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Abstract. Karloff and Shirley recently proposed “summary trees” as
a new way to visualize large rooted trees (Eurovis 2013) and gave al-
gorithms for generating a maximum-entropy k-node summary tree of
an input n-node rooted tree. However, the algorithm generating optimal
summary trees was only pseudo-polynomial (and worked only for integral
weights); the authors left open existence of a polynomial-time algorithm.
In addition, the authors provided an additive approximation algorithm
and a greedy heuristic, both working on real weights.
This paper shows how to construct maximum entropy k-node summary
trees in time O(k2n+n logn) for real weights (indeed, as small as the time
bound for the greedy heuristic given previously); how to speed up the
approximation algorithm so that it runs in time O(n+ (k4/ε) log(k/ε)),
and how to speed up the greedy algorithm so as to run in time O(kn+
n logn). Altogether, these results make summary trees a much more
practical tool than before.

1 Introduction

How should one draw a large n-node rooted tree on a small sheet of paper or
computer screen? Recently, in Eurovis 2013, Karloff and Shirley [4] proposed
a new way to visualize large trees. While the best introduction to summary
trees appears in [4], here we give a necessarily short description. A user has
an n-node node-weighted tree T and wants to draw a k-node summary S of T
on a small screen or sheet of paper, k being user-specified. We begin with an
informal, bottom-up, operational description. Two types of contraction are per-
formed: subtrees are contracted to single nodes that represent the corresponding
subtrees; similarly multiple sibling subtrees (subtrees whose roots are siblings)
are contracted to single nodes representing them. The node resulting from the
latter contraction is called a group node. The one constraint is that each node
in the summary tree have at most one child that is a group node. Examples are
shown in Figure 1–3 below (these figures appeared originally in [4]).

Next, we give a more formal description. Let Tv denote the subtree of T
rooted at v. We name each node of S by the set of nodes of T that it represents.
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6-node summary tree; entropy = 0.998	
6-node summary tree; entropy = 1.201	


9-node original tree; entropy = 1.381	


Fig. 1. In the upper panel, a 9-node tree (with node weights in parentheses), and below
it, two different 6-node summary trees of the original 9-node tree.

The following comprise the possible summary trees for Tv: If Tv has just one
node, the only summary tree is the one node {v}. Otherwise, a summary tree
for Tv is one of:

1. a one-node tree V (Tv) (the set of nodes in Tv); or
2. a singleton node {v} and summary trees for the subtrees rooted at the chil-

dren of v (and edges from {v} to the roots of these summary trees); or
3. a singleton node {v}, a node otherv representing a non-empty subset Uv of
v’s children and all the descendants of the nodes x ∈ Uv, and for each of v’s
children x 6∈ Uv a summary tree for Tx (and edges from {v} to otherv and
to the roots of the summary trees for each Tx).1 Sometimes we will overload
the term otherv by using it to denote the subset Uv.

We allow arbitrary nonnegative real weights wv on the nodes v of the input
tree T . The weight of a node in a summary tree is defined to be the sum of
the weights of the corresponding nodes in T . Paper [4] defined the entropy of a

1 otherv sets of size 1 are covered by Cases 2 and 3, but this redundancy is convenient
for the algorithm description.
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Fig. 2. Taken from [4], the maximum entropy 56-node summary tree of the math ge-
nealogy tree rooted at Carl Friedrich Gauss, which has 43,527 equal-weighted nodes
(where the original advisor-student graph was forced to be a tree by choosing the pri-
mary advisor for each student who had multiple advisors). Node colors are determined
by their depth-1 ancestor, and node areas are proportional to their weights in the
summary tree. This tree is best viewed (and enlarged) on a computer screen.

k-node summary tree with nodes of weights W1,W2, ...,Wk to be −
∑k
i=1 pi lg pi,

where pi = Wi/W and W is the sum of all node weights, the usual information-
theoretic entropy. Paper [4] then proposed that the most informative summary
trees are those of maximum entropy. As noted in [4], this is a natural way to think
about the information contained in a node-weighted tree. For given a bound on
the number of nodes available in a summary tree, it seems plausible that a best
summary tree is one of maximum entropy, because it is theoretically the most
informative. This provided a principled way to identify the best k-node summary
tree, in contrast to more heuristic and operational rules in prior work.

The fact that otherv is an arbitrary non-empty subset of v’s potentially large
set of children is what makes finding maximum entropy summary trees difficult.
Indeed, [4] resorted to using a dynamic program over the node weights (which
worked provided that the weights were integral) and which led to a final running
time of O(K2nW ), where W is the sum of the node weights and K is the
maximum k for which one is interested in finding a k-node summary tree. Given
K, the dynamic program finds maximum entropy k-node summary trees for
k = 1, 2, . . . ,K; from now on we assume that the user specifies K and k-node
summary trees are found for all k ≤ K. The algorithm worked well when W was
small, but failed to terminate on two of the five data sets used in [4].

