
New Linear-Time Algorithms

for Edge-Coloring Planar Graphs

Richard Cole
∗

 Lukasz Kowalik
†

Abstract

We show efficient algorithms for edge-coloring planar graphs. Our
main result is a linear-time algorithm for coloring planar graphs with
maximum degree ∆ with max{∆, 9} colors. Thus the coloring is opti-
mal for graphs with maximum degree ∆ ≥ 9. Moreover for ∆ = 4, 5, 6
we give linear-time algorithms that use ∆ + 2 colors. These results
improve over the algorithms of Chrobak and Yung [1] and of Chrobak
and Nishizeki [2] which color planar graphs using max{∆, 19} colors
in linear time or using max{∆, 9} colors in O(n log n) time.

Keywords. Edge-coloring, linear-time, algorithm, planar graph

1 Introduction

In the problem of edge-coloring the input is an undirected graph and the task
is to assign colors to the edges so that edges with a common endpoint have
different colors. This is one of the most natural graph coloring problems
and arises in a variety of scheduling applications. Throughout the paper
∆(G) will denote the maximum degree in graph G; we write ∆ for short
when there is no ambiguity. Trivially at least ∆ colors are needed to color
the edges of any graph. Vizing [3] proved that ∆ + 1 colors always suffice.
Unfortunately it is NP-complete even for cubic graphs to decide whether a

∗Computer Science Department, New York University, 251 Mercer Street, New York,

NY 10012, USA. cole@cs.nyu.edu. Supported in part by NSF grants CCR0105678 and

CCF0515127.
†Institute of Informatics, Warsaw University, Banacha 2, 02-097, Warsaw, Poland and

Max-Planck-Institute für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Ger-

many. E-mail: kowalik@mimuw.edu.pl, phone: +49 681 9325 118, fax: +49 681 9325 199.

Supported in part by KBN grant 4T11C04425.

1

given graph is ∆- or (∆ + 1)-colorable. We say that a graph is in Class 1 if
it is ∆-colorable, and otherwise we say it is in Class 2.

Background Vizing’s proof yields an O(mn) time algorithm for (∆ +
1)-edge-coloring a graph with n vertices and m edges. It has been im-
proved by Gabow et al. [4] to O(∆m log n) and O(m(n log n)1/2). How-
ever, it seems natural to look for more efficient or simpler algorithms for
particular classes of graphs. For example, for the case of bipartite graphs
there is an O(m log ∆) algorithm due to Cole et al. [5] and a very simple
O(m log m) algorithm due to Alon [6] (both algorithms use ∆ colors). There
is also a linear-time algorithm for 4-coloring cubic graphs due to Skulrat-
tanakulchai [7].

Planar Graphs In this paper we investigate edge coloring of planar graphs.
This problem is well studied. Vizing [8] showed that planar graphs with
∆ ≥ 8 are in Class 1. He also noted that there are Class 2 planar graphs for
∆ ∈ {2, 3, 4, 5}. Recently Sanders and Zhao [9] showed that planar graphs
with ∆ = 7 are ∆-colorable. The ∆ = 6 case remains open. There are
more cases to report when one considers algorithmic efficiency. The case
∆ ≤ 2 is trivial. In 1878 Tait [10] showed that a cubic planar graph with
no bridges is 3-edge-colorable if and only if it is 4-face colorable. It follows
that optimally coloring graphs of maximum degree 3 is as hard as 4-coloring
planar graphs for which the best algorithm known, due to Robertson et

al. [11], takes O(n2) time. For ∆ ∈ {4, 5} Chrobak and Nishizeki [2] state
that it has been conjectured that the problem of ∆-coloring is NP-hard.
For ∆ ≥ 7 we can color graphs with ∆ colors. When ∆ = 7 we believe as
does Sanders [12] that the proof of Sanders and Zhao could be turned into a
polynomial time algorithm. When ∆ ≥ 8 one can use the O(n2) algorithm
of Gabow et al. [4]. For any ∆ ≥ 9 the complexity decreases to O(n log n)
due to Chrobak and Nishizeki [2]. Finally for ∆ ≥ 19 Chrobak and Yung [1]
gave an O(n) algorithm. There is also an O(n) algorithm for ∆ ≥ 33 by
He [13].

Our results Our main result is a linear-time algorithm for coloring planar
graphs with maximum degree ∆ with max{∆, 9} colors. Thus the coloring is
optimal for graphs with maximum degree ∆ ≥ 9. Moreover for ∆ = 4, 5, 6 we
show linear-time algorithms that use ∆+2 colors. Our results are presented
in Table 1.

Our Approach Our approach combines two ideas. The first is the no-
tion of reductions, which allow a suitable edge to be removed from a given
planar graph, where the edge is chosen so that it can be colored in O(1)

2

∆ number of colors time paper

2 optimal O(n) easy

3 optimal O(n2) Robertson et al. [11]

3 ∆ + 1 O(n) Skulrattanakulchai [7]

4, 5, 6, 7 ∆ + 1 O(n log n) Gabow et al. [4]

4, 5, 6, 7 ∆ + 2 O(n) This work

7 ∆ polynomial Sanders and Zhao [9]

8 ∆ O(n2) Gabow et al. [4]

8 ∆ + 1 O(n) This work

≥ 9 ∆ O(n) This work

≥ 19 ∆ O(n) Chrobak and Yung [1]

Table 1: Currently most efficient algorithms for edge-coloring planar graphs.

time following a recursive coloring of the reduced graph, possibly with some
recoloring of the rest of the graph. The reductions are identified by means
of a collection of configurations, constant size subgraphs, one of which is
always present in a planar graph. The challenge is to identify configurations
and to provide the corresponding constant time recoloring procedures. We
illustrate this technique in Section 2, which gives a simple algorithm to color
planar graphs using max{∆, 12} colors.

The second issue is to show that the collection of configurations suffices.
This is done by means of discharging arguments. A charge is distributed to
the faces and vertices of the graph, with negative total value. The charge
is then redistributed in such a way that if none of the configurations are
present, every face and vertex would have a nonnegative charge, a contra-
diction. The challenge is to find a suitable collection of configurations and
the corresponding discharging argument. This technique is needed for all
but the Section 2 algorithm.

