accessibility relation
are a subset of the possibly accessible relations.

K.7,K.8. Immediate from the definition of J (“sk acc”) in definition 20.

Lemma 16: Axiom I.1 is true in U under J .

Proof:

By the definition of J (“occurs”) in definition 20, if
occurs(do(AS,inform(AH,Q)),US1,US2) then there exist QA, PF1,USS1,PFA,USSA)
such that
Q1=〈PF1,USS1〉, QA=〈PFA,USS2〉,
USSA = { US ∈ USS1 | 〈AS,AH,US1,US〉 ∈ k acc, }, and 〈AS,AH,USS2,S1,PHYS(US2)〉
∈ MM(US2). Let USQ be the successor of US1 such that USQ ≤ US2. By def-
inition 9, 〈AS,AH,USS2,S1,PHYS(US2)〉 ∈ MM(USQ). By definition 10 and
11,
OCCURS(DO(AS,COMMUNICATE(AH)),PHYS(US1),PHYS(US2)).
By definition 20, occurs(do(AS,communicate(AH)),US1,US2).

Lemma 17: Axiom T.9 extended to general actions is true in U under J .

Proof:

Let US1, US2, USX, and USY be u-situations and E an event such that oc-
curs(E,US1,US2), US1<USX<US2 and USX<USY. Let S1=PHYS(US1) and
S2=PHYS(US2). By definition 20, E is either a physical action or an informa-
tive action. The case where E is a physical action is covered in corollary 13.
Suppose that E is an informative action; let E=〈DO,AS,〈INFORM,AH,Q1〉〉.
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By definition 20 there exist QA, PF1,USS1,PFA,USSA such that
Q1=〈PF1,USS1〉, QA=〈PFA,USS2〉,
USSA = { US ∈ USS1 | 〈AS,AH,US1,US〉 ∈ k acc, },
and 〈AS,AH,USSA,S1〉 ∈ MM(US2). By definition 9, 〈AS,AH,USSA,S1〉 ∈
MM(USX). By axiom T.9 applied to the action DO(AS,COMMUNICATE(AH))
there exists a situation SZ such that ordered(SZ,PHYS(SY)), SZ>SX, and
OCCURS(DO(AS,COMMUNICATE(AH),S1,SZ). By lemma 14, there exists
USZ such that PHYS(USZ)=SZ and USZ is ordered with respect to USY. It
follows that USZ>USX and that 〈AS,AH,USS2,S1〉 ∈ MM(USZ).
By definition 20, occurs(do(AS,inform(AH,Q)),US1,USZ).

Lemma 18: Axiom I.2 is true in U under J .

Proof:

Let AS,AH be agents, let US1,US2 be u-situations, and let Q=〈PF,USSQ〉
be a general fluent. Let US1ACC = { USA | 〈AS,AH,US1,USA〉 ∈ sk acc },
the set of situations accessible from US1 in the shared knowledge of AS and
AH. Let USSA = USSQ ∩ US1ACC, the set of situations satisfying Q that
are knowledge accessible from S1, relative to the shared knowledge of AS and
AH. Let S1=PHYS(US1).

Suppose that occurs(do(AS,inform(AH,Q)),US1,US2). By definition 20 (de-
notation of “occurs”), the tuple 〈AS,AH,USSA,S1〉 ∈ MM(US2). Let USY be
the successor of US1 that is an ancestor of US2. By definitions 9, 11, and 12
it follows that MM(USY) contains the tuple 〈AS,AH,USSA,S1〉. By definition
10, USSA is a possible communicative content for S1 from AS to AH; hence,
by definition 10, every situation that is knowledge accessible from US1 relative
to AS is an element of USSA and therefore an element of USSQ ⊃ USSA. By
definition 20 (“holds”) Q holds in every situation accessible from US1.