The key to obtaining a running time independent of W is to develop a fuller
understanding of the structure of maximum entropy summary trees. Our new
understanding readily yields a truly polynomial-time algorithm. The main re-
maining challenge is to create and analyze an effective implementation. We give
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Optimal Entropy Greedy ε-Approximate

Known results O(K2nW ) [4] O(K2n+ n logn) [4] O(K2nW0) [4]

New results O(K2n+ n logn) O(Kn+ n logn) O(n+K3W0 +W0 logW0)

Table 1. Running times of the algorithms; W0 = O((K/ε) log(K/ε)).

an algorithm running in time O(K2n+n log n) 2; it generates maximum entropy
summary trees even for real weights, assuming, of course, a real-arithmetic model
of computation, which is necessary (even for integral weights) because of the com-
putation of logarithms. This result is based on a structural theorem which shows
that the other sets, while allowed to be arbitrary, can be assumed, without loss
of generality, to have a simple structure.

To deal with the case of real weights or exceedingly large integral weights,
[4] gave an algorithm based on scaling, rounding, and algorithmic discrepancy
theory which builds a summary tree whose entropy is within ε additively of the
maximum, in time O(K2nW0), where W0 is O((K/ε) log(K/ε)). Keep in mind
here that K is meant to be small, e.g., 100 or 500, while n is meant to go to
infinity, and also that W0 is a function only of K and ε (and of neither n nor
W ). The key here was to show that scaling the real input weights to have sum
W0, rounding them using algorithmic discrepancy theory, and then running the
exact dynamic program previously mentioned on the rounded weights caused a
loss of only ε in the final entropy.

This paper shows that the same algorithm can be implemented in time O(n+
K3W0 +W0 logW0); this is linear time if n is larger than the other terms. The
key here is to notice that if the sum of integral weights is W0, which is small,
and n�W0, then most nodes have rounded weight 0. Surely one shouldn’t have
to devote a lot of time to nodes of weight 0, and our algorithm, by effectively
replacing n by O(W0), exploits this intuition.

Last, [4] proposed a fast greedy algorithm to generate summary trees. Run-
ning in time O(K2n + n log n) (though [4] overlooked the n log n time needed
for sorting), the algorithm never took longer than six seconds to run on the
data sets of [4]. This paper shows that a simple modification to the greedy code,
neither suggested in [4] nor implemented in the associated C code, specifically,
not computing a k-node summary tree of a tree rooted at a node having fewer
than k descendants, decreases the running time bound of the greedy algorithm
from O(K2n+ n log n) to O(Kn+ n log n). While the modification is trivial, its
analysis is not.

Taken together, these new results show that maximum entropy summary
trees are a much more practical tool than was previously known.

Roadmap. Section 2 describes earlier work on visualizing trees. In Section 3 we
prove the structural theorem on which our improved algorithms depend. This

2 Actually, this can be reduced to O(K2n) time by using a combination of fast selection
and sorting instead of sorting alone in various places.
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Fig. 3. Two summary trees of a 19,335-node web traffic tree. The upper figure is a
naive aggregation to depth 2; the node weights are heavily skewed. The bottom figure
is the maximum entropy 32-node summary tree, which displays much more information
given the same number of nodes.

is followed in Section 4 with our exact algorithm and in Section 5 with the key
lemma for analyzing the exact and greedy algorithms. Section 6 gives the greedy
algorithm and Section 7, the approximate algorithm and its analysis.

2 Previous Work

Traditionally tree visualization involved either visualizing the entire tree or al-
lowing the user to interactively specify in what part of the tree he or she is
interested. Obviously, if one draws a huge tree on a sheet of paper or a computer
screen, not only will labels be close-to-impossible to read, there will be too much
information, in that the reader will not know on what part to focus.

Many researchers have attempted to ameliorate the issues involved with
drawing a huge tree by allowing interactivity. Initially perhaps only the root of
the tree is displayed. When the user clicks on a node, that node’s children then
appear. “Degree-of-interest trees” [2, 3] let a user explore a tree interactively.
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Other interactive techniques are “hyperbolic browsers” [5] and the “accordion
drawing technique” [7, 1].

Researchers have proposed “space-filling” layouts as an alternative to tradi-
tional node-and-edge layouts. Treemaps [9] are one popular way to lay out large
trees. The root node is represented by a rectangle, and recursively the children
of a node v are represented by rectangles which together partition the rectangle
representing v. But treemaps are not effective at showing the hierarchy of a tree.

Von Landesberger et al. wrote a recent survey [6] on techniques for drawing
large graphs. Other relevant previous work can be found in [4].

3 Structural Theorem

This section proves a structural theorem which implies that maximum entropy
summary trees can be computed in polynomial time, in a real-arithmetic model
of computation. We begin by relating our approach to the greedy algorithm
from [4]. Let v be a node of an input tree and suppose that {v} appears in the
summary tree. Recall that otherv denotes the group child of v, if any.