The discharging technique as well as the idea of coloring planar graphs
by providing a set of reducible configurations were originally developed to
prove the Four-Color Theorem. While applying this approach for finding an
efficient edge-coloring algorithm seems to be natural, the devising of suitable
collections of configurations, the coloring procedures, and the discharging
arguments is non-trivial.

Terminology We assume the reader is familiar with standard terminology
and notation concerning graph theory and planar graphs in particular. Let
us recall here some notions that are not so widely used. Let f be a face of a

3

connected plane graph. A facial walk w corresponding to f is the shortest
closed walk induced by all edges incident on f . Let |w| denote the length of
walk w and let |f | denote the length of face f ; we note that |f | = |w|. A k-
path (k-cycle, k-face) refers to a path (cycle, face) of length k. Analogously,
d-vertex refers to a vertex of degree d, and D-graph to a graph of maximum
degree D. Let G be a graph and let S ⊆ E(G) be a set of edges. Then G−S
denotes the graph (V (G), E(G) − S).

Consider a partial coloring of edges of graph G = (V,E). We say that
color a is free at vertex x when there is no edge colored a incident on x.
We say that color a is free at edge uv when it is free at both u and v. We
say that color a is used by vertex x (resp. edge uv) when it is not free at x
(resp. uv).

2 A Simple Algorithm

In this section we present our approach via a simple algorithm which colors
planar graphs using max{∆, 12} colors. Let the weight of edge e = uv,
denoted by w(e), be the sum of the degrees of its ends, i.e. w(e) = degG(u)+
degG(v). We are inspired by the following result due to Borodin.

Theorem 2.1 (Borodin [14]). Any simple planar graph with vertices of

degree at least 3 contains an edge of weight at most 13.

We need a slightly generalized version of the above theorem.

Theorem 2.2. Let G be a simple planar graph with maximum degree ∆
such that G contains no vertices of degree 0 or 1, each vertex of degree 2 is

adjacent to two vertices of degree ∆, and each vertex of degree ∆ is adjacent

to at most one degree 2 vertex. Then G contains an edge of weight at most

13.

Proof. We can assume that G contains at least one degree 2 vertex for
otherwise we just apply Theorem 2.1. Further we can assume that ∆ ≥ 12
for otherwise any edge incident on a 2-vertex has weight at most 13. Now
consider graph G′ obtained from G by replacing each path uxv such that
deg(x) = 2 by an edge joining u and v. Additionally, we replace double
edges by single ones. Clearly G′ is a simple planar graph with vertices of
degree at least 3; further a vertex of degree d in G, 3 ≤ d ≤ ∆ − 1, has
degree d in G′, while vertices of degree ∆ in G may have degree ∆− 1 or ∆
in G′. By Theorem 2.1 G′ contains an edge of weight at most 13. Consider
any such edge e. Then each of e’s endpoints has degree at most 10 ≤ ∆− 2

4

in G′ (as each endpoint has degree at least 3) and so each of e’s endpoints
has the same degree in G, i.e. e has weight at most 13 in G.

Clearly, edges of bounded weight are very useful in edge-coloring algo-
rithms. Assume we want to color a graph using D colors (this notation
will be used throughout the paper). When our algorithm finds an edge e of
weight at most D+1 this edge is removed and the resulting graph is colored
recursively. Since there are at most D − 1 edges incident on e, these edges
do not use all the colors and e can be colored with one of the remaining
colors.

In the coloring algorithm we describe in this section we will use the
following three types of edges of weight at most D + 1 (recall that D =
max{∆, 12}), which will be called reducible:

• edges of weight 13,

• edges incident on a 1-vertex, and

• edges incident on a 2-vertex and a vertex of degree at most ∆ − 1.

By Theorem 2.2 to complete our algorithm we need to describe what to
do when there are no reducible edges in the graph. Then, by Theorem 2.2,
G contains a ∆-vertex v with two adjacent 2-vertices. Let us denote these
2-vertices by x and y. Let u and w be the other neighbors of x and y.
Obviously, deg(u) = deg(w) = ∆, for otherwise there is a reducible edge.
There are two cases to consider: u = w and u 6= w. In the first situation
uxvy is a cycle of length 4 with vertex degrees ∆, 2,∆, 2, respectively, which
we name configuration (A). In the second case uxvyw is a 4-path with vertex
degrees ∆, 2,∆, 2,∆, respectively; we name this configuration (B).

Our algorithm handles configuration (A) as follows. It first removes edge
xv and colors the remaining graph recursively. Let a denote the color of ux.
If a is the color free at v the algorithm swaps the colors of ux and uy and
colors xv with a. Otherwise it simply colors xv with the color free at v.

We call the above reasoning a reduction; we say that configuration (A)
is reducible. More formally:

Definition. A configuration F is called D-reducible if, for every planar
graph G which contains F , there is a corresponding configuration F ′ and a
graph G′ containing F ′ such that

(i) |E(F ′)| < |E(F)|,

(ii) G − E(F) is isomorphic to G′ − E(F ′),

5

(iii) there is an algorithm which given any D-edge-coloring of G′ finds a
D-edge-coloring of G as an extension of the coloring of G′ − E(F ′).

As it is usually clear what is the number D of available colors, we will
write that a configuration is reducible, instead of D-reducible. Reducibility
of all configurations in this paper is proved in the following way. We consider
a configuration F in graph G. We remove a suitable edge from F or in some
other way reduce the number of edges in G. Then we color the resulting
graph and show how to extend this coloring to the whole graph G (possibly
recoloring some edges of F). To complete our description of the algorithm
for coloring with max{∆, 12} colors it remains to show the following lemma.

Lemma 2.3. Configuration (B) is reducible.

Proof. Recall that u, x, v, y, w denote the successive vertices of the path in
(B), where degG(x) = degG(y) = 2 and degG(u) = degG(v) = degG(w) = ∆.

Case 1. G contains neither uv nor vw. Then form graph G′ by replacing
the paths uxv and vyw by edges uv, vw respectively. Now color G′. Let a
and b be the colors of uv and vw, respectively. G is colored as follows. Edges
ux and vy are colored using a, and edges xv and yw using b; the remaining
edges of G inherit the colors assigned in G′.