Conversely, if Q holds in every situation accessible from S1, then USSA is a
possible communicative content from AS to AH. Suppose that
OCCURS(DO(AS,COMMUNICATE(AH)),S1,S2). Let SY be the successor of
S1 such that SY≤S2. By definition 12, there exists an informative successor
USY of US1 such that 〈AS,AH,USSA,S1〉 ∈ MM(USY). By axiom T.9 there
exists a situation USZ≥USY such that
OCCURS(DO(AS,COMMUNICATE(AH)),US1,USZ). By definitions 9, 11, 12
〈AS,AH,USSA,S1〉 ∈ MM(USZ). By definition 20, occurs(do(AS,inform(AH,Q)),S1,SZ).

Lemma 19: Axiom I.3 is true in U under J .

Proof: Assume that occurs(do(AS,inform(AH,Q)),US1,US2) and that
k acc(AH,US2,US2A). We need to prove that there exists a situation US1A
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such that occurs(do(AS,inform(AH,Q)),US1A,US2A) and k acc(AH,US1,US1A).

Define USSA as in the proof of lemma 18. By definition 20 (denotation of “oc-
curs”) since occurs(do(AS,inform(AH,Q)),US1,US2) it follows that the tuple
〈AS,AH,USSA,PHYS(US1)〉 ∈ MM(US2) and
OCCURS(DO(AS,COMMUNICATE(AH)),PHYS(US1),PHYS(US2)). By def-
inition 15, since k acc(AH,US2,US2A), US2A is possibly knowledge accessible
from US2 relative to AH. By definition 14, the tuple 〈AS,AH,USSA,PS1A)〉
∈ MM(US2A) for some p-situation PS1A < PHYS(US2A), and
OCCURS(DO(AS,COMMUNICATE(AH)),PS1A,PHYS(US2A)). By theorem
3 and axiom K.8, any two situations that are sk acc are at the same time.
Hence, all the situations in USSA are at the same time, and by definition 10
this time must be equal to TIME(US1) and to TIME(US1A). Hence
TIME(US1)=TIME(US1A). By axiom A.4, since k acc(AH,US2,US2A), US1<US2,
US1A<US2A and TIME(US1)=TIME(US1A), it follows that k acc(AH,US1,US1A).
Hence, the set of situations that are accessible relative to the shared knowl-
edge of AS and AH is the same starting from US1 as starting from US1A.
Hence the act of AS informing AH of Q starting in US1A uses the tuple
〈AS,AH,USSA,PS1A〉. Thus by definition 20, occurs(do(AS,inform(AH,Q)),US1A,US2A).

Lemma 20: Axiom I.4 is true in U under J .

Proof: Suppose that occurs(do(AS,inform(AH,QX)),US1,US2) and that QY
is a fluent. Let US3 be the successor of US1 such that US3≤US2. Let QX=〈PFX,USSQX〉;
QY=〈PFY,USSQY〉;
QXA = USSQX ∩ { USA | sk acc(AS,AH,US1,USA) }, and
QYA = USSQY ∩ { USA | sk acc(AS,AH,US1,USA) }.
By definition 20, 〈AS,AH,QXA,PHYS(US1)〉 ∈ MM(US2).
By definitions 9, 11, 12, 〈AS,AH,QXA,PHYS(US1)〉 ∈ MM(US3).

I. (Left to right in the two-way implication.)
Suppose that occurs(do(AS,inform(AH,QY)),US1,US2). By the same argu-
ment as above 〈AS,AH,QYA,PHYS(US1)〉 ∈ MM(US3). But by definition 11,
US3 contains at most one inform indicator with starting point PHYS(US1),
speaker AS, and hearer AH. Hence QXA=QYA. That is, if situation USA is
accessible from US1 relative to the shared knowledge of AS and AH, then QX
holds in USA iff QY holds in USA.

II. (Right to left in the two-way implication.)
If it is the case that
∀S1A sk acc(AS,AH,S1,S1A) ⇒ [holds(S1A,QX) ⇔ holds(S1A,QY)]
then QXA=QYA, so by definition 20, occurs(do(AS,inform(AH,QY)),US1,US2).