Definition 1. 1. The size sv of a node v in T is the sum of the weights of its
descendants.

2. nv denotes the number of descendants of v (including v).
3. dv denotes the degree of v, the number of children it has.
4. 〈v1, v2, ..., vdv 〉 denotes the children of v when sorted into nondecreasing order

by size. (Fix one sorted order for each v, breaking ties arbitrarily.)
5. The prefixes of 〈v1, v2, ..., vdv 〉 are the sequences 〈v1, v2, ..., vi〉 and sets
{v1, v2, ..., vi} for i ≥ 0.

The greedy algorithm in [4] sorted and then processed the children of each
node in nondecreasing order by size; more about this later. It finds a maximum
entropy summary tree among those in which for each v, either otherv does not
exist or is a nonempty prefix of 〈v1, v2, ..., vdv 〉, but this need not be the optimal
summary tree. In fact, [4] gives a 7-node tree T for which the uniquely optimal
4-node summary tree has an otherv node which is not a prefix of v’s children
(see Figure 4). In their example, the greedy algorithm achieves approximately
1 bit of entropy, but the optimal summary tree achieves approximately 1.5 bits
(and 1.5/1.0 is the worst ratio between greedy and optimum of which we are
aware). This example proves that restricting otherv to be a prefix of the list
of v’s children can lead to summary trees of suboptimal entropy. Consequently,
[4] resorted to a pseudo-polynomial-time dynamic program in order to find the
optimal other sets.

The definition of summary trees allows otherv to represent an arbitrary
nonempty subset of v’s children (and all their descendants). However, in this
paper we prove the surprising fact that, without loss of generality, in every sum-
mary tree of maximum entropy, otherv can be assumed to have a special form,
a simple extension of the “prefix” form used in the greedy algorithm from [4].
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Fig. 4. A 7-node tree on which the greedy algorithm does particularly badly. Imagine
that the weight of node v6 slightly exceeds 2, so that the unique sorted order of the
root’s children into nondecreasing order by size is 〈v1, v2, v3〉. The unique 4-node maxi-
mum entropy summary tree has otherv0 = {v1, v3}, which is not a prefix of 〈v1, v2, v3〉;
this summary tree has entropy 1.5. By contrast, greedy gets otherv0 = {v1, v2}, in a
summary tree of entropy 1.

Definition 2. The near-prefixes of 〈v1, v2, . . . , vdv 〉 are the sequences
〈v1, v2, . . . , vi; vj〉 and the sets {v1, v2, . . . , vi; vj} where i ≥ 0, j ≥ i + 2,
and j ≤ dv. vj is called the non-prefix element. This terminology is also applied
to the sequence 〈Tv1 , Tv2 , . . . , Tvdv 〉 of trees rooted at v1, v2, . . . , vdv , respectively.

We prove the following structural theorem:

Theorem 1. For each k, 1 ≤ k ≤ n, there is a maximum entropy k-node sum-
mary tree S in which, for every node v, otherv, when present, is either a prefix
or a near-prefix of 〈Tv1 , Tv2 , . . . , Tvdv 〉.

Proof. For any summary tree R of an n-node tree T , let M = 2n+ 1 and define
Φ(R) =

∑
v:otherv existsM

n−dR(v)
∑
j:vj∈otherv j, where dR(v) denotes the depth

in R of the node otherv. Among all maximum entropy summary trees for T , let S
be one for which Φ(S) is minimum. (The role of Φ will be to enable tie-breaking
among equal-weight summary trees.)

Lemma 1. Let v be a node of T such that otherv exists in S. If vi /∈ otherv and
vj ∈ otherv, where i < j, then Tvi is represented by two or more nodes in S.

Proof. Suppose, for a contradiction, that Tvi is represented by a single node.
Consider the following alternate summary tree S′: S′ is obtained from S by
replacing vj in otherv by vi, and by representing Tvj by a single node. The
number of nodes in the summary tree remains k.
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Let s0 denote the sum of the sizes of all the children of v in otherv − {vj}.
(Here “otherv” refers to otherv before the change.) Then W times the increase
in entropy in going from S to S′ is given by

I = (s0 + svi) lg
W

s0 + svi
+ svj lg

W

svj
− (s0 + svj ) lg

W

s0 + svj
− svi lg

W

svi
.

The derivative of this term with respect to svi is lg
svi

s0+svi
≤ 0. As i < j,

svi ≤ svj , and thus I is necessarily nonnegative (for it declines to 0 at svi = svj );
consequently, there is a nonnegative increase in entropy, and hence S′ is also a
maximum entropy summary tree. Furthermore, if d is the depth of otherv in S,
then Φ(S′)−Φ(S) ≤ −(j − i)Mn−d < 0, which contradicts the assumption that
S is a maximum entropy summary tree of minimum Φ(S).

Lemma 2. Let v be a node in T such that otherv exists in S. If vi /∈ otherv
and vi+1 ∈ otherv, then vj /∈ otherv for all j > i+ 1.