Case 2. G contains edge uv (or analogously, G contains vw). Edge vy is
removed and the remaining graph is colored recursively. Then G is colored
as follows. Let a denote the color of yw. We can assume that a is the free
color at v for otherwise vy is simply colored with the non-a free color.

Case 2.1. ux is not colored with a. vy receives xv’s color and xv is colored
with a.

Case 2.2. ux is colored with a. vy receives uv’s color and the colors of uv
and ux are swapped.

2.1 Implementation and Time Complexity

It remains to describe how to implement our algorithm efficiently.
All currently reducible edges are kept in queue Qe, all current instances

of configuration (A) in queue QA and all current instances of configuration
(B) in queue QB. Our algorithm is recursive and works as follows.

Step 1. (i) Remove a reducible edge from Qe, if any, and remove it from
the graph G.

6

(ii) Otherwise remove an instance of configuration (A) from QA,
if any. Remove the corresponding edge xv from G – see the
discussion of how to handle configuration (A).

(iii) Otherwise remove an instance of configuration (B) from QB

(there must me one).

(a) Check if each of the relevant two pairs of ∆-vertices in the
configuration are adjacent. In Section 2.1.2 we show that
it takes O(n) time over all such adjacency tests.

(b) Depending on the adjacency tests, replace paths uxv and
vyw by edges uv and vw, or remove edge uv or vw – see
the proof of Lemma 2.3.

Step 2. Update Qe, QA and QB to take account of the changes in G. We
explain how this is done in Section 2.1.1.

Step 3. The recursive call.

Step 4. The edges or paths removed in Step 1 are reinserted into the graph,
which takes constant time. The reinserted edges are colored, pos-
sibly along with recoloring some of the O(1) edges in configuration
(A) or (B) if this is the case being handled. How to do this in
constant time is explained in Section 2.1.3.

2.1.1 Finding reducible edges and configurations

Finding reducible edges and configurations (A) and (B) can be done fast
after linear-time preprocessing. To this end each vertex stores its current
degree; also, a queue Qe of reducible edges is kept. This information can
easily be maintained in linear time over the course of the algorithm. Ad-
ditionally, instances of configurations (A) and (B) are stored in two corre-
sponding queues, Q(A) and Q(B), which are initialized in linear time with a
maximal collection of edge-disjoint configurations.

A 2-vertex adjacent to two degree ∆ vertices is called extremal. Observe
that any degree ∆ vertex, which is not a part of configuration (A) or (B),
can be adjacent to at most one extremal 2-vertex. To enable fast update of
queues Q(A) and Q(B) after an edge removal, each degree ∆ vertex which is
not part of a configuration (A) or (B) stores its sole neighboring extremal
2-vertex, if any.

Our algorithm performs two operations which modify the input graph.
The first operation is replacing a 2-path with an edge (which occurs only

7

if ∆ ≥ 12). As the ends of the 2-path have degree ∆ there is no queue to
update. The second operation is removing an edge. Then the degrees of its
ends are reduced and some queues may require updating, as follows.

If one of the degree ∆ vertices in a configuration (A) or (B) instance is
reduced to degree ∆−1 then this is no longer an instance of configuration (A)
or (B). In such situation the configuration is removed from the relevant queue
in constant time (we assume that every edge that is part of a configuration
stores a pointer to the corresponding entry in relevant queue).

Whenever the degree of a vertex is reduced to 1, the edge incident on
this vertex is added to the queue Qe. Each time the degree of a vertex is
reduced to 2, any incident edges containing a vertex of degree ∆ − 1 are
added to the queue Qe. However, when both neighbors have degree ∆ the
2-vertex is extreme and hence either an instance of a configuration is found
(and stored in queue Q(A) or Q(B)) or the degree 2 vertex is stored with
each of its two neighbors. Similarly, whenever the degree of some vertex
is reduced to 11 or less, incident edges which now have weight at most 13
are added to the queue Qe. Each of these updates takes O(1) worst-case
time. There is one more update to describe. Each time the degree of some
∆-vertex is reduced to ∆−1 the algorithm adds to Qe all the incident edges
whose other endpoint has degree 2. Although one such update takes O(∆)
time, altogether they take O(m) time, since there are only O(m/∆) vertices
originally of degree ∆ in G.

2.1.2 Checking Adjacency of ∆-vertices

As we mentioned before, each time a configuration (B) is taken from queue
Q(B) two pairs of ∆-vertices are tested for adjacency. Each test takes O(∆)
time. Fortunately, Lemma 2.4 shows that the algorithm finds only O(n/∆)
instances of configuration (B) and hence all the adjacency tests take only
O(n) time.

Lemma 2.4. Our algorithm finds O(n/∆) instances of configuration (B).

Proof. It suffices to show that during the execution of the algorithm there
are O(n/∆) degree 2 vertices adjacent to two degree ∆ neighbors. Let
n∆ denote the number of degree ∆ vertices in the initial graph G. Since
2|E(G)| =

∑
v deg(v) ≥ ∆n∆ and |E(G)| ≤ 3n we see that n∆ = O(n/∆).

Let I∗ = (V ∗, E∗) be a graph such that V ∗ contains all degree ∆ vertices
of graph G. Two vertices u and v are adjacent in I ∗ if and only if at some
moment of execution of the coloring algorithm they have a common neighbor
of degree 2 in G. Observe that our goal is to show that |E∗| = O(|V ∗|).

8

By the Four-Color Theorem the vertices of every planar graph can be
colored using 4 colors in such a way that the ends of each edge are colored
differently. Let us take an arbitrary 4-vertex-coloring of graph G. Then I ∗

can be partitioned into four edge-disjoint subgraphs: I ∗
1 , I∗2 , I∗3 , I∗4 so that

for each j = 1, 2, 3, 4 graph I∗j contains edge uv when uv ∈ E(I∗) and uv
corresponds to a 2-path uxv in G with x colored j (if the edge corresponds
to multiple 2-paths we choose one of them arbitrarily). Clearly, for each j,
replacing each edge in I∗j by a 2-path yields a subgraph of the initial graph
G (observe that this need not be true for graph I ∗). Thus the graphs I∗j
are planar and each of them has at most 3|V ∗| edges so |E∗| ≤ 12|V ∗| =
O(|V ∗|).

