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Abstract

We study the price of anarchy of selfish routing with variable traffic rates and when the
path cost is a non-additive function of the edge costs. Non-additive path costs are important,
for example, in networking applications, where a key performance metric is the achievable
throughput along a path, which is controlled by its bottleneck (most congested) edge. We
prove the following results.

• In multicommodity networks, the worst-case price of anarchy under the ℓp path cost with
1 < p ≤ ∞ can be dramatically larger than under the standard ℓ1 path cost.

• In single-commodity networks, the worst-case price of anarchy under the ℓp path cost with
1 < p < ∞ is no more than with the standard ℓ1 path norm. (A matching lower bound
follows trivially from known results.) This upper bound also applies to the ℓ∞ path cost
if and only if attention is restricted to the natural subclass of equilibria generated by
distributed shortest-path routing protocols.

• For a natural cost-minimization objective function, the price of anarchy with endogenous
traffic rates (and under any ℓp path cost) is no larger than that in fixed-demand networks.
Intuitively, the worst-case inefficiency arising from the “tragedy of the commons” is no
more severe than that from routing inefficiencies.
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1 Introduction

1.1 The Price of Anarchy and Variable Demand

The price of anarchy is the worst-case ratio between the objective function values of a Nash equilib-
rium and an optimal outcome of a game, and is an important quantitative measure of the inefficiency
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of selfish behavior. Over the past ten years, the price of anarchy has been successfully analyzed in
a diverse array of applications, such as scheduling, routing, facility location, network design, and
resource allocation (see [18, Chapters 17–21]). The primary research agenda of these works is to
identify problem domains and conditions under which the price of anarchy is guaranteed to be close
to 1, and hence selfish behavior causes only modest efficiency loss.

Much of this previous work studies optimization problems of the following sort: given resources
whose performance degrades with increasing congestion, allocate a fixed demand for the resources
in an optimal way. While obviously fundamental, such problems overlook a crucial feature of many
applications: the intrinsic coupling of the quality or cost of a resource and the demand for that
resource. We expect that the demand for an uncongested resource will be high, and that this
demand will fall as the resource becomes more congested. Allowing variable demand inevitably
leads to a trade-off between two different quantities: the number of users that benefit from the
resource, and the quality of the resource (which degrades as more and more users benefit from it).
We next illustrate this trade-off with a stark, famous example: the tragedy of the commons [15].

1.2 The Tragedy of the Commons

The tragedy of the commons refers to a shared resource that is destroyed by overconsumption. In
lieu of the traditional bovine example [15], we illustrate the idea in a network routing context.

Consider a large but fixed population of agents who are each considering traversing a link from a
node s to a node t. Suppose that if an x fraction of the population makes the trip, then each of the
itinerant agents incurs a cost of c(x) but reaps a benefit of 1. (Agents that stay home receive zero
benefit and cost.) Suppose further that we instantiate the cost function as c(x) = xd for d large.
Then the net benefit of making the trip is always non-negative, even if the link is fully congested,
and we expect the entire population to travel to t, resulting in zero net benefit for all.

Given dictatorial control of the population, we could implement a far superior outcome by
detaining an ǫ fraction of the population: then a 1 − ǫ fraction of the population enjoys a net
benefit of nearly 1 (for d large). In other words—and this is the tragedy of the commons—the fact
that the final ǫ fraction of the population insists on making the trip congests the shared resource
to the point that none of the population extracts any net benefit from it.

In most previous works on the price of anarchy of “selfish routing”, travel is mandatory for all
agents — that is, the amount of network traffic is exogenous (fixed), rather than endogenous as in
the above example. This brings us to the first goal of this paper.

(1) Quantify the inefficiency of selfish routing when traffic rates depend on the network congestion.

1.3 Bottleneck Links and Nonlinear Aggregation Functions

Question (1) illuminates a second issue with previous studies of the price of anarchy of selfish
routing: in the standard model, each network edge is given a congestion-dependent cost function,
and the cost of a path is defined using the additive aggregation function, as the sum of its edges’
costs. This aggregation function may be the most natural one, but it is not appropriate for all
applications. For instance, when analyzing the performance of a communication network with a
variable amount of traffic, a key performance metric is the achievable throughput along a path,
which is controlled by its bottleneck (most congested) link. The studies of Qiu et al. [19] and
Akella, Chawla, and Seshan [1] single out the choice of the additive aggregation function over the
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bottleneck link metric as a key disconnect between the standard selfish routing model and typical
concerns in networking applications.