Proof. Suppose, for a contradiction, that vj ∈ otherv, for some j > i+ 1.
By Lemma 1, Tvi is represented by two or more nodes in S. Hence {vi}

appears as a node in the summary tree, and {vi} has one or more children in S.
In S, let x be a descendant of {vi} of maximum depth in S. Node x is a proper
descendant of {vi}.

We will show now that combining node x with another node in a specified
way yields a summary tree of Tvi with one fewer node and having entropy at
most svi smaller. Node x is not {vi}. Let y be x’s parent in S. Node y = {u}
for some node u in T (since every nonleaf in a summary tree represents a single
node of T ). There are four cases to analyze, but before turning to them, we state
the following simple lemma which we will need; it can be proven by calculus.

Lemma 3. If a, b ≥ 0, −a lg a− b lg b+ (a+ b) lg(a+ b) ≤ a+ b.

Let sx, for a node x in summary tree S, denote the sum of the weights of all
the nodes of T represented by x. (For a node of the form otherv, we mean the
sum of the sizes of all the children of v in otherv, or equivalently, the sum of the
weights of all their descendants.)

Now we begin the case analysis. Let d be the depth in S of node {vi}.

1. y’s only child in S is x.
We combine nodes x and y = {u} into a node z representing Tu. Recall that
wu denotes u’s weight. Then W times the entropy decrease equals

sx lg(W/sx) + wu lg(W/wu)− (sx + wu) lg(W/(sx + wu))

= − sx lg sx − wu lgwu + (sx + wu) lg(sx + wu)

≤ sx + wu (by Lemma 3) = sz ≤ svi .

This change leaves Φ unchanged.
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2. x has a sibling in S and otheru does not exist.
Hence x is either {α} or Tα for some node α ∈ T .
We create a new otheru node by combining x with an arbitrary sibling x′ of
x. Because x is of maximum depth in S, x′ is either of the form {β} (node β
in T has no children) or Tβ , for some β in T . The resulting entropy decrease
equals

sx lg(W/sx) + sx′ lg(W/sx′)− (sx + sx′) lg(W/(sx + sx′))

= − sx lg sx − sx′ lg sx′ + (sx + sx′) lg(sx + sx′)

≤ sx + sx′ (by Lemma 3) ≤ svi .

This change can increase Φ by at most 2n ·Mn−(d+1), because the depth of
the new otheru node is at least d+ 1.

3. x has a sibling in S and {x} = otheru.
We choose an arbitrary sibling x′ of x and add it to otheru. The entropy
calculation is the same as for Case 2. This change can increase Φ by at most
n ·Mn−(d+1), where d is the depth of {vi} in S.

4. x has a sibling in S, otheru exists, and and {x} 6= otheru.
We add x to otheru. Let x′ be the node otheru. The calculations are exactly
the same as in Case 3.

In all four cases, the decrease in entropy is at most svi and the increase in Φ
is at most 2nMn−d−1.

Now we show how to generate a new maximum entropy summary tree S′. To
get S′, combine x as above with either its parent or a sibling, thereby decreasing
the number of summary tree nodes by one, and then split off vi+1 from otherv
and create a node to represent Tvi+1 , thereby increasing the number of summary
tree nodes back to k. Now, let s0 denote the sum of the sizes of all the children
of v in otherv − {vi+1, vj}. W times the increase in entropy from this two-part
change to S is at least[

(s0 + svj ) lg
1

s0 + svj
+ svi+1 lg

1

svi+1

− (s0 + svi+1 + svj ) lg
1

s0 + svi+1 + svj

]
− svi

= (s0 + svj ) lg
s0 + svi+1

+ svj
s0 + svj

+ svi+1
lg
s0 + svi+1

+ svj
svi+1

− svi ≥ svi+1
− svi ≥ 0.

(The first inequality follows because svj ≥ svi+1 , which implies that (s0 +svi+1 +
svj )/svi+1

≥ 2.) But this is a nonnegative increase in entropy, proving that S′ is
a maximum entropy summary tree.

Splitting off vi+1 from otherv decreases Φ by at least Mn−d, because the
depth of the otherv node equals the depth of node vi, which is d. Hence the total
∆Φ is at most −Mn−d+2n ·Mn−d−1 = −Mn−d(1−2n/M) < 0, a contradiction
to the fact that S is a maximum entropy summary tree of minimum Φ.

This completes the proof of Theorem 1.

Theorem 2. For all v, if otherv exists, then |otherv| ≥ dv −K + 2.
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Proof. Each child of v not in otherv contributes at least one node to the final
summary tree, which has order k ≤ K, and hence the number of children not in
otherv cannot exceed K − 2 (for one node is needed to represent {v}).