2.1.3 Finding Free Colors

Here we describe how the algorithm finds a free color in constant time. For
each vertex v we maintain a list FreeSub(v) of the colors free at v among
the colors {1, . . . ,min{degG(v) + 1,∆}} – observe that as long as v has an
uncolored incident edge this set always contains at least one color free at
v and when degG(v) < ∆ at least two such colors. It follows that the lists
FreeSub(v) are sufficient for finding free colors when reducing configurations
(A) and (B) or an edge incident on a 1- or 2-vertex. On the other hand, when
the algorithm reduces an edge uv of weight at most 13 it may happen that
lists FreeSub(v) and FreeSub(u) do not store a common color. Fortunately,
in this case the algorithm can simply check the colors of all incident edges
and find an unused color in constant time.

Additionally, each vertex v stores an array Colors[1, . . . ,degG(v)] where
Colors[c] is a pointer to color c in list FreeSub(v). Observe that the initial-
ization of lists FreeSub and arrays Colors in the preprocessing phase takes
O(

∑
v deg(v)) = O(m) = O(n) time. Arrays Colors are used to maintain

lists FreeSub(·). More precisely, assume that the algorithm colors an edge
uv with a certain color c. Then it verifies whether c is not greater than
the degree of u in the initial graph (it proceeds similarly for the other end-
point v). If so, pointer Colors[c] stored with u is used to remove c from
FreeSub(v) in constant time. Analogous changes occur when an edge is
recolored (which can happen when handling configuration (A) or (B)).

Corollary 2.5. Our algorithm colors every planar graph with maximum

degree ∆ using max{∆, 12} colors in linear time.

9

3 General approach

The approach presented in Section 2 is used in all our coloring algorithms.
In order to describe a D-coloring algorithm we need to:

• specify a set of configurations,

• show that the configurations are D-reducible,

• show unavoidability, i.e. that every planar graph contains a configura-
tion.

Since the algorithm from Section 2 is optimal for graphs of degree at least
12, we can assume that the other algorithms are applied only to bounded
degree graphs. Since all the configurations in this paper have bounded size
it is straightforward to find configurations in constant time. To this end we
maintain a queue which stores edge-disjoint configurations. Let d be the
largest of the configuration diameters. Whenever the degree of any vertex v
is changed the algorithm searches for configurations in the subgraph induced
by the vertices at distance at most d from v. Since all vertices in the input
graph have bounded degrees this subgraph has bounded size and the search
takes only constant time. Each new configuration is added to the queue.

In the sequel we show a number of reducibility proofs. It can be eas-
ily verified that each of these proofs can be transformed into an algorithm
which consists of bounded number of operations such as edge deletion, edge
insertion, finding a free color and assigning a color. Each of these operations
can easily be implemented to work in constant time provided that the in-
put graph has bounded degree. Thus for bounded degree input graphs our
configurations are reducible in constant time.

Hence we claim that the algorithms we present in the following sections
work in linear time for bounded degree graphs.

4 Coloring Low Degree Graphs

4.1 6-Coloring Graphs with Maximum Degree ∆ = 4

As before, D denotes the number of available colors; here D = 6. As
before, the basic reducible configuration is an edge of weight at most 7.
Configuration (Ck) denotes a triangle with vertices of degrees at most D −
1, 2 + k,D − k for any k ≥ 1; it is reducible.

Lemma 4.1. Configuration (Ck) is D-reducible for any k ≥ 1 and D−k ≥ 2.

10

Proof. Let us denote the vertices of the triangle by x, y, w so that degG(x) ≤
2 + k, degG(y) ≤ D − k and degG(w) ≤ D − 1. We remove edge xy and
color the remaining graph recursively. Now we show how to color G. Let a
and b be the colors of xw and wy, respectively. Observe that x has at most
k + 1 used colors and y has at least k + 1 free colors. We can assume that
the colors used by x are free at y, for otherwise there is a free color at both
x and y which can be used to color xy. There are two cases to consider. If
one of the colors free at y is also free at w, then we color wy with this free
color and xy with b. Otherwise, every free color at w is not free at y, and
hence free at x; then we color wx with a color free at w and xy with a.

Clearly for D = 6 and ∆ = 4 any triangle is in configuration (C2). In
this case unavoidability is easy to show, as follows.

Theorem 4.2. Any planar graph with maximum degree 4 contains a triangle

or an edge of weight at most 7.

Proof. Let G = (V,E) be a planar graph with maximum degree 4. Assume
that both ends of each edge in G have degree 4. It follows that G is 4-
regular. Then 2|E| =

∑
v deg(v) = 4|V |; thus |E| = 2|V |. Now assume that

G contains no triangles. Let F be the set of faces of graph G. Then 2|E| =∑
g∈F |g| ≥ 4 · |F |. Substituting into Euler’s Formula |V | − |E| + |F | = 2

yields |E|
2 − |E| + |E|

2 ≥ 2, which is a contradiction.

4.2 7-Coloring Graphs with Maximum Degree ∆ = 5

Now, D = 7. By configuration (P) we mean two triangles, xuy and zuy,
sharing a common edge, with deg(u) ≤ 5, deg(x),deg(y),deg(z) ≤ D − 2.

D − 2 5 D − 2

D − 2

x u z

y

c d

e f

Figure 1: Configuration (P). Labels in the left picture denote upper bounds
on degrees.

Lemma 4.3. Configuration (P) is reducible.

Proof. We name the vertices of the configuration as shown in Fig. 1. Assume
that degG(u) = 5 and degG(x) = degG(y) = degG(z) = D−2 (if the degrees
are smaller reducing is easier). We remove edge uy and color the remaining

11

graph recursively. Now we show how to color G. We denote the edge colors
as in Fig. 1. Additionally, let a and b be the colors of the two other edges
incident on u. We can assume that Free(y) ⊆ {a, b, c, d} for otherwise we
simply color uy with a free color. We can also assume that both c and a
are free in y (by symmetry). Next, we assume that Free(x) ⊆ {a, b, d} for
otherwise we can color uy with c and xu with a free color. Hence at least
one of a, b is free at x.