Lemma 21: Axiom I.5 (the comprehension axiom) is true in U under J .
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Proof: Immediate from definitions 17 and 20, using the comprehension axiom
of Zermelo-Fraenkel set theory (also known as the “subset” or “separation”
axiom.) Since there exists a well-defined set U-SITS of all situations, the ZF
axiom asserts that every such formula defines a subset of U-SITS. See, for
example, [15], p. 36.

Considering how problematic the comprehension axiom would seem to be it
may be surprising that it has a one-step proof. In fact, one might say that
the whole construction we went through in section A.3 is precisely tailored so
that the comprehension axioms should have a one-step proof. Nonetheless the
reader may well have legitimate worries about such a powerful axiom, that
are hardly assuaged by the above proof. Let me therefore discuss further how
this whole construction works.

The key point is this: There is no circularity whatever in the whole struc-
ture of definitions given in section 3. The structure of u-situations is built
up iteratively forward in time. The label on an “inform” action A is a set
of u-situations contemporaneous with the start of A; it gives rise to a new
u-situations at the next point in time. Iterating from 1 to infinity gives us a
well-defined and fixed set U of all u-situations. Definition 17 defines a fluent
as a subset of U . Definition 20 defines the occurrence of an inform action in
terms of these fluents and of the labels on the actions. More generally, defini-
tion 20 defines the denotation of every symbol in W extensionally, in terms of
structures over U and M and the interpretation I; no aspect of J is defined in
terms of J itself (except as a convenient abbreviation.) Having adopted defi-
nition 20, J is now fixed, and it is fixed which fluents satisfy which formulas
under J .

But isn’t it inherently circular to say, for example,

q1 is the fluent such that
∀S holds(S,q1) ⇔ ∃AS,AH,S2,Q occurs(do(AS,inform(AH, Q)),S, S2)

considering that the quantification over Q contains q1 itself? Not at all, no
more than saying

0 is the number such that, ∀XX + 0 = X

when the quantification over X includes 0 itself. The formula above is just a
description of q1, and the axioms are sufficient to guarantee that a q1 satisfying
this definition exists.

Theorem 1:

Let T be an acceptable physical theory, and let A be T together with axioms
K.1 — K.8 and I.1 — I.5, and with T.8 and T.9 extended to arbitrary actions.
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Then A is consistent.

Proof: We have shown that a model and an interpretation satisfying A can
be constructed.

Theorem 2: Let T be an acceptable physical theory, and let U be the union
of:

A. T ;
B. Axioms K.1 — K.7 and I.1 — I.5.
C. A collection of domain-specific knowledge acquisition axioms of the form

specified in section 3.5.
D. The frame axiom I.6 associated with the axioms in (C).
E. Any set of axioms K specifying the presence or absence of k acc relations

among situations at time 0 as long as:
i. The axioms in K do not refer to any situations of time later than 0.
ii. The axioms in K are consistent with T , axioms K.1 — K.3, K.5 (as regards

knowing the feasibility of actions at time 0), and the axioms in (C).

Then U is consistent.

Sketch of Proof: The proof of theorem 1 needs to be modified as follows:

• In definition 8, initialize the K ACC function at time 0 to satisfy the union
of the axioms in (E) with the axioms enumerated in E.ii.

• In definition 14, add to the conditions on US1B being possibly knowledge
accessible from US1A:

For each axiom in (C) of the form “A always knows whether Φi(A, S),”
the condition Φ(US1B)⇔Φ(US1A) must hold.

• Modify the second bullet in definition 15 to read, “For each agent A, K ACC1(A)
is the relation over u-situations, ‘US1B is knowledge accessible from US1A
relative to A.’ ”

The proof that the additional axioms enumerated in theorem 2 are satisfied is
then straightforward.
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