
A Unified Access Bound on

Comparison-Based Dynamic Dictionaries 1

Mihai Bădoiu

MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139, USA

Richard Cole 2

Computer Science Department,
Courant Institute of Mathematical Sciences,

New York University,
251 Mercer Street, New York, NY 10012, USA

Erik D. Demaine 3

MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139, USA

John Iacono 3,4

Department of Computer and Information Science,
Polytechnic University,

5 MetroTech Center, Brooklyn, NY 11201, USA

Abstract

We present a dynamic comparison-based search structure that supports insert,
delete, and search within the unified bound. The unified bound specifies that it is
quick to access an element that is near a recently accessed element. More precisely,
if w(y) distinct elements have been accessed since the last access to element y, then
the amortized cost to access element x is O(miny log(w(y) + d(x, y) + 2)), where
d(x, y) denotes the rank distance between x and y among the current set of ele-
ments. This property generalizes the working-set and dynamic-finger properties of
splay trees.

Preprint submitted to Elsevier Science 18 September 2006

Contents

1 Introduction 2

2 Working-Set Structure 7

3 Unified Structure 8

3.1 Potential Function 9

3.2 Overflow 10

3.3 Search 14

3.4 Insert 17

3.5 Delete 17

References 18

1 Introduction

Overview. The classic dynamic optimality conjecture states that the amor-
tized performance of splay trees [ST85] is within a constant factor of the
offline optimal dynamic binary search tree for any given sequence of op-
erations. This conjecture has motivated the study of sublogarithmic time
bounds that capture the performance of splay trees and other comparison-
based data structures. For example, it is known that the performance of splay
trees satisfies the following two upper bounds. The working-set bound [ST85]
says roughly that recently accessed elements are cheap to access again. The
dynamic-finger bound [CMSS00,Col00] says roughly that it is cheap to access
an element that is near to the previously accessed element. These bounds
are incomparable: one does not imply the other. For example, the access se-
quence 1, n, 1, n, 1, n, . . . has a small working-set bound (constant amortized
time per access) because each accessed element was accessed just two time
units ago. In contrast, for this sequence the dynamic-finger bound is large
(logarithmic time per access) because each accessed element has rank distance

Email addresses: mihai@mit.edu (Mihai Bădoiu), cole@cs.nyu.edu (Richard
Cole), edemaine@mit.edu (Erik D. Demaine), jiacono@poly.edu (John Iacono).
1 Several of the results presented here appeared in preliminary form in
[BD04,Iac01a,Iac01b].
2 Research supported in part by NSF grants CCR-0105678 and CCF-0515127.
3 Research supported in part by NSF grant CCF-0430849.
4 Research supported in part by NSF grant CCF-9732689.

2

n− 1 from the previously accessed element. On the other hand, the access se-
quence 1, 2, . . . , n, 1, 2, . . . , n, . . . has a small dynamic-finger bound because
most accessed elements have rank distance 1 to the previously accessed ele-
ment, whereas it has a large working-set bound because each accessed element
was accessed n time units ago.

We propose a unified bound that is strictly stronger than these two bounds
and all other proved bounds on splay trees and most other comparison-based
structures. Roughly, the unified bound says that it is cheap to access an el-
ement that is near to a recently accessed element. For example, the access
sequence 1, n

2
+1, 2, n

2
+2, 3, n

2
+3, . . . has a small unified bound because most

accessed elements have rank distance 1 to the element accessed two time units
ago, whereas it has large working-set and dynamic-finger bounds. It remains
open whether splay trees satisfy the unified bound. However, we develop the
unified structure, a comparison-based data structure on the pointer machine
that attains the unified bound.

In the rest of this introduction, we give a more thorough overview of sublog-
arithmic bounds on comparison-based search structures.

Problem statement. The goal in this line of research is to understand the
optimal time needed to maintain a dynamic set of elements from a totally
ordered universe as it depends on the sequence of insertions, deletions, and
searches performed. The model of computation is a pointer machine under the
(unit-cost) comparison model. We consider a sequence of m operations (inser-
tions, deletions, and searches) in which the ith operation involves element xi.
Thus the access sequence X = 〈x1, x2, . . . , xm〉 captures everything except the
type of each operation. To capture insertions and deletions, we let Si denote
the set of elements in the structure just before operation i—at time i—and let
ni denote the number of elements in Si. Thus our goal is to understand the
optimal running time of a data structure as a function of the access sequence
X and the sets S1, S2, . . . , Sm determined by the insertions and deletions.