Case 1. e = b. Then Free(y) = {a, c, d} and Free(x) = {a, d}. We color
yz and xu with d, uz with f and uy with c.

Case 2. a ∈ Free(x) and e 6∈ {b, d}. Then color uy with e and xy with a.

Case 3. a ∈ Free(x) and e = d. Then Free(x) = {a, b} and Free(y) =
{a, b, c}. If Free(z) contains a or b or c color yz with this color and yu with
f . Otherwise Free(z) contains color h, h 6∈ {a, b, c}. Then color uz with h,
uy with d and xy with a.

Case 4. Free(x) = {b, d}. Then b or d is free in xy and e 6= d. Color uy
with e and xy with a free color.

Besides configuration (P) we use also reducible edges (i.e. edges of weight
at most D+1) and configuration (C2), described before. The unavoidability
proof is particularly interesting in this case, because it provides a gentle
introduction to the next section, which gives the main result of this paper.

Lemma 4.4. Any planar graph with maximum degree 5 contains an edge

uv of weight at most 8 or one of configurations (C2) or (P) for D = 7.

Proof. We use the discharging technique. Let G be a planar graph with
∆(G) = 5. Each vertex v of G receives a charge of degG(v) − 4 units and
each face q of G receives a charge of |q| − 4 units. Let n,m, f denote the
number of vertices, edges and faces of graph G, respectively, and let V and
F be the sets of vertices and faces of G, respectively. Using Euler’s formula
we can easily bound the total charge on G:

∑

v∈V

(degG(v) − 4) +
∑

q∈F

(|q| − 4) = 2m − 4n + 2m − 4f = −8 < 0.

We assume for a contradiction that G contains no edge of weight ≤ 8
and neither of the configurations (C2), (P). Now we move charges in graph
G so that it will be clear that the total charge in G is nonnegative, which
is a contradiction. Specifically, degree 5 vertices send 1

3 of a unit of charge
to each incident triangle. We can assume that there are no triangles with a

12

vertex of degree 4 for such a triangle would be a (C2). Hence triangles end
up with nonnegative charges. The other faces do not alter their allocated
charge, which was already nonnegative. Clearly there are no vertices of
degree lower than 4 since each such vertex would be an endpoint of an edge
of weight at most 8. Degree 4 vertices do not alter their charge which was
0. Since configuration (P) is excluded, each 5-vertex is incident on only two
triangles so it ends up with at least 1

3 of a unit of charge. It follows that the
total charge is nonnegative – a contradiction.

4.3 8-Coloring Graphs with Maximum Degree ∆ = 6

This case is similar to the preceding one. We use the same configurations
and also (C3). Below we give the unavoidability proof.

Lemma 4.5. Any planar graph with maximum degree 6 contains an edge of

weight at most 9 or one of configurations (C2), (C3) or (P) for D = 8.

Proof. We use discharging again and assign initial charges as before. Then
degree 5 vertices send 1

5 of a unit to each incident triangle. Degree 6 vertices
send 2

5 of a unit to each incident triangle with at least one 5-vertex and 1
3

of a unit to every other incident triangle. We can assume that there are no
triangles with a 4-vertex for such a triangle would be in configuration (C2).
Similarly, using (C3), we note that there are no triangles with two 5-vertices.
The other triangles have degrees sequence 5, 6, 6 or 6, 6, 6 and in both cases
end up with nonnegative charges. Nontriangular faces do not change their
allocated charge, which was nonnegative. Clearly there are no vertices of
degree lower than 4 since each such vertex would be an endpoint of an edge
of weight at most 9. Degree 4 vertices do not change their allocated charge
which was 0. Degree 5 vertices send at most 5 · 1

5 = 1 unit and retain
nonnegative charge.

Finally consider a 6-vertex v. It starts with 2 units of charge. We will
show that it sends at most 2 units. First, suppose that v is incident on a
nontriangular face. It follows that it sends charge to at most 5 triangles.
Hence it sends at most 5 · 2/5 = 2 units as required. Now, suppose that v is
incident on 6 triangles. Then v is not adjacent to a 5-vertex for otherwise
there would be two incident triangles sharing a 5-vertex, i.e. configuration
(P). Hence v is incident only on triangles with no 5-vertex. v gives each
such triangle at most 1/3 of a unit, so v sends at most 6 · 1/3 = 2 units as
required.

It follows that the total charge is nonnegative – a contradiction.

13

5 Coloring With max{∆, 9} Colors

In this section we show the main result of the paper – a linear time algorithm
for coloring planar graphs with D = max{∆, 9} colors. Although it can be
implemented to work in linear time for any planar graph, to simplify the
presentation we use the algorithm from Section 2 for coloring graphs with
maximum degree at least 12; thus we can assume that ∆ ≤ 11 and hence it
suffices to describe a set of reducible configurations and show that any planar
graph contains one of them. Let us note that one can also use the algorithm
of Chrobak and Yung [1] for coloring graphs with maximum degree at least
19 and the algorithm arising from this section for graphs with maximum
degree from 9 to 18.

5.1 Discharging

D

D

2 2

(A)

D D D2 2
(B)

2 + k D − k

D − 1

(Ck)
D − k

3 + k 2 + k

(Dk)

2 + k 3

D − k

(Ek)

3 3

3
(F)

3

2

3
(G)

3

2

3
(H)

Figure 2: Reducible configurations. Labels denote upper bounds on vertices’
degrees. No label denotes any degree. A dashed arrow means that that the
designated pair of vertices may be a single vertex.

A critical path is a path abc such that deg(b) = 2, deg(a) = deg(c) = D,
and there is no edge joining a and c.

Theorem 5.1. Let G be a simple planar ∆-graph and let D = max{∆, 9}.
Suppose that G contains neither a critical path nor any of configurations

(A) - (F). Then G contains a reducible edge, i.e., an edge of weight at most

D + 1.