The bottleneck link metric corresponds to using the ℓ∞ norm as the aggregation function.
Banner and Orda [5] point out that the ℓ∞ norm is the natural aggregation function in many
additional applications. For example, in wireless networks, the transmission capability of a path is
constrained by the node with the smallest lifetime, as determined by its remaining battery power
and the amount of traffic that it must send [9]. The ℓ∞ norm also arises when robustness to bursty
traffic [4] or to growing demand [27] is a priority. These types of applications motivate the second
goal of this paper.

(2) Analyze the price of anarchy in fixed- and variable-demand selfish routing networks with
nonlinear aggregation functions, and in particular with the ℓ∞ aggregation function.

1.4 Our Results: Nonlinear Aggregation Functions

We give several tight bounds on the price of anarchy in single- and multicommodity selfish routing
networks, with variable demand and nonlinear aggregation functions. We focus on the ℓp norms
for 1 ≤ p ≤ ∞.

We first describe our matching positive and negative results for the second goal (2). On the
negative side, we give examples in Section 3.1 that demonstrate the following.

• For every 1 < p ≤ ∞, there is a family of two-commodity networks with linear cost functions
and fixed traffic rates in which the price of anarchy grows polynomially with the network size.
(Cf. the p = 1 case, where the price of anarchy is at most 4/3 in arbitrary networks [23].)
The “bicriteria bound” of [23] — asserting that with arbitrary cost functions, the cost of an
equilibrium is no more than that of an optimal solution with double the traffic — also fails
to hold.

• For the ℓ∞ norm, there is a family of single-commodity networks with linear cost functions
and fixed traffic rates in which the price of anarchy grows polynomially with the network size,
and in which the bicriteria bound of [23] does not hold.

We present the following matching positive results for the case of fixed traffic rates in Section 3.

• For every 1 < p < ∞, the price of anarchy in single-commodity networks with the ℓp norm is
no worse than that in the well-understood p = 1 case [11, 20, 23]. For example, it is at most
4/3 with linear cost functions, ≈ d/ ln d with bounded-degree polynomial cost functions, and
so on. The bicriteria bound of [23] also holds in such networks.

Because single-commodity networks of parallel links provide tight lower bounds for the ℓ1

case [11, 20], the same lower bounds apply to the ℓp norm for every p ≥ 1 — for a single-edge
path, all of our path norms coincide. Thus, our upper bounds are the best possible.

• For the ℓ∞ norm and a natural subclass of equilibria, which we call subpath-optimal, the price
of anarchy in single-commodity networks is no worse than that in the ℓ1 case. The bicriteria
bound of [23] also holds for this subclass of equilibria. Again, these upper bounds are the
best possible.
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We next compare and contrast these contributions with other results in the literature. Our
positive result for subpath-optimal equilibria is reminiscent of “price of stability” analyses which
concern the best equilibrium of a game [2, 3, 11], but it is much stronger. The best equilib-
rium of a game typically cannot be reached without centralized intervention, but subpath-optimal
equilibria are the natural outcome of decentralized optimization from a networking perspective:
if an equilibrium is computed by a distributed shortest-path routing protocol, it is automatically
subpath-optimal (see Section 3.2).

The separation that we prove between the worst-case price of anarchy in single- and in multi-
commodity networks with the ℓp norm with p > 1 stands in contrast to the case of the ℓ1 norm,
where there is never such a separation [11, 20]. Indeed, all previously known proof techniques for
bounding the price of anarchy of selfish routing (for the ℓ1 norm) do not refer to the number of
commodities of a network, nor to any combinatorial structure whatsoever (as made precise in [22]).
These proof techniques for the ℓ1 case therefore appear incapable of extending to the ℓp case with
p > 1 — our results require a new and fundamentally combinatorial approach.

Finally, several recent works [5, 7, 8, 12, 17] obtain results on the price of anarchy with the
ℓ∞ aggregation function in the conceptually similar but technically different atomic selfish routing
model, where there is a finite number of players who each control a non-negligible amount of traffic.