Entropy bound. Let p(x) denote the frequency (empirical probability) of
searches to element x, i.e., the number of occurrences of x in the access se-
quence X divided by the length m of the sequence. The optimal binary search
trees of [Knu71,HT71] achieve the entropy bound—O(1+ log 1/p(xi)) time for
each access xi—provided that the frequency values of p are known in advance.
This bound is in fact optimal if the binary search tree cannot be restructured
during the access sequence, or in expectation if the access sequence is gen-
erated by a stochastic process with probabilities given by p. Optimal binary
search trees have been improved over the years to allow insertion and deletion,

3

but these structures still have the fundamental limitation of requiring that the
access distribution is known in advance.

On the other hand, splay trees also achieve the entropy bound of O(1 +
log 1/p(xi)), only the bound is amortized rather than worst case. They achieve
this bound without any prior knowledge of the input distribution. This prop-
erty of splay trees was proved as the static-optimality theorem in [ST85].

Static-finger bound. Another theorem proved in [ST85] is the static-finger
theorem. It states that, for any fixed key f (the “finger”), the amortized time
to access element xi is proportional to the logarithm of the rank distance
between f and xi at time i. The rank distance di(x, y) between two elements
x and y at time i is the number of elements in Si between x and y, including x
but not y. Thus the static finger theorem states that, for any fixed key f , the
amortized time to access xi is O(log(di(xi, f) + 2)). The +2 is to assure that
the logarithm is always positive. If f is known, a data structure of Guibas,
McCreight, Pass, and Roberts [GMPR77] achieves a worst-case running time
of O(log(di(xi, f) + 2)) for access xi. Splay trees achieve this running time,
in the amortized sense, without any knowledge of f , i.e., simultaneously for
all f .

Working-set bound. The working-set theorem, introduced in [ST85], is
based upon the following idea: if an access sequence contains elements drawn
only from a subset of size n′ of the n elements, the amortized time for an access
should be O(log n′) instead of O(log n). The actual theorem uses the stronger
idea that elements that have been accessed recently should take less time to
access than elements that have not been accessed in a long time. Formally, let
wi(z) be the number of distinct items accessed since the last access to z before
time i (before the execution of access xi). The working-set theorem of [ST85]
states that the amortized time to access xi in a splay tree is O(log(wi(xi)+2)).

It was observed in [Iac01b] that the working-set bound is the strongest of
the three bounds presented so far (entropy, static finger, and working set): a
working-set theorem implies a static-finger theorem, and a static-finger the-
orem implies a static-optimality theorem, in any data structure. Thus the
working-set bound plays an important role at least in our current understand-
ing of splay trees.

As a warmup toward our main result, we present in Section 2 a simple data
structure called the working-set structure. This data structure has the same
O(log(wi(xi) + 2)) performance attributed to splay trees, except that the per-
formance of the working-set structure is worst-case instead of amortized. In-
deed, the working-set structure achieves a worst-case bound of O(log ni) per

4

access, in contrast to the Θ(ni) worst-case performance of a single access
in splay trees. As mentioned above, the working-set bound implies that the
working-set structure satisfies both the static-finger bound and the static-
optimality bound, albeit only in the amortized sense. This amortization is
best possible: it is easy to show that the static-finger and static-optimality
bounds cannot be satisfied in the worst-case in any data structure lacking
knowledge of the finger and of the frequencies.

Sequential-access bound. One sublogarithmic access bound that splay
trees have but is not implied by the working-set theorem is that, if the ac-
cess sequence X simply consists of searching for every element in the data
structure in sorted order repeatedly, then the amortized cost per access is
O(1). This result is known as the sequential access lemma and was proved by
Tarjan [Tar85], with alternative proofs by Sundar [Sun92,Sun91] and Elmasry
[Elm04].

Dynamic-finger bound. A generalization of the sequential-access lemma
is the dynamic-finger theorem, conjectured in [ST85] and proved by Cole et
al. [CMSS00,Col00]. This bound states that an access should be fast if it is
close, in terms of rank distance, to the previous access. More precisely, in splay
trees, the amortized cost to access xi is O(log(di(xi, xi−1) + 2)). A non-self-
adjusting data structure with this performance predates splay trees: The level-
linked trees of Brown and Tarjan [BT80] support accesses in O(log(di(xi, xi−1)+
2)) worst-case time.

Unified bound. The working-set theorem and the dynamic-finger theorem
are the best currently known analyses of access sequences in splay trees, yet
each is easily seen to be incomplete. Consider the following three search se-
quences of length m ≥ n log n on the set {1, 2, . . . , n} for n even:

X1 : 1, 2, . . . , n, 1, 2, . . . n, 1, 2, . . .

X2 : 1, n, 1, n, 1, n, . . .

X3 : 1, n
2

+ 1, 2, n
2

+ 2, 3, n
2

+ 3, . . . n
2
, n, 1, n

2
+ 1, . . .