4 The Exact Algorithm

Relabel the nodes as 1, 2, ..., n, with the root being node 1, the nodes at depth
d getting consecutive labels, and the children of a node being labeled with in-
creasing consecutive labels in nondecreasing size order. (This can be done by
processing the nodes in nondecreasing order by depth, with all the children of
node v processed consecutively in nondecreasing order by size.) This relabeling
costs O(n log n) time,3 because

∑
v(dv log dv) ≤

∑
v(dv log n) ≤ n log n.

The description and the implementation of the algorithm are simplified if we
compute what we call the“pseudo-entropy,” of summary trees for Tv rather than
their entropy. The pseudo-entropy p-ent(Sv) of a tree Sv with nodes of weights
W1,W2, . . . ,Wk is simply −

∑
pi log pi, where pi = Wi/W and W is the weight

of T (and not of Tv). Clearly, if Sv is part of a summary tree S for T , then Sv
contributes −

∑
pi log pi to the entropy of S. Let ent(Sv) denote the entropy of

tree Sv. Then

ent(Sv) = −
∑
i

Wi

Wv
log

Wi

Wv
= −

[
W

Wv

∑
i

Wi

W
log

Wi

W
+
∑
i

WiW log
W

Wv

]

= − W

Wv
p-ent(Sv)− log

W

Wv
.

Thus the same tree optimizes the entropy and the pseudo-entropy.
We will be using a dynamic programming algorithm. To simplify the presen-

tation we will only describe how to compute the maximum pseudo-entropy for a
k-node summary tree for Tv, for each node v and for all k, 1 ≤ k ≤ min{K,nv}.

The algorithm will first seek to find the value of the pseudo-entropy for
optimal k-node summary trees when otherv is restricted to being a prefix set, and
then when otherv is restricted to being a near-prefix set containing vj as its non-
prefix element, for each possible vj in turn, i.e., for max{3, dv−K+3} ≤ j ≤ dv.
Thus the algorithm will consider min{dv − 1,K − 1} min{dv,K − 1} classes of
candidate otherv sets.

To describe the algorithm it will be helpful to introduce the notion of a
summary forest. A k-node summary forest for Tv is a (k+1)-node summary tree
for Tv from which v has been excised (leaving a forest). We will also call this a
summary forest for Tv1 , Tv2 , . . . , Tvdv . A summary forest for Tv1 , Tv2 , . . . , Tvl is
defined analogously, for 1 ≤ l ≤ dv.
3 In fact, the relative order, at node v, of its dv −K + 1 smallest-sized children does

not matter since they must all be included in otherv. This allows us to perform
just a partial sort at each node, in which the dv −K + 1 smallest-size children are
identified by selection and then the remaining at most K − 1 children are sorted.
This improves the O(n logn) term to O(n logK) which is dominated by O(nK).



Maximum Entropy Summary Trees 11

To find the pseudo-entropy-optimal k-node summary trees for Tv, for 1 ≤
k ≤ K, we first find the pseudo-entropy of optimal k-node summary forests for
Tv1 , Tv2 , . . . , Tvl , for max{1, dv−K+2} ≤ l ≤ dv. The optimal k-node summary
trees for Tv are then obtained by attaching {v} as a root node to the trees in
the optimal (k − 1)-node summary forests for Tv1 , Tv2 , . . . , Tvdv .

Now we explain how to find these optimal summary forests. In turn, we
consider each of the up-to-max{1,K − 1} possible classes of otherv nodes: the
prefix otherv nodes, and for each j with max{3, dv −K + 3} ≤ j ≤ dv, the class
of near-prefix otherv nodes including vj as the non-prefix element.

First, we describe the handling of the candidate prefix otherv nodes. We
start with optimal k-node summary trees for Tv1 , for 1 ≤ k ≤ K−1. Inductively,
suppose that we have computed (the entropy of) optimal k-node summary forests
for Tv1 , . . . , Tvl . We find optimal k-node summary forests for Tv1 , . . . , Tvl , Tvl+1

as follows. For k = 1, the forest comprises a single otherv node. For each k > 1,
we choose the highest entropy among the following options: an optimal h-node
summary forest for Tv1 , . . . , Tvl plus an optimal (k − h)-node summary tree for
Tvl+1

, for 1 ≤ h < k.
The correctness of this procedure is immediate: for k = 1 clearly the only

summary forest is a one-node forest. For k > 1, Tvl+1
cannot be represented by

the otherv node (since we are discussing the handling of the prefix otherv nodes)
and so it must be represented by one tree in the summary forest; this implies that
Tv1 , Tv2 , . . . , Tvl must also be represented by one or more trees in the summary
forest. Of course, the representation of each of the parts must be optimal. Our
algorithm considers all possible ways of partitioning the nodes in the summary
forest among these two parts; consequently it finds an optimal forest.

The process when vj is the non-prefix node in otherv is essentially identical.
There are two changes: (i) otherv is initialized to contain Tvj (rather than being
the empty set) and (ii) the incremental sweep skips tree Tvj . The correctness
argument is as in the previous paragraph.