1.5 Our Results: Variable Traffic Rates

To address the first goal (1), we augment the basic selfish routing model so that each player has
a fixed benefit from making the trip. If the player can travel from its source to its destination
incurring cost below this benefit, it makes the trip; otherwise, it does not. This augmented model
has been extensively studied in the transportation science literature (e.g. [13]), where the traffic is
said to be elastic.

With elastic traffic, there are two important quantities: the benefit to the players and the cost
incurred. Arguably the most natural way to optimize jointly these two quantities is to maximize
the difference between them; this objective has been studied previously for selfish routing with
elastic traffic by Chau and Sim [10] and Vetta [26]. However, meaningful approximation guarantees
exist for this mixed-sign objective function only under very strong assumptions (as in [10, 26]);
this issue is evident already in the single-link example in Section 1.2. To obtain broader insights
about the inefficiency of selfish routing with elastic demand, we instead consider the objective
of minimizing the travel cost of participating players plus the (lost) benefit of non-participating
players. This objective is equivalent to the previous one for exact optimization, but not for relative
approximation. It is analogous to the “prize-collecting” objectives widely studied in approximation
algorithm design (e.g., [14]).

Our main result for elastic traffic is that the tragedy of the commons is no worse than the
inefficiency of fixed-demand selfish routing. We establish this by a reduction: for every single- or
multicommodity network with elastic traffic, and for every ℓp path norm, we exhibit a network with
inelastic traffic, essentially the same cost functions, and with at least as large a price of anarchy
(under the same path norm). This reduction immediately implies the following upper bounds on
the price of anarchy with elastic traffic: for the standard ℓ1 path norm, all of the well-known upper
bounds for inelastic traffic carry over to the elastic traffic case, even in multicommodity networks; for
the ℓp path norm with p ∈ (1,∞), the same upper bounds apply to all single-commodity networks
with elastic traffic; and for the ℓ∞ path norm, these upper bounds apply to all subpath-optimal
equilibria in single-commodity networks with elastic traffic. Since selfish routing with elastic traffic
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is a strict generalization of the model with inelastic traffic — inelastic traffic is equivalent to infinite
benefits — these upper bounds are the best possible.

2 The Model

2.1 Instances

We describe a model of selfish routing that includes elastic traffic and a potentially nonlinear
aggregation function. By a selfish routing instance, we mean a triple (G,Γ, c) made up of the
following ingredients. First, G = (V,E) is a directed network with sources s1, . . . , sk ∈ V and sinks
t1, . . . , tk ∈ V . Second, Γ is a vector of non-increasing, continuous functions indexed by source-
sink pairs (or commodities) i; Γi models the distribution of the benefits of travel for the traffic of
commodity i, and is assumed to be defined on the population [0, Ri], where Ri ∈ [0,∞) is the size
of the population. Assuming that Γi is non-increasing amounts to ordering players according to
their benefit of participating. Finally, c is a vector of non-negative, continuous, non-decreasing cost
functions, indexed by E. The function ce denotes the per flow-unit cost incurred by traffic that
uses the edge e, given the amount of traffic on the edge.

2.2 Paths, Flows, and Aggregation Functions

For a network G, let Pi denote the si-ti paths of G and let P = ∪k
i=1Pi. A flow is a vector f

indexed by P. For a fixed flow f , we use ri to denote the amount ri =
∑

P∈P fP of traffic of the ith
commodity that is routed by f . We always assume that the flow represents those most interested
in traveling, so the ri units of traffic correspond to the subset [0, ri] of the entire population [0, Ri].
A flow is feasible for (G,Γ, c) if ri ≤ Ri for all commodities i.

For a flow f , let fe =
∑

P∈P : e∈P fP denote the amount of traffic using the edge e. The cost of
an edge e with respect to f is ce(fe). If P is a path containing the edges e1, e2, . . . , em and f is a
flow, then the per flow-unit cost cP (f) of P with respect to f is

cP (f) = ‖ce1
(fe1

), . . . , cem
(fem

)‖

for some aggregation function ‖·‖. In the traditional selfish routing model, ‖·‖ is the sum function.
In this paper, we allow ‖·‖ to be any ℓp norm ‖·‖p with 1 ≤ p ≤ ∞, where, by definition,

‖v1, . . . , vm‖p = (vp
1 + · · · + vp

m)
1/p

if p < ∞ and ‖v1, . . . , vm‖p = maxi vi if p = +∞ (where the vi’s are non-negative). We sometimes
call such an aggregation function a path norm.