In X1, the dynamic-finger theorem would tightly bound this sequence as taking
O(m) total time to execute on a splay tree, while the working-set theorem
could only say that the running time is O(m log n). The situation is reversed
in X2, with the working-set theorem tightly bounding the execution time as
O(m) while the dynamic-finger theorem yields only an O(m log n) bound.
More troubling is X3. Both the working-set theorem and the dynamic-finger

5

theorem say that this sequence takes O(m log n) time. However, these bounds
are not tight: this sequence executes in O(m) time in splay trees. This fact
can be seen by proving a new theorem, based on the sequential access lemma.
However, introducing new theorems that bound the running times of highly
specific classes of sequences such as X3 will only contribute to our fragmented
understanding of splay trees. In an attempt to more accurately characterize
the running time of access sequences on splay trees, we provide the following
conjecture:

Conjecture 1 (Unified Conjecture) 5 The time to search for, insert, or
delete xi in a splay tree is

O
(
min
y∈Si

log
(
ti(y) + di(xi, y) + 2

))
.

This conjecture implies the working-set theorem and the dynamic-finger the-
orem, and it is strong enough to predict that X3, and many possible variants,
run in O(m) time. Informally, the unified bound says that an access is fast if
the access is close in key space to some element that has been accessed recently
in time. In the case of X3, the majority of the accesses are to elements that
are at rank distance 1 away from the element accessed two accesses ago, so
the amortized cost per access is O(log(1 + 2 + 2)) = O(1). We offer no proof
of this conjecture.

Our main result is a relatively complicated data structure, called the uni-
fied structure, whose performance satisfies the unified bound. This structure
demonstrates the plausibility of the unified conjecture for splay trees. It also
has a worst-case running time of O(log n) per access, in contrast to the Θ(n)
attained by splay trees, where n denotes the current value of ni, the size of
the set Si. We present this structure in Section 3.

In terms of proved bounds on the running time of a comparison-based search
structure, the unified structure is strictly better than splay trees. However, this
is not true in terms of actual amortized performance: there are access sequences
that splay trees executes asymptotically faster than the unified structure. For
example, consider scaling each element in X3 by a superconstant factor α,
forming an access sequence over a set that is α times as large. Splay trees can
factor out the intervals of α − 1 unaccessed elements, but the unified bound
does not capture this feature. However, we do not know whether the unified
structure executes any access sequences asymptotically faster than splay trees;
this requires resolving the unified conjecture.

5 Note that a “unified bound” for splay trees is presented in [ST85], which is simply
the minimum of the static-optimality, static-finger, and working-set bounds. This
theorem is distinct from the conjecture presented here.

6

The dynamic optimality conjecture of Sleator and Tarjan [ST85] states that
splay trees can execute any sufficiently long access sequence as fast as any
rotation-based binary search tree, up to constant factors. The unified struc-
ture is composed of a collection of search trees, not one search tree, so we are
unable to derive any statements about dynamic optimality from the results
presented here. In particular, assuming the dynamic optimality conjecture
does not imply the unified conjecture for splay trees. Conversely, a disproof
of the unified conjecture for splay trees would not disprove the dynamic opti-
mality conjecture.

2 Working-Set Structure

The working set structure consists of a set of O(log log |Si|) 2-4 trees, T0, T1, . . . , Tl,
and linked lists L0, L1, . . . , Ll. Let L be the imaginary list which would be cre-
ated by appending all of the linked lists together in index order. Let w(x)
denote the number of distinct elements accessed since the last access to x.
The structure maintains the following invariants:

• Every element in Si is stored in exactly one tree and exactly once in the
corresponding linked list.
• For k < l,

∑k
j=0 |Tj| = 22k

.

• ∑l
j=0 |Tj| ≤ 22l

.
• If w(x) = h, x appears as the hth element of L.

From these facts, we can also deduce that if w(x) = h it will appear in tree
Tdlog log he.

Search(x). We search for x in T0, T1, . . . in turn until it is found in some
tree Tk. We know from the observation above that k = dlog log w(x)e. Since x
is now the most recently accessed item, it must be removed from Tdlog log w(x)e
and Ldlog log w(x)e and inserted into T1 and the front of L1. Now, observe that
T1 is too large by one element, and Tdlog log w(x)e is too small by one element.
We then proceed, for each j in the range 1 to dlog log w(x)e − 1, to remove
the oldest element from Tj and Lj and insert it into Tj+1 and to the front of
Lj+1. The oldest element in Lj is the last element in the list.

The running time is dominated by the tree operations. For each tree in the
range 1 to dlog log w(x)e, one insert, one delete, and one search are performed,

at a total cost of O(
∑dlog log w(x)e

j=1 log 22j
) = O(log w(x)).

7

Insert(x). If
∑l

j=0 |Tj| < 22l
, insert x in Tl at cost O(log n) and append x

to the end of Ll at cost O(1). If
∑l

j=0 |Tj| = 22l
, we increment l and initialize

the new Tl and Ll to contain only x at cost O(1). We then move x to T0 as in
the search operation.