Finally, to obtain optimal k-node summary forests for Tv1 , Tv2 , . . . , Tvdv one
simply takes the best among the k-node forests computed for the different classes
of candidate otherv nodes. Again, correctness is immediate.

Theorem 3. The running time of the algorithm is O(K2n+ n log n).

Note. Our time bound is O(K2n+n log n) to build K maximum-entropy sum-
mary trees, or O(Kn+(n log n)/K) amortized time for each. There is an obvious
lower bound of Ω(n+K2) to build all K trees, since one has to read an n-node
tree and produce trees having 1, 2, 3, . . . ,K nodes. Hence there cannot be a
O(n)-time algorithm that generates all K trees, since it would violate the lower
bound when K is ω(

√
n). Of course, conceivably there is a linear-time algorithm

to build a maximum-entropy k-node summary tree for a single value of k.

Proof. The running time is the sum of three terms:
(1) O(n log n), for sorting the children of all nodes by size.
(2) O(Kn) for initializations. In fact, the initializations for node v take time
O(K ·min{dv,K − 1}), which is O(Kn) time in total.
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(3) For each node v, the cost of processing node vl when processing each of
the classes of candidate otherv nodes. Let 〈va, va+1, . . . , vvd〉 be the sequence
of nodes processed when considering the candidate prefix otherv sets (nodes
v1, . . . , va−1 are the nodes guaranteed to be in otherv). When processing the
near-prefix candidate otherv sets with non-prefix element vj , the same sequence
will be processed except that vj will be omitted. For the class of prefix candidate
sets, the cost for processing vl+1, for a ≤ l < vd, is min{K − 1, nva + nva+1

+
· · · + nvl} · min{K − 1, nvl+1

} ≤ min{K − 1, nv1 + nv2 + · · · + nvl} · min{K −
1, nvl+1

}, for we are seeking k-node summary forests for 1 ≤ k ≤ K − 1, and
the number of nodes in a summary tree cannot be more than the number of
nodes available in the relevant subtrees of T . The same bound applies for each
of the remaining classes of candidate otherv sets and there are at most K − 1 of
these classes. Since the number of child nodes being processed when computing
at node v is dv − a + 1 ≤ dv, the obvious upper bound here is O(K3 · dv).
Summed over all v, this totals O(K3 ·n). However, Corollary 1 below shows that∑

non-leaf v

∑
l min{nv1 + nv2 + · · · + nvl ,K} ·min{nvl+1

,K} ≤ 2Kn, giving an
overall time of O(n log n+K2n).

5 A Lemma For Running Time Analysis

In this section we state a lemma underlying the running time analysis of both
the greedy algorithm and the exact algorithm. Let n be a positive integer and
let T be a rooted, n-node tree, and for this section only, let v1, v2, ..., vdv be v’s
children in any order.

Definition 3. Relative to T , let cost(v) be defined for all v ∈ T as follows.

If v is a leaf, cost(v) = 0. If v is not a leaf, cost(v) = [
∑dv
i=1 cost(vi)] +

[
∑dv−1
i=1 min{nv1 + nv2 + · · ·+ nvi ,K} ·min{nvi+1

,K}].

Lemma 4. For all v, cost(v) ≤ n2v if nv ≤ K, and cost(v) ≤ 2Knv − K2, if
nv > K.

Proof. We prove the lemma by induction on the height of v (i.e., the maximum
length of a path from v down to a leaf).
Basis. If v has height 0, i.e., v is a leaf, then cost(v) = 0, whereas nv = 1 ≤ K
and indeed cost(v) = 0 ≤ 1 = n2v.
Inductive step. Let h ≥ 0 and assume that the statement is true for all nodes of
height at most h.

To simplify the notation, we will use ni to denote nvi and d to denote dv
from now on.

Let v be a node of height h + 1; then v’s children have height at most h.
Therefore, by induction, if v’s children are v1, v2, ..., vd, then cost(vi) ≤ n2i if
ni ≤ K, and cost(vi) ≤ 2Kni −K2, if ni > K.

Let Costj =
∑

1≤i≤jcostvi +[
∑j−1
i=1 min{n1+n2+ · · ·+ni,K}·min{ni+1,K}].

We will show by induction on j that if
∑

1≤i≤j ni ≤ K, then Costj ≤
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(
∑

1≤i≤j ni)
2, and otherwise Costj ≤ [2K ·

∑
1≤i≤j ni] − K2, from which the

result in the lemma is immediate.