2.3 Nash Flows

Intuitively, a flow is at Nash equilibrium (or is a Nash flow) if no player can do better by changing
its mind—by switching paths or by switching whether or not to travel.

Definition 2.1 (Flow at Nash Equilibrium) A flow f that is feasible for (G,Γ, c) is at Nash
equilibrium if:

(a) for every commodity i and paths P,P ′ ∈ Pi with fP > 0, cP (f) ≤ cP ′(f);
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(b) for every commodity i, the common cost ci(f) of all si-ti flow paths is Γi(ri).

Part (a) of Definition 2.1 is the usual condition that no player should be able to decrease its cost
by switching paths. For part (b), first note that if f satisfies part (a), then ci(f) is well defined—if
fP > 0 and fP ′ > 0 with P,P ′ ∈ Pi, then cP (f) = cP ′(f). Part (b) then asserts that all participants
enjoy benefit at least equal to their cost (since Γi(a) ≥ Γi(ri) = ci(f) for all a ∈ [0, ri]), and similarly
that all non-participants would incur at least as much cost as benefit if they did participate (since
Γi(a) ≤ Γi(ri) = ci(f) for all a ∈ [ri, Ri]).

Existence of a flow at Nash equilibrium can be established in a number of ways; for example, it
is a consequence of the very general results of Schmeidler [25].

Proposition 2.2 (Existence of Flows at Nash Equilibrium) Every instance (G,Γ, c) admits
at least one Nash flow.

Remark 2.3 (Instances with Inelastic Traffic) Section 3 focuses on instances with inelastic
traffic. Such instances can be modeled with elastic traffic by defining the functions Γ to be suffi-
ciently large everywhere. Section 3 equivalently defines an instance with inelastic traffic via a triple
(G, r, c), where the amount of traffic ri routed by each commodity is now exogenous. (If desired,
the traffic rates and cost functions can be scaled so that

∑k
i=1 ri = 1.) The definition of a Nash

flow is then merely part (a) of Definition 2.1.

2.4 The Price of Anarchy and the Pigou Bound

We define the combined cost CC(f) of a flow f feasible for an instance (G,Γ, c) with induced traffic
rates r as the travel cost plus the lost benefit from non-participants:

CC(f) =
∑

P∈P

cP (f)fP +

k
∑

i=1

∫ Ri

ri

Γi(x)dx. (1)

This objective function is simply the joint cost incurred by all of the players in the flow f , where
the cost of a single player x of commodity i is cP (f) if it is routed on the path P and Γi(x) if it is
not routed at all.

An optimal flow for an instance is one that minimizes the combined cost over all feasible flows.
The price of anarchy of an instance (G,Γ, c) is defined as the largest-possible ratio CC(f)/CC(f∗),
where f is a Nash flow and f∗ is an optimal flow. Note that this definition makes sense even when
Nash flows are not unique. For instances with inelastic traffic, the second term of (1) vanishes.
The cost of a feasible flow f is then defined as C(f) =

∑

P∈P cP (f)fP .
We call instances with inelastic traffic and the additive aggregation function basic instances.

We only study generalizations of basic instances, so our best-case scenario is to prove upper bounds
on the price of anarchy that match those for basic instances. The price of anarchy in such instances
depends on the set of allowable cost functions. Define the Pigou bound α(C) of a non-empty set of
cost functions C to be:

α(C) = sup
c∈C

sup
x,f≥0

f · c(f)

x · c(x) + (f − x)c(f)
. (2)

The Pigou bound of C is essentially the worst-possible price of anarchy in a two-node, two-edge
network where one edge has a constant cost function and the other edge has a cost function in C.
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Since all of the ℓp norms coincide in networks of parallel edges, α(C) lower bounds the price of
anarchy in networks with cost functions in C with respect to every ℓp norm (assuming that C
contains all of the constant cost functions).

The following facts are known for basic instances [11, 20]. First, the price of anarchy of every
(multicommodity) instance (G, r, c) with cost functions in a set C is at most the Pigou bound α(C).
Second, the value of α(C) is known for many natural sets C: if C contains only linear or concave
functions, then α(C) ≤ 4

3 ; if C contains only polynomials with non-negative coefficients and degree
at most d, then α(C) ≈ d/ ln d. (See [20] for more examples.) Qualitatively, these results imply that
the price of anarchy is small in basic instances provided cost functions are not “extremely steep.”