Proof. We use discharging again and we assign charges in exactly the same
way as in the proof of Lemma 4.4; here too the total charge is negative.
We assume for a contradiction that G contains no reducible edge. Thus
there is no edge with both endpoints of degree at most 5, and consequently

14

each triangle has at most one vertex with degree 5 or less. Our goal is to
move charges in graph G (using so-called discharging rules) in such a way
that it will be clear that the total charge in G is nonnegative, which is a
contradiction. Now we specify the discharging rules.
Rule 1. Each 5-vertex sends 1

5 of a unit of charge to each incident triangle.
Rule 2. Each 6-vertex sends 1

3 of a unit to each incident triangle.
Rule 3a. Each 7-vertex sends 1

2 of a unit to each incident triangle containing
a vertex of degree at most 4.
Rule 3b. Each 7-vertex sends 2

5 of a unit to each incident triangle with all
vertices of degree at least 5.
Rule 4a. Each vertex of degree at least 8 sends 1

2 of a unit to each incident
triangle containing a vertex of degree at most 5.
Rule 4b. Each vertex of degree at least 8 sends 1

3 of a unit to each incident
triangle with all vertices of degree at least 6.
Rule 5. Each vertex of degree at least D − 1 sends 1

3 of a unit of charge to
each incident 3-vertex.
Rule 6. Each vertex of degree D sends 1 unit of charge to each incident
2-vertex.

A triangle with a vertex of degree at most 4 has two vertices of degree at
least D− 2 ≥ 7, hence it gets 1 unit of charge by Rules 3a and 4a so it ends
up with charge 0. Now consider a triangle with a 5-vertex. If the triangle
contains a vertex x of degree at least 8 it receives 1

5 from the 5-vertex by
Rule 1, 1

2 from x by Rule 4a and at least 1
3 from the remaining vertex which

is of degree at least 6 (see Rules 2, 3b, 4a and 4b). Hence triangles with a 5-
vertex and a vertex of degree at least 8 have positive final charge. Triangles
with a 5-vertex and with both remaining vertices of degree at most 7 do not
contain a vertex of degree 6, as (C3) is excluded. Hence each such triangle
receives 1

5 + 2 · 2
5 = 1 unit of charge by Rules 1 and 3b. Finally, a triangle

with all vertices of degree at least 6 receives at least 1 unit of charge by
Rules 2, 3b and 4b. Nontriangular faces do not alter their charge, which
stays nonnegative. Thus all faces end up with nonnegative charge.

Let c∗(v) denote the final charge at vertex v. Now we will show that for
each vertex v, c∗(v) ≥ 0. We can assume that there are no 1-vertices, since
this would imply the existence of a reducible edge. Each 2-vertex is adjacent
to two D-vertices so it receives 2 units by rule 6 and c∗(v) = 0. Similarly,
each 3-vertex ends up with charge 0 by rule 5. Vertices of degree 4 do not
alter their charge, which was 0. 5- and 6-vertices retain nonnegative charge.
It suffices to examine vertices of degree at least 7.

Let v be a vertex of degree d, 7 ≤ d ≤ D − 2. Since configuration (D2)
is excluded, v is incident on at most two triangles with a 4-vertex. Then by

15

Rules 3a and 3b, c∗(v) ≥ d − 4 − 2 · 1
2 − (d − 2) · 2

5 = 3d−21
5 ≥ 0.

Now let v be a vertex of degree D − 1. Before moving charges, v had
D − 5 units of charge. We will show that it always sends at most D − 5
units. As there are no reducible edges v is adjacent only to vertices of
degree at least 3. First consider the situation where no 3-vertex is a part
of a triangle containing v. Let k3 be the number of 3-neighbors of v. Then
c∗(v) ≥ D − 1 − 4 − k3 · 1

3 − (D − 1 − k3) ·
1
2 = D−9

2 + k3

6 ≥ 0. Now
assume that there is a triangle containing both a certain 3-vertex, x say,
and v. Consider the k3 − 1 degree 3 neighbors of v distinct from x. Since
(D1) and (E1) are excluded each of them belongs to two nontriangular faces
containing v. Hence v is incident on at least k3 nontriangular faces. Then
v sends charge only to the other D − 1 − k3 faces. It follows that c∗(v) ≥
D − 1 − 4 − (D − 1 − k3) ·

1
2 − k3 ·

1
3 = D−9

2 + k3

6 ≥ 0.
Finally we consider a vertex v of degree D. Since G contains neither

configuration (A) nor (B), v can have at most one neighbor of degree 2.
Assume that v has such a neighbor. Since critical paths are excluded, this
neighbor is incident on a triangle and a nontriangular face. Since (D0) and
(E0) are excluded, each 3-neighbor of v is adjacent to two nontriangular
faces containing v. Hence there are at least k3 +1 such faces. It follows that
v sends at most 1 + k3 ·

1
3 + [D − (k3 + 1)] · 1

2 ≤ D+1
2 , which does not exceed

D − 4 for D ≥ 9. This proves that v sends at most D − 4 units of charge
when there are 2-vertices among the neighbors of v.

It remains to show that v retains nonnegative charge when each of its
neighbors has degree at least 3. Suppose that k3 ≤ 2 and let q denote the
number of nontriangular faces. Then c∗(v) ≥ D − 4− 2

3 − D−q
2 = 3D+3q−28

6 .
We see that c∗(v) ≥ 0 when D ≥ 10 or D = 9 and q ≥ 1. Consider the
remaining case D = 9, q = 0. Then there are only triangles incident on
v. Thus there is no pair of consecutive neighbors of degree at most 5, for
such a pair would be joined by a reducible edge. Hence there are at most 4
neighbors of degree at most 5 and consequently there is a triangle with all
vertices of degree at least 6. Such a triangle receives only 1

3 from v by Rule
4b. Thus c∗(v) ≥ 5 − 2

3 − 1
3 − 8

2 = 0.
We are left with the case k3 ≥ 3. First assume that there is a 3-neighbor

which belongs to two triangles incident on v. Then, since (F) is excluded,
there is at most one more 3-neighbor which belongs to a triangle incident on
v. Then there are k3−2 degree 3 neighbors which belong to two nontriangu-
lar faces incident on v. It follows that v is incident on at least (k3−2)+1 non-
triangular faces. Then c∗(v) ≥ D−4− 1

3 ·k3−[D−(k3−1)]· 12 = D−9
2 + k3

6 ≥ 0.
Finally assume that each 3-neighbor belongs to at most one triangle

incident on v. Let k′
3 and k′′

3 denote the number of 3-neighbors which re-

16

spectively belong and do not belong to a triangle incident on v. Then

there are at least
k′
3

2 + k′′
3 nontriangular faces. It follows that c∗(v) ≥

D − 4 − (k′
3 + k′′

3) · 1
3 − [D − (

k′
3

2 + k′′
3)] · 1

2 = D
2 − 4 −

k′
3

12 +
k′′
3

6 . Since
each 3-neighbor belongs to at most one triangle incident on v, among arbi-
trary three consecutive faces incident on v there are at most two triangles
containing a 3-vertex. It follows that there are at most 2

3 ·D such triangles.