Let tj =
∑j
i=1 ni and let uj = nj+1. There are five cases to consider.

i. tj + uj ≤ K. Then

Costj ≤ t2j + u2j + tjuj ≤ (tj + uj)
2 = (

j+1∑
i=1

ni)
2.

ii. tj > K and uj ≤ K. Then

Costj ≤ (2Ktj −K2) + u2j +Kuj ≤ 2Ktj −K2 + 2Kuj

≤ 2K(tj + uj)−K2 = [2K

j+1∑
i=1

ni]−K2.

iii. tj ≤ K and uj > K.
This has essentially the same analysis as Case ii.

iv. tj > K and uj > K. Then

Costj ≤ (2Ktj −K2) + (2Kuj −K2) +K2

≤ 2K(tj + uj)−K2 = [2K

j+1∑
i=1

ni]−K2.

v. tj ≤ K, tj + uj > K, and uj ≤ K.
Let ∆ = tj + uj −K. Then

Costj ≤ t2j + u2j + tjuj = t2j + (K +∆− tj)2 + tj(K +∆− tj)
≤ t2j −Ktj −∆tj +K2 +∆2 + 2K∆

= 2(∆+K)K −K2 +∆2 −∆tj + t2j −Ktj

≤ 2(∆+K)K −K2 ≤ 2K

j+1∑
i=1

ni −K2.

The next-to-last inequality follows because ∆ ≤ tj and tj ≤ K.

Corollary 1. For K ≥ 1,
∑

non-leaf v[
∑dv−1
i=1 min{nv1 + nv2 + · · · + nvi ,K} ·

min{nvi+1 ,K}] ≤ 2Kn.

Proof. Summing over all non-leaf nodes in Definition 3 yields that the term we
are bounding equals cost(r), where r is the root of the tree; the result now follows
from Lemma 4.
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6 Greedy Algorithm

The greedy algorithm proposed in [4] is precisely the algorithm proposed herein
for the exact solution but with the other sets restricted to being prefix sets.
In [4] Greedy was shown to run in time O(K2n+ n log n). Here, we shave off a
factor of K from the first term.

Corollary 2. (of Lemma 4). The time needed by the greedy algorithm to gener-
ate summary trees of orders k = 1, 2, . . . ,K is O(Kn+ n log n).

Proof. Aside from initializations (which take time O(Kn)) and sorting (which
takes time O(n log n)), the time needed by the greedy algorithm is O of

∑
v

[

dv−1∑
i=1

min{nv1 + nv2 + · · ·+ nvi ,K} ·min{nvi+1 ,K}],

which by Corollary 1 is at most 2Kn, giving an overall bound of O(Kn+n log n).

Again, one can reduce the O(n log n) term to O(n logK), giving an over-
all run time of O(nK). Here we rely on the fact that the greedy algorithm
will necessarily put v1, v2, ..., vdv−K into otherv. To save time, we can mod-
ify Greedy so as to put those nodes into otherv and only individually pro-
cess children vdv−K+1, vdv−K+2, ..., vdv . We can find the dv − K children of
v of least size via a selection (not sorting) algorithm and then sort only the
remaining K children. This makes the total sorting time over all nodes v O
of
∑
v min{dv,K} log(min{dv,K}) ≤

∑
v min{dv,K} logK ≤ (logK)

∑
v dv =

n logK.

7 Improved Approximation Algorithm

In this section we describe an algorithm that computes an approximately
entropy-optimal k-node summary tree. Our algorithm relies on the following
outline from [4]:

1. One can rescale the weights in a tree to make them sum up to any positive
integral value W0, while leaving the entropy of any summary tree unchanged.
(This is obvious.)

2. One can use algorithmic discrepancy theory to round each resulting real node
weight wv to value w′v equal to either bwvc or 1 + bwvc such that for each
node v ∈ T , |

∑
u∈Tv

w′u −
∑
u∈Tv

wu| ≤ 1 for all v simultaneously, without
changing the overall sum.

3. Using Naudts’s theorem [8] that almost identical probability distributions
have almost identical entropy, one can prove, for some integer W0 which
is O((K/ε) log(K/ε)), that if one finds a maximum entropy summary tree
T ∗ for the modified weights (w′v), then T ∗ has entropy (measured according
to the original weights wv) at most ε less than that of the truly maximum
entropy summary tree.
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Suppose that the weights on T are integral and sum to W0. Clearly the
number of nodes of positive weight cannot exceed W0; however, the 0-weight
nodes could far outnumber the positive-weight nodes. Indeed, that is exactly
what happens if n�W0.

Our algorithm exploits the fact that little processing is needed for most of
the 0-weight nodes. In fact, we will need to compute summary trees for only the
non-zero weight nodes and for at most 2(W0 − 1) 0-weight nodes.

The algorithm works with a tree T ′, a reduced version of T in which some 0-
weight nodes have been removed. The following notation will be helpful. FT (v, k)
denotes the maximum pseudo-entropy of a k-node summary tree of Tv, where Tv
is a subtree of tree T ; similarly, FT ′(v, k) denotes the maximum pseudo-entropy
of a k-node summary tree of T ′v, where T ′v is a subtree of tree T ′.

T ′ is obtained from T as follows: for each positively-sized node v in T , if v
has one or more size-0 children, remove them and their descendants and replace
them all by a single 0-weight child. Clearly optimal summary trees in T ′ form
optimal summary trees in T (for the only difference in summarizing T is that we
could add 0-weight nodes no longer present in T ′, and these would contribute 0
to the entropy). Note that if v is a 0-weight non-leaf node in T ′ then it must have
non-zero size (assuming T has at least one positive-weight node). The following
result is immediate.