Delete(x). Suppose x is in Tk. We delete it from Tk and Lk. Now, unless x
was in the last tree, we must correct the size of Tk using a procedure analogous
to the one used in the search operation. For each j in the range from k to
dlog log ne − 1, remove the newest element from Tj+1 and Lj+1 and insert it
into Tj and to the back of Lj. The newest element in Lj+1 is the first element
in this list.

The running time is dominated by the tree operations. For each tree in the
range k to dlog log ne, one insert, one delete, and one search are performed, at

a total cost of O(
∑dlog log ne

j=k log 22j
) = O(log n).

Theorem 2 The working-set structure supports searching for element x in
O(log(w(x) + 2)) worst-case time, and supports inserting and deleting an ele-
ment in O(log n) worst-case time.

3 Unified Structure

In this section, we develop our dynamic unified structure, establishing the
following theorem:

Theorem 3 There is a dynamic data structure in the comparison model on
a pointer machine that supports insertions, deletions, and searches within the
unified bound (amortized).

The bulk of our unified structure consists of O(log log |Si|) balanced binary
trees, T0, T1, . . . , T`. Each tree Tj has size 22j

whenever it is rebuilt, and is

maintained to have at most 22j+1
+ 22j

+ · · ·+ 220
elements at all times. Fur-

thermore, at the end of each dictionary operation in the unified structure,
tree Tj will have at most 22j+1

elements. Each element is augmented with a
timestamp of when it was last accessed (searched or inserted). Each element
of the structure appears in at most one tree Tj at any time. The structure is
maintained so that smaller trees contain more recently accessed elements, i.e.,
all elements in Tj were accessed more recently than all elements in Tk for all
j < k.

We can store each tree Tk using any balanced search tree structure supporting
insertions, deletions, and searches in O(log |Tk|) = O(2k) time, and supporting

8

sorted
by
rank

T1
T2

T`−1

T`

T0

finger
search
tree

all O(22`+1
)

O(22`+1
)O(222) O(223) O(22`

)O(221)

Fig. 1. Overview of our dynamic unified structure. In addition to a single finger
search tree storing all elements in the dynamic set Si, there are ` + 1 ≈ log log |Si|
balanced search trees whose sizes grow doubly exponentially. (As drawn, the heights
accurately double from left to right.)

insertions and deletions with a pointer to the relevant location in the tree in
O(1) amortized time. For example, B-trees [BM72] support these time bounds.

Our unified structure also stores a single finger search tree containing all ele-
ments of Si. We can use any finger search tree structure supporting insertions,
deletions, and searches within rank distance r of a previously located element
in O(log(r+2)) amortized time, e.g., level-linked B-trees [BT80]. We represent
each element in the set Si by a separate indirect node, with pointers between
this indirect node and the node of the finger search tree that currently stores
the element. This indirection is necessary because the elements may move from
node to node as the finger search tree changes; during such changes, we can
easily maintain the pointers from the indirect node into the finger search tree.
Also, we store pointers between each indirect node and the node in one of the
trees Tk, if any, that stores the element. In this way, we can quickly cross-
index between elements as stored in the trees T0, T1, . . . , T` and as stored in
the finger search tree.

3.1 Potential Function

We use the potential method to analyze the amortized running time of each
operation in our structure. The potential function has two components, death
potential and overflow potential.

The death potential of the structure at a given time is four times the size of

9

all of the trees times a constant c which will be defined later: 4c
∑`

j=0 |Tj|.

To define the overflow potential, we introduce the j-graph, defined as follows.
The nodes in the j-graph consist of all the nodes in T0, . . . , Tj. There is an edge

in the j-graph between every pair of nodes of rank difference at most 22j+1
.

We define the j-components to be the connected components of the j-graph.
We define the extent of a j-component to be the rank difference between the
smallest and largest items in the j-component.

The overflow potential of the structure comprises several terms. The overflow
potential of an individual j-component with extent e is 4c ·2j[1+e/22j+1

]. The
motivation behind this definition is that we will overflow roughly b1+e/22j+1c
items from a j-component from tree Tj to Tj+1, and each such item will cost
Θ(2j). The j-overflow potential is the sum of the overflow potentials of each
j-component. The potential of the entire structure is the sum of the j-overflow
potentials for j = 0, 1, . . . , `.

Lemma 4 Removing an item x from Tk cannot increase the overflow poten-
tial.

PROOF. For j < k, the j-overflow potential does not change. For a given
j ≥ k, the loss of x can cause one of three things to happen. Let C denote the
j-connected component that contains x.

Case 1: The extent of C remains the same. No change.

Case 2: The extent of C shrinks. There is a loss in potential.