Consequently k′
3 ≤ 2

3 ·D and c∗(v) ≥ D
2 −4− 2

3D · 1
12 +

k′′
3

6 = 8D−72
18 +

k′′
3

6 ≥ 0.
This settles the proof.

Theorem 5.2. Let G be any planar graph with maximum degree ∆ and let

D = max{∆, 9}. If G contains none of the configurations (A) - (H) then G
contains a reducible edge, i.e., an edge uv such that deg(u)+deg(v) ≤ D+1.

Proof. Let Ĝ be the graph obtained from G by replacing each critical path
joining u and v by a single edge uv. As (A) is excluded, Ĝ is a simple
planar graph with no critical paths and with maximum degree ∆. We show
that Ĝ does not contain any of configurations (A)-(F). If Ĝ contains any
of configurations (A), (B), (Ck) then G contains the same configuration, a
contradiction. The same argument works for (D≥1) and (E≥1). If Ĝ contains

(D0) then G contains (A) or (B) or (D0), a contradiction. If Ĝ contains (E0)
then G contains (E0) or (A), again a contradiction. Finally, if Ĝ contains
(F) then G contains one of (F), (B), (G) or (H), a contradiction once again.
Thus Ĝ satisfies the conditions of Theorem 5.1. Hence Ĝ contains a reducible
edge. This edge cannot be one of those which appeared after substituting a
path, because both ends of such edges have degree D. It follows that G also
contains a reducible edge.

5.2 Reducibility

We have already proved the reducibility of configurations (A), (B) and (Ck).
In this section we give proofs for the other configurations.

Let Free(x) (resp. Free(uv)) denote the set all of colors from {1, . . . , D}
that are free at vertex x (resp. edge uv). Analogously we define sets Used(x)
and Used(uv).

Lemma 5.3. Configuration (Dk) is reducible for any k ≥ 0.

Proof. We name the vertices of the configuration as in Fig. 3. Recall that
degG(x) ≤ 3 + k, degG(y) ≤ 2 + k and degG(v) ≤ D − k. We remove edge
vy and color the remaining graph recursively. Now we show how to color
G. We denote the edge colors as in Fig. 3. Note that |Free(v)| ≥ k + 1 and

17

v

x

w

y

u

da

eb

c

Figure 3: Labeling vertices in configuration (Dk).

|Used(y)| ≤ k+1. We can assume that Free(v) = Used(y) for otherwise we
simply color vy with any color from Free(v)−Used(y). Hence d ∈ Free(v)
and a, b, e ∈ Free(y).

Case 1. Color e is free at x. Then we swap the colors of wy and wv, and
color xv with e and vy with a.

Case 2. Color e is used by x. Then |Used(x) − {a, e}| ≤ k + 1. We can
assume that Used(x)−{a, e} = Free(v) for otherwise we just color vy with
a and vx with any color from Free(v) − Used(x). Hence either c = e or
c ∈ Free(v). We color vy with b and swap the colors of ux and uv. If uv is
now colored with e (i.e. c = e) we additionally swap the colors of wy and
wv.

x v y

w

a b

cd

Figure 4: Configuration (Ek).

Lemma 5.4. Configuration (Ek) is reducible for any k ≥ 0.

Proof. We name the vertices of the configuration as in Fig. 4. Recall that
degG(x) ≤ 2 + k, degG(y) ≤ 3 and degG(w) ≤ D − k. We remove edge xw
and color the remaining graph recursively. Now we show how to color G.
We denote the edge colors as in Fig. 4. Note that |Free(w)| ≥ k + 1 and
|Used(x)| ≤ k+1. We can assume that Free(w) = Used(x) for otherwise we
simply color xw with any color from Free(w)−Used(x). Hence d ∈ Free(w)
and a, b ∈ Free(x). Let e be the color used by y other than b, c, if any
(otherwise let e be any color other than b, c).

18

Case 1. e 6= d. Color xw with b and wy with d.

Case 2. e = d. Swap the colors of vw and vx, color wy with a and xw with
b.

x1

x2

x3

x5x6

x7 x4

b

c

d e
f

g

v

Figure 5: Configuration (F). Possibly x1 = x7 or x3 = x4. degG(x2) =
degG(x5) = degG(x6) = 3.

Lemma 5.5. Configuration (F) is reducible.

Proof. We name the vertices of the configuration as in Fig. 5. Recall that
degG(x2) = degG(x5) = degG(x6) = 3. We remove edge vx2 and color the
remaining graph. Let C be this coloring. Now we show how to color G. We
denote edge colors as in Fig. 5 (note that b = c if x1 = x7 and f = g if
x3 = x4). Let a be a color free at v. We can assume that a ∈ Used(x2) for
otherwise we simply color vx2 with a. By symmetry, w.l.o.g. we can assume
that C(x1x2) = a.

Case 1. C(x2x3) = b. Then we can assume that a ∈ Used(x5) for otherwise
we simply color vx2 with e and vx5 with a. Similarly, we can assume that
g ∈ Used(x5) for otherwise we swap the colors of x1v and x1x2, swap the
colors of x3v and x3x2, color vx2 with e and vx5 with g. Hence a, g ∈
Used(x5). By symmetry, a, g ∈ Used(x6).

Case 1.1. C(x6x7) = a. Then x1 6= x7 for otherwise the coloring is not
proper. We swap the colors of x7x6 and x7v, and we color vx2 with c.

Case 1.2. C(x6x7) = g.