Lemma 5. Let T have n nodes and T ′ have n′ nodes. Let v be a node in T ′ with
n(v) descendants in T and n′(v) descendants in T ′. Then FT (v, k) = FT ′(v, k)
for 1 ≤ k ≤ n′(v). For n′(v) + 1 ≤ k ≤ n, FT (v, k) = FT ′(v, n′(v)).

Note that FT ′(v, n′(v)) is attained by a partition of the set of v’s children in T ′

into singletons.

(Now of course we have changed the problem, since T ′ might have fewer than
K nodes. However, if this happens, then optimal summary trees of T having more
than |T ′| nodes have no more entropy than optimal summary trees of T having
exactly |T ′| nodes.)

Even after the reduction it may be the case that |T ′| �W0, for T ′ might still
contain long paths of 0-weight nodes in which each node has only one positively-
sized child. However, the following lemmas show that they add little to the cost
of computing optimal summary trees.

Lemma 6. Let v be a 0-weight node in T ′ with a single child u. Then for 2 ≤
k ≤ |T ′v|, FT ′(v, k + 1) = FT ′(u, k); also FT ′(v, 1) = FT ′(u, 1).

Proof. For k ≥ 2, the (k+ 1)-node summary tree for T ′v adds a zero-weight node
{v} to the k-node summary tree for T ′u. For k = 1 both trees have a single node
of weight wu.

Lemma 7. Let v be a 0-weight node in T ′ with exactly two children, a 0-weight
leaf v1 and a child u of positive size. Then for 3 ≤ k ≤ |T ′v|, FT ′(v, k + 2) =
FT ′(u, k); also FT ′(v, 2) = FT ′(v, 1) = FT ′(u, 1).
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The proof of this lemma is essentially the same as that of Lemma 6. The following
corollary is immediate.

Corollary 3. Let v1, v2, . . . , vl, for l > 1, be a descending path of 0-weight nodes
in T ′ such that each vi, 1 ≤ i ≤ l either has one child, or has exactly two children
one of which is a 0-weight leaf. Further suppose that l′ of these nodes are in the
second category. Node vl must have a child of positive size (as otherwise v1 6= vl
would be a size-0 non-leaf). Let u be the child of vl of positive size. Then for
1 ≤ k ≤ |T ′v1 | − (l + l′), FT ′(v1, k + l + l′) = FT ′(u, k); and for j ≤ l + l′,
FT ′(v1, j) = FT ′(u, 1).

This corollary implies that given the entropies of optimal entropy summary
trees at a node u at the bottom of a maximal path of 0-weight nodes, one can
obtain the entropies of the optimal entropy summary trees at node v1 at the top
of the path in time O(K).

At the remaining nodes in T ′ we perform the same computation as in the
exact algorithm. As we can show, there are O(W0) such nodes, which leads to
the following running time bound.

Theorem 4. The approximation algorithm to obtain a summary tree that has
entropy within an additive ε of that of the optimal summary tree runs in time
O(n+W0 ·K3), where W0 = O((K/ε) log(K/ε)).

Proof. We begin by bounding the numbers of nodes of various types. Clearly,
there are at most W0 non-zero weight nodes. Thus there are at most (W0 − 1)
0-weight nodes with two or more non-zero weight subtrees. All other 0-weight
nodes are either leaf nodes or lie on maximal paths of 0-weight nodes with one
non-zero weight subtree. Further, there can be at most W0 − 1 such maximal
paths.

The naive bound on the cost of the computation at a node v in the exact
algorithm is O(K3 · dv) (see the proof of Theorem 3), and this applies to the
non-zero weight nodes and the 0-weight nodes with two or more non-zero weight
subtrees, giving a cost of O(K3 ·W0) in total.

The cost of processing the maximal paths of 0 weight is O(W0 ·K).
Finally, recall that we need to sort the children in non-decreasing order by size

for each parent node with non-zero weight or with two or more non-zero weight
subtrees. We implement this by means of a radix sort on the pairs (parent,Wi),
over these parent nodes (recall that Wi is the size of the ith child). There are
O(W0) such pairs, with indices in the ranges n and W0 respectively, yielding a
running time of O(n+W0) for the radix sort.

In contrast to the O(nK2 + n log n) bound for the exact algorithm, here
the sophisticated analysis of Lemma 4 cannot be applied. The reason is that
Lemma 4 assumes that a tree of r nodes yields at most r optimal summary trees
each having a distinct entropy (so if the k-node and (k + 1)-node optimal trees
have the same entropy only one of them is counted). However, the same claim
fails to hold for trees having r positive-weight nodes (and a total number of nodes
potentially vastly exceeding r), as would be needed in order to apply Lemma 4
here.
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