Case 3: The removal of x causes C to split into Cl and Cr. For this to happen,
the rank gap between Cl and Cr after the removal of x must be more than
22j+1

. If e(C) denotes the extent of C before removal of x, and e(Cl) and e(Cr)
denote the extents of Cl and Cr after the removal of x, then e(Cl) + e(Cr) ≤
e(C)−22j+1

. Thus the total rank potential of Cl and Cr after the removal of x
is 4c ·2j[2+[e(Cl)+e(Cr)]/2

2j+1
] ≤ 4c ·2j[1+e(C)/22j+1

], so the rank potential
does not increase. 2

3.2 Overflow

The overflow is an important subroutine that will be used in the implementa-
tion of the search and insert operations. It has 0 amortized cost. The idea is
to fix a tree that has grown too large by rebuilding the tree, and the smaller
trees, to have the desired minimal size (22j

for tree Tj). We must then decide
what to do with the extra nodes left over from this rebuilding. We cannot

10

afford to insert all of them into the next larger tree. Instead we retain only
those that would be necessary to help with future searches.

3.2.1 Description

We overflow at level k when Tk grows to size at least 22k+1
. The overflow

operation restores the size of the trees Tj, 0 ≤ j ≤ k, to be 22j
, and inserts

some excess items into Tk+1. These insertions may trigger (after completion
of this overflow) an overflow at the next larger level.

An overflow at level k works as follows. Take all the items in levels T0, . . . , Tk.
Populate each tree Tj, 0 ≤ j ≤ k with the 22j

most recent items not in a tree
Th with h < j. Of the remaining items, remove every item for which there
is another smaller item within rank distance 22k+1

. Insert the still remaining
items into Tk+1. In order to obtain the proper running time, this overflow
algorithm must be carried out with some care. Algorithm 1 gives pseudocode
that efficiently implements the overflow algorithm.

1: L← empty linked list
2: for j = 0 to k do
3: Merge L with an in-order traversal of the items in Tj.
4: Store the resulting list, sorted by key value, in L.
5: end for
6: Let a be the

(∑k
j=0 22j

)
th youngest timestamp among items in L.

7: Loverflow ← list of items from L with timestamp older than a.
8: L← list of items from L with timestamp at least as young as a.
9: for j = k downto 0 do

10: Let a be the 22j
th oldest timestamp among items in L.

11: LTj
← list of items from L with timestamp at least as old as a.

12: L← list of items from L with timestamp younger than a.
13: end for
14: for j = 0 to k do
15: Build the new tree Tj using the contents of LTj

.
16: end for
17: for x in Loverflow, except the first item do
18: If the rank of x minus the rank of the previous remaining item in

Loverflow is ≤ 22k+1
, then remove x from Loverflow.

19: end for
20: for x in Loverflow do
21: Insert x into Tk+1.
22: end for
23: If Tk+1 now has size at least 22k+2

, then overflow at level k + 1.

Algorithm 1. Pseudocode for the overflow algorithm at level k.

11

3.2.2 Analysis

The elements that were in T0, . . . , Tk will fall into three categories: r elements
that remain in T0, . . . , Tk, p elements that are added to Tk+1, and d elements
that are deleted.

Lemma 5 (i) r + d + p ≥ |Tk| ≥ 22k+1
.

(ii) r = 22k
+ · · ·+ 220

.
(iii) p ≤ d + p < 22k+1

+ 22k
+ · · ·+ 220

.
(iv) The invariant on |Tk+1|, |Tk+1| ≤ 22k+2

+ 22k+1
+ · · · + 220

, remains true
after the overflow of p items into Tk+1.

PROOF. (i) is immediate because the total r + d + p is the number of el-
ements originally in T0, . . . , Tk, which is at least the number of items in the
overflowing Tk. (ii) holds by construction.

(iii) can be obtained as follows. Because Tk is the tree overflowing (and T0, . . . , Tk−1

are not), |Tj| < 22j+1
for j < k. Also, by the invariant on |Tk|, |Tk| ≤

22k+1
+22k

+· · ·+220
. Thus r+d+p = |T0|+· · ·+|Tk| < 22k+1

+2·(22k
+· · ·+220

).
Substituting for r from (ii) yields (iii).

(iv) follows because at most p ≤ 22k+1
+ 22k

+ · · · + 220
elements are inserted

into Tk+1; even if these insertions into Tk+1 push |Tk+1| beyond 22k+2
, we still

have that |Tk+1| ≤ 22k+2
+ 22k+1

+ · · ·+ 220
. 2

For technical reasons, the following analysis works only for k ≥ k0 for a suitable
constant k0. (The exact constraints on k are pointed out below.) For k < k0,
the amortized cost can easily be shown to be O(1).

Actual cost. We claim that the actual running time is at most c(r+d+p·2k)
for an appropriately chosen constant c.