Case 1.2.1. x1 6= x7. Then c 6= b. We swap the colors of the following
three pairs of edges: x1v and x1x2, x3v and x3x2, x7x6 and x7v. Finally we
color vx2 with c.

Case 1.2.2. x1 = x7. Then c = b. We color x1x6 with b, x1v with a, x1x2

with g, vx2 with e, vx5 with b.

19

Case 2. C(x2x3) 6= b.

Case 2.1. C(x2x3) 6∈ {e, f}. Then we can assume that a ∈ Used(x5) for
otherwise we simply color vx2 with e and vx5 with a. Similarly, we can
assume that b ∈ Used(x5) for otherwise we swap the colors of x1v and x1x2,
color vx2 with e and vx5 with b.

Then we color vx2 with f and we swap the colors of x4x5 and x4v. Then
vx4 is colored with a or b. In the latter case we additionally swap the colors
of x1v and x1x2.

Case 2.2. C(x2x3) ∈ {e, f}. Analogously to Case 2.1 we can assume that
a, b ∈ Used(x6). Since C(x6x7) ∈ {a, b}, x1 6= x7 and c 6= b. Hence we can
proceed as in Case 2.1: we color vx2 with c and we swap the colors of x7x6

and x7v. Then vx7 is colored with a or b. In the latter case we additionally
swap the colors of x1v and x1x2.

x1

x2

x3

x4

x5

x6

b
c

d
e

v

Figure 6: Configuration (G). Possibly x1 = x5.

Lemma 5.6. Configuration (G) is reducible.

Proof. We name the vertices of the configuration as in Fig. 6. Recall that
degG(x2) = degG(x4) = 3 and degG(x6) = 2. We remove edge vx6 and color
the remaining graph. Let C be this coloring. Now we show how to color G.
We denote edge colors as in Fig. 6 (observe that when x1 = x5 then c = d).
Let a be a color free at v. We can assume that C(x3x6) = a for otherwise
we simply color vx6 with a. Analogously we assume that C(x1x2) = a for
otherwise we color vx6 with e and vx2 with a. Finally we assume that
C(x2x3) = d for otherwise we swap the colors of x1v and x1x2 and color vx6

with d.

Case 1. a is free at x4. Then we color vx4 with a and vx6 with b.

20

Case 2. d is free at x4. Then we swap the colors of x3x6 and x3x2, swap
the colors of x1x2 and x1v, color vx4 with d and vx6 with b.

Case 3. Both a and d are used by x4. Note that this is possible only when
x1 6= x5. Then we color vx6 with c and we swap the colors of x5x4 and x5v.
If as a result C(x5v) = d we also swap the colors of x3x6 and x3x2, and
swap the colors of x1x2 and x1v.

x1

x2

x3

x4

x5
x6

b

c

d

e
v

Figure 7: Configuration (H).

Lemma 5.7. Configuration (H) is reducible.

Proof. We name the vertices of the configuration as in Fig. 7. Recall that
degG(x2) = degG(x4) = 3 and degG(x6) = 2. We remove edge vx6 and color
the remaining graph. Let C be this coloring. Now we show how to color G.
We denote edge colors as in Fig. 7. Let a be a color free at v. We can assume
that C(x5x6) = a for otherwise we simply color vx6 with a. Moreover, we
can assume that x1x2 or x2x3 is colored with a for otherwise we color vx6

with d and vx2 with a. By symmetry we can assume that C(x2x3) = a.

Case 1. C(x1x2) 6= c. Then we color vx6 with c and we swap the colors of
x3x2 and x3v.

Case 2. C(x1x2) = c. Then we swap the colors of x1v and x1x2, swap the
colors of x3x2 and x3v, and we color vx6 with e.

6 Further Research

The most natural question is whether our approach can lead to a linear-time
algorithm for coloring planar graphs with max{∆, 8} colors. We conjecture
that this is possible, but we suspect that it would involve both a large
number of and more elaborate configurations.

21

Acknowledgments

The authors would like to thank anonymous referees for their excellent work
and many useful suggestions which helped us avoid several mistakes and also
improved the presentation of the paper.

References

[1] Marek Chrobak and Moti Yung. Fast algorithms for edge-coloring pla-
nar graphs. Journal of Algorithms, 10:35–51, 1989.

[2] Marek Chrobak and Takao Nishizeki. Improved edge-coloring algo-
rithms for planar graphs. Journal of Algorithms, 11:102–116, 1990.

[3] V. G. Vizing. On the estimate of the chromatic class of a p-graph.
Diskret. Analiz, 3:25–30, 1964.

[4] Harold N. Gabow, Takao Nishizeki, Oded Kariv, D. Leven, and
O.Terada. Algorithms for edge coloring graphs. Technical Report TR-
41/85, Dept. of Computer Science, Tel Aviv University, 1985.

[5] Richard Cole, Kirstin Ost, and Stefan Schirra. Edge-coloring bipartite
multigraphs in O(E log D) time. Combinatorica, 21:5–12, 2001.

[6] Noga Alon. A simple algorithm for edge-coloring bipartite multigraphs.
Information Processing Letters, 85(6):301–302, 2003.

[7] San Skulrattanakulchai. 4-edge-coloring graphs of maximum degree 3
in linear time. Information Processing Letters, 81:191–195, 2002.

[8] V. G. Vizing. Critical graphs with a given chromatic number. Diskret.

Analiz, 5:9–17, 1965.

[9] Daniel P. Sanders and Yue Zhao. Planar graphs of maximum degree
7 are class I. Journal of Combinatorial Theory, Series B, 83:201–212,
2001.

[10] Peter Guthrie Tait. On the coloring of maps. Proc. Royal Soc. Edin-

burgh Sect. A, 10:501–503, 1878.

[11] Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin Thomas.
Efficiently four-coloring planar graphs. In Proc. 28th Symposium on

Theory of Computing, pages 571–575. ACM, 1996.

22

[12] Daniel P. Sanders. Private communication. 2005.

[13] Xin He. An efficient algorithm for edge coloring planar graphs with ∆
colors. Theoretical Computer Science, 74:299–312, 1990.

[14] Oleg V. Borodin. On the total coloring of planar graphs. J. Reine Ange.

Math., (394):180–185, 1989.

23