3 Nonlinear Path Norms

This section bounds the price of anarchy in selfish routing networks under the ℓp norms and with
inelastic traffic; the next section extends these bounds to networks with elastic traffic. We will
discover that the price of anarchy of selfish routing behaves differently in each of the three cases
of p = 1, p ∈ (1,∞), and p = +∞. Section 3.1 exhibits two examples that shape our goals for the
rest of the section. Section 3.2 identifies a natural subclass of Nash flows for the ℓ∞ norm, justifies
them from a networking perspective, and proves optimal bounds on their inefficiency in single-
commodity networks. Section 3.3 treats the ℓp norms with p ∈ (1,∞) and proves tight bounds on
the inefficiency of arbitrary Nash flows in single-commodity networks.

3.1 Motivating Examples

We now give the two examples promised in the Introduction. The first shows that there are no good
bounds on the price of anarchy of selfish routing with the ℓp norm in multicommodity networks,
even with linear cost functions and inelastic traffic, when p > 1.

Example 3.1 (A Lower Bound for the ℓp Norm in Multicommodity Networks) Fix an ℓp

norm with 1 < p ≤ ∞ and consider the two-commodity network shown in Figure 1. For a parame-
ter k ≥ 1, there are k internally disjoint paths s1 → vi → wi → t1 (i ∈ {1, 2, . . . , k}). Edges (vi, wi)
have the cost function c(x) = x; other edges in these paths have zero cost. There are k − 1 cross
edges (wi, vi+1) (for i ∈ {1, 2, . . . , k − 1}), each with cost 0. The second source s2 is connected
to v1 with a zero-cost edge, and wk is connected to t2 with a zero-cost edge. Finally, there is a
direct s2-t2 edge with constant cost c(x) = (r2 + 1)k1/p, where r2 is the traffic rate of the second
commodity, which is a function of k and p that we will define shortly. (If p = ∞, we interpret 1/p
as 0.) The traffic rate r1 of the first commodity is k.

First, consider the flow f∗ that routes the traffic of the first commodity evenly across the k
three-hop s1-t1 paths, and routes the second commodity’s traffic on the direct s2-t2 edge. The cost
of f∗ is k + r2 · (r2 + 1)k1/p. Next, by the choice of the cost of the direct s2-t2 edge, the following
flow f is at Nash equilibrium: route the first commodity’s traffic evenly across the three-hop s1-t1
paths and the second commodity’s traffic on the s2-t2 path that contains all of the cross edges. The
cost of f is k · (r2 +1)+r2 · (r2 +1)k1/p. The price of anarchy in the network is at least C(f)/C(f∗);
choosing r2 so that r2(r2 +1) = k1−1/p, this ratio is Ω(k(1−1/p)/2). Since n = O(k), this ratio grows
polynomially in the network size for every fixed p > 1.

Finally, note that doubling the traffic rates increases the cost of the optimal flow by only a
constant factor, so the bicriteria bound of [23]—stating that a Nash flow is no more expensive than
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Figure 1: A bad two-commodity example for the ℓp norm with p > 1.

an optimal flow at double the traffic rates, even with arbitrary cost functions—does not hold in
this network.

Our second example shows that even in single-commodity networks with linear cost functions
and inelastic traffic, there are no good bounds for worst-case flows at Nash equilibrium under the
ℓ∞ path norm.

Example 3.2 (A Lower Bound for the ℓ∞ Norm in Single-Commodity Networks) Suppose
we modify the network of Example 3.1 by removing s2, t2, and the edges incident to them. This
yields the network shown in Figure 2. There is a unique s-t path that contains all of the cross
edges; call it the zigzag path. With respect to the ℓ∞ norm, the flow f that routes all traffic on
the zigzag path is at Nash equilibrium—all s-t paths have cost k with respect to f and the ℓ∞
norm—and has cost k2. On the other hand, routing traffic evenly among the k three-hop paths
provides a flow with cost k. (This flow is also at Nash equilibrium.) The price of anarchy in this
network is therefore at least k.

As with Example 3.1, the bicriteria bound of [23] also fails in this example.