The merging of all of the trees (Lines 1–5) takes time at most
∑k

j=0 O(|Tj| +∑j−1
h=0 |Th|) =

∑k
j=0 O(22j+1

+
∑j−1

h=0 22h+1
) =

∑k
j=0 O(22j+1

) = O(22k+1
) = O(r +

d + p).

The order statistic on Line 6 takes O(r +d+p) time by transferring the items
into an array and using linear-time median finding. The filtering on Lines 7–8
also takes O(r + d + p) time.

The loop on Lines 9–13 takes time O(
∑k

j=0

∑j
h=0 22h

) = O(22k
) = O(r).

12

Because a balanced binary tree can be built in linear time from a sorted list,
the loop on Lines 14–16 take time O(

∑k
j=0 22j

) = O(22k
) = O(r).

Removing the data to be deleted on Lines 17–19 takes O(|Loverflow|) = O(d+p)
time. Inserting the remaining p items in Lines 20–22 into Tk+1 which has size
O(22k+2

) takes O(p · 2k) time.

Thus, the actual cost is O(r + d + p · 2k), or by choosing c sufficiently large,
at most c · (r + d + p · 2k).

Change in potential. The death potential is reduced by 4cd.

For j > k, the j-overflow potential does not increase. This claim follows by
Lemma 4 because, from the point of view of the j-graph, we have just deleted
d items.

For j ≤ k, we analyze the change in j-overflow potential as if the overflow
first deleted all of T0, . . . , Tk, then added the p elements to Tk+1, then rebuilt
T1 . . . Tk.

Deleting all of the elements will result in a loss of at least 4cp2k units in the
k-overflow potential. The reason is that, for each k-component of extent e, we
will insert at most b1 + e/22k+1c elements into Tk+1 (this would be exact if we
did not populate T0, . . . , Tk with r elements). Thus p ≤ ∑

Cb1 + e(C)/22k+1c,
and so 4cp2k is less than or equal to the old k-overflow potential.

Adding the p elements to Tk+1 does not change the j-overflow potential for
j ≤ k.

For each j ≤ k, re-inserting the
∑j

h=0 22h
items into the j-graph could cause, in

the worst-case, each of them to be in a separate j-component. In this case there
could be a j-overflow potential increase of up to

∑j
h=0 4c·2j22h ≤ 6c·2j22j

. The
total increase in overflow potential, for j ≤ k, is thus at most

∑k
j=0 6c ·2j22j ≤

7.5 · c · 2k22k
.

Amortized cost. Therefore the gain in potential is at most 7.5c2k22k −
4cp2k − 4cd ≤ 7.5c2k22k − cp2k+1 − cd − 2c(p + d). Now, p + d ≥ |Tk| − r ≥
22k+1 − ∑k

j=0 22j
. Also, 7.5 · 2k22k ≤ 22k+1 − ∑k

j=0 22j
for k ≥ 3. Thus the

gain in potential is at most −cp2k+1 − cd − c(p + d). Because p + d ≥ r
(22k+1 −∑k

j=0 22j ≥ ∑k
j=0 22j

for all k ≥ 0), the gain in potential is at most
−cp2k+1 − cd− cr ≤ −c(p2k + d + r). This is the negation of the actual cost
of the overflow. Thus we have shown

Lemma 6 The amortized cost of overflow is at most 0.

13

3.3 Search

3.3.1 Description

Up to constant factors, the unified property requires us to find an element
x = xi in O(2k) time if it is within rank distance 22k

of an element y with
working-set number ti(y) ≤ 22k

. The data structure maintains the invariant
that all such elements x are within rank distance (k + 4) · 22k

of some element
y′ in T0 ∪ T1 ∪ · · · ∪ Tk. (This invariant is proved below in Lemma 7.)

At a high level, then, our search algorithm will investigate the elements in
T0, T1, . . . , Tk and, for each such element, search among the elements within
rank distance (k + 4) · 22k

for the query element x. The algorithm cannot per-
form this procedure exactly, because it does not know k. Thus we perform the
procedure for each k = 0, 1, 2, . . . until success. To avoid repeated searching
around the elements in Tj, j ≤ k, we maintain the two elements so far en-
countered among these Tj’s that straddle the target x, and just search inside
those two elements. If any of the searches from any of the elements would be
successful, one of these two searches will be successful. After finding x in the
finger structure, we are able to obtain a pointer to the tree, call it Tp, that x
is in (if it is in a tree). We remove x from Tp using the pointer and then insert
it into T0.

More precisely, our algorithm to search for an element x proceeds as shown in
Algorithm 2. The variables L and U store pointers to elements in the finger
search tree such that L ≤ x ≤ U . These variables represent the tightest known
bounds on x among elements that we have located in the finger search tree as
predecessors and successors of x in T0, T1, . . . , Tk. In each round, we search for
x in the next tree Tk, and update L and/or U if we find elements closer to x.
Then we search for x in the finger search tree within rank distance (k +4) ·22k

of L and U .

3.3.2 Unified Invariant

Lemma 7 All elements within rank distance 22k
of an element y with working-

set number ti(y) ≤ 22k
are within rank distance (k + 4) · 22k

of some element
y′ in T0 ∪ T1 ∪ · · · ∪ Tk.

PROOF. We consider the time interval between y’s last access (before time i)
and time i, which consists of ti(y) ≤ 22k

distinct accesses. During this time
interval, we track the motion of an element y′, initially y, through the trees
T0, T1, . . . , T`. Initially, because y′ = y was just accessed, y′ is in T0. The only
time at which we change the element y′ being tracked is when overflowing Tj

14

Algorithm 2. To search for an element x.

• Initialize L← −∞ and U ←∞.
• For k = 0, 1, 2, . . . , log log n :
(1) If k ≤ `:

(a) Search for x in Tk to obtain two elements Lk and Uk in Tk such that
Lk ≤ x ≤ Uk.

(b) Update L← max{L, Lk} and U ← min{U,Uk}.
(2) Finger search for x within the rank ranges [L, L + (k + 4) · 22k

] and [U −
(k + 4) · 22k

, U].
(3) If we find x in the finger search tree:

(a) Delete x from whatever tree Tp contains it, if any (found using the
pointer in the finger search tree).

(b) Insert x into tree T0.
(c) If T0 is too full (storing 221

elements), overflow T0 as described in
Algorithm 1.

(d) Return a pointer to x in the finger search tree.

causes y′ to be discarded, in which case we continue by tracking the element
within rank distance 22j+1

of y′ that gets promoted to tree Tj+1. Each such
“jump” of the tracked element changes the rank of y′, and hence increases the
rank distance between y and y′, but by at most 22j+1

.

The tracked element y′ may switch trees for several reasons: it may be accessed,
in which case it returns to T0; it may move to a smaller tree because of an
overflow (if smaller trees were undersized); and it may move to the next larger
tree because of an overflow (and either it was promoted or it was deleted and
then the tracked element changed to a different, promoted element). Only the
last case can cause a jump in y′. This last case can happen relatively easily
once in each Tj, if Tj was already near overflowing at the beginning of the
time interval. However, for the same tree Tj to overflow more than once in the

time interval, there must be accesses to at least 22j+1 − 22j
distinct elements

in between every two consecutive overflows.

Suppose that y′ overflows oj times from tree Tj during the time interval. First

we observe that ok = ok+1 = · · · = o` = 0, because y′ remains one of the 22k

youngest elements during the time interval, so it must remain in T0, T1, . . . , Tk

during an overflow of Tk, and thus could not reach Tk′ for k′ > k. As argued
above, if oj > 1, there must be (j− 1)(22j+1 − 22j

) distinct accesses that cause
Tj to overflow. (However, the same accesses may cause overflows at several
levels.) Because the total number of distinct accesses in the time window is at
most 22k

, for any j < k,

(oj − 1)(22j+1 − 22j

) ≤ 22k

.

15

It follows that

(oj − 1)22j+1

(1− 1/22j

) ≤ 22k

.

The total distance that y′ may jump over the course of the time interval is at
most

k−1∑
j=0

oj2
2j+1

=
k−1∑
j=0

22j+1

+
k−1∑
j=0

(oj − 1)22j+1

≤
k∑

j=1

22j

+
k−1∑
j=0

22k

1− 1/22j

≤ 1.25 · 22k

+ 22k
k−1∑
j=0

22j

22j − 1

= 1.25 · 22k

+ 22k
k−1∑
j=0

(
1 +

1

22j − 1

)
≤ 1.25 · 22k

+ 22k

(k + 1.5)

≤ (k + 3) · 22k

.

Finally, insertions between y′ and the original value y can increase the rank
distance between y and y′ by an additional 22k

. Deletions only decrease the
distance. 2

3.3.3 Analysis

In Section 3.2, we showed that the amortized cost of an overflow is nonpositive.
Therefore we only need to analyze the operations other than the overflow.
There are two quantities we must examine in order to bound the amortized
cost. The first quantity is the actual running time of the operation. The second
quantity is the change of potential caused by inserting x into T0 and possibly
removing it from another tree Tp.

Actual cost. By Step 2 of the algorithm, if x is within rank distance (k+4)·
22k

of an element in T0∪T1∪· · ·∪Tk, then the search algorithm will complete in
round k. The actual total running time of k rounds is

∑k
j=0 O(log |Tj|) = O(2k).

The insertion and possible deletion take O(1) time, since we have pointers to
where the item will be deleted and inserted. Thus, the search algorithm attains
the unified bound, provided we have the invariant in Lemma 7 above.

16

Potential change. Recall that we do not need to consider the effects of the
overflow.

There is no change in death potential.

For j ≤ k, for each j-graph, in the worst case a new connected compo-
nent is formed; it has potential O(2j). This gives a total potential gain of∑k

j=0 O(2j) = O(2k).

Call y the item in tree Tk that was used as the starting point of the successful
finger search. For j > k, we note that x will always appear in the same j-
component as y. The growth of these components gives a potential gain of at
most

∑∞
j=k+1 4c2j 1

22j+1 = O(1).

Summary. The amortized cost of a search is given by the unified bound.

3.4 Insert

To perform an insertion, we search for the element as in Algorithm 2, but
stop when we find the predecessor. Then we add the new element into T0

(and overflow as usual). This new element appears in the same connected
component as its predecessor, and thus it increases the overflow potential by
O(1) (as in the search analysis). Also, the increase in death potential is O(1).

Thus the running time is dominated by the search for the predecessor, so the
amortized cost of the insert operation is the unified bound for the predecessor,
which is within a constant factor of the unified bound for the element itself.

3.5 Delete

To delete an element, we search for it as in Algorithm 2; once it is found, we
simply delete it from the tree Tk, if any, in which we find it, and also from the
finger search tree.

The actual cost can be bounded as follows. One or two tree deletions are
performed at O(1) amortized cost each, because the search gives us pointers
to the nodes to be deleted. Suppose that the search terminated in tree Tk, so
that the cost for the search is O(2k).

Next we consider the change in potential. The death potential decreases. We
claim that the overflow potential also does not increase. By Lemma 4, remov-
ing the element from the tree does not increase the potential. Removing the

17

element from the set of stored elements causes the rank difference between
some elements to decrease. Thus additional edges may appear in some of the
j-graphs. However, these edges do not cause any combining of connected com-
ponents because, if a j-edge from w to z now appears, there must have already
been a j-edge from w to the deleted element x and a j-edge from x to z. Thus
the potential does not increase.

Therefore the amortized cost of a deletion is within a constant factor of the
unified bound.

Acknowledgments

We thank Michael L. Fredman for helpful discussions.

References

[BD04] Mihai Bădoiu and Erik D. Demaine. A simplified and dynamic unified
structure. In Proceedings of the 6th Latin American Symposium on
Theoretical Informatics, volume 2976 of Lecture Notes in Computer
Science, pages 466–473, Buenos Aires, Argentina, April 2004.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and maintenance
of large ordered indexes. Acta Informatica, 1(3):173–189, February 1972.

[BT80] Mark R. Brown and Robert Endre Tarjan. Design and analysis of a data
structure for representing sorted lists. SIAM Journal on Computing,
9(3):594–614, 1980.

[CMSS00] Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the
dynamic finger conjecture for splay trees. Part I: Splay sorting log n-
block sequences. SIAM Journal on Computing, 30(1):1–43, 2000.

[Col00] Richard Cole. On the dynamic finger conjecture for splay trees. Part II:
The proof. SIAM Journal on Computing, 30(1):44–85, 2000.

[Elm04] Amr Elmasry. On the sequential access theorem and deque conjecture
for splay trees. Theoretical Computer Science, 314(3):459–466, April
2004.

[GMPR77] Leo J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R.
Roberts. A new representation for linear lists. In Conference Record of
the 9th Annual ACM Symposium on Theory of Computing, pages 49–60,
Boulder, Colorado, May 1977.

18

[HT71] T. C. Hu and A. C. Tucker. Optimal computer search trees and variable-
length alphabetic codes. SIAM Journal on Applied Mathematics,
21(4):514–532, December 1971.

[Iac01a] John Iacono. Alternatives to splay trees with O(log n) worst-case access
times. In Proceedings of the 12th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 516–522, Washington, D.C., January 2001.

[Iac01b] John Iacono. Distribution Sensitive Data Structures. PhD thesis,
Rutgers, The State University of New Jersey, New Brunswick, New
Jersey, 2001.

[Knu71] Donald E. Knuth. Optimum binary search trees. Acta Informatica,
1:14–25, 1971.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary
search trees. Journal of the ACM, 32(3):652–686, July 1985.

[Sun91] Rajamani Sundar. Amortized Complexity of Data Structures. PhD
thesis, New York University, 1991.

[Sun92] Rajamani Sundar. On the deque conjecture for the splay algorithm.
Combinatorica, 12:95–124, 1992.

[Tar85] R. E. Tarjan. Sequential access in splay trees takes linear time.
Combinatorica, 5(4):367–378, September 1985.

19

	1 Introduction
	2 Working-Set Structure
	3 Unified Structure
	3.1 Potential Function
	3.2 Overflow
	3.3 Search
	3.4 Insert
	3.5 Delete

	References