Examples 3.1 and 3.2 justify restricting our attention to single-commodity networks and, for
the ℓ∞ norm, to natural subclasses of equilibria.

3.2 The ℓ∞ Norm and Subpath-Optimal Nash Flows

We next consider single-commodity networks with the ℓ∞ norm. Example 3.2 shows that additional
restrictions are needed to prove a good bound on the price of anarchy. We require only a modest
and natural extra condition on Nash flows, stating that the Nash flow condition holds for all
intermediate nodes v and not just the destination t.
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Figure 2: A bad single-commodity example for the ℓ∞ norm.

Definition 3.3 (Subpath-Optimal Flow at Nash Equilibrium) Suppose (G, r, c) is a single-
commodity instance with inelastic traffic and the ℓ∞ path norm. Let f be a flow feasible for (G, r, c)
and let d(v) denote the minimum cost, with respect to f and the ℓ∞ norm, of an s-v path. The flow
f is a subpath-optimal Nash flow if whenever an s-t path P ∈ P with fP > 0 includes a vertex v,
the s-v subpath of P has ℓ∞ norm d(v).

To see that a subpath-optimal Nash flow is indeed a Nash flow, take v = t. The zigzag Nash flow of
Example 3.2 is not subpath-optimal, while the optimal flow is. Notions similar to subpath-optimal
equilibria were also proposed, for different purposes, in [1, 5].

Subpath-optimal Nash flows are well motivated. For example, suppose a flow at Nash equilib-
rium is computed by a Bellman-Ford-type shortest-path algorithm, like a “distance vector protocol”
such as OSPF (see e.g. [16]). If such an algorithm uses the cost functions {ce(·)} for edge lengths,
and it evaluates path lengths according to an ℓp norm, then its fixed points are flows at Nash equi-
librium under this norm (see Bertsekas and Tsitsiklis [6]). Such a shortest-path routing protocol
computes, by definition, shortest s-v paths for all possible destinations v. Thus, with the ℓ∞ path
norm, the fixed points of such an algorithm automatically satisfy the subpath-optimality property.

We now prove bounds on the inefficiency of subpath-optimal Nash flows. Examples 3.1 and 3.2
show that our proof techniques must make crucial use of both the subpath-optimal assumption and
the combinatorial structure of single-commodity networks.

The next lemma identifies a “minimal cut” with respect to a subpath-optimal Nash flow. The
plan is to treat the edges crossing this cut as a network of parallel links, enabling bounds on the
price of anarchy and also an analogue of the bicriteria bound of [23]. In the statement of the lemma,
we use the notation δ+(S) (δ−(S)), where S is a set of vertices, to denote the edges sticking out of
(sticking into) the set S.

Lemma 3.4 (Minimal Cut Lemma) Let (G, r, c) be a single-commodity instance with inelastic
traffic and the ℓ∞ path norm. Let f be a subpath-optimal Nash flow for (G, r, c) in which all flow
paths of f have cost c(f), and let S be the set of vertices reachable from the source s via edges with
cost strictly less than c(f). Then:
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(a) S is an s-t cut;

(b) ce(fe) ≥ c(f) for all e ∈ δ+(S);

(c) ce(fe) = c(f) for all e ∈ δ+(S) with fe > 0;

(d) fe = 0 for all e ∈ δ−(S).

Proof: Parts (a) and (b) follow from the definitions. Part (c) follows from part (b) and the fact that
if all flow paths of f have cost c(f), then ce(fe) ≤ c(f) for all edges e with fe > 0. For part (d),
suppose for contradiction that there is an edge e = (v,w) ∈ δ−(S) with fe > 0. Let P ∈ P be a
path with fP > 0 and e ∈ P . Recall that d(u) denotes the minimum cost (w.r.t. f and the ℓ∞ path
norm) of an s-u path. By the definition of S, d(u) < c(f) for all u ∈ S; in particular, d(w) < c(f).

Let P ′ be the s-w subpath of P , which concludes with the edge e. Since e ∈ δ−(S) and s ∈ S,
an earlier edge of P ′ lies in δ+(S). By part (c), the ℓ∞ norm of P ′ is at least c(f) > d(w). This
contradicts the subpath-optimality of f . �

Theorem 3.5 (Price of Anarchy Bound for the ℓ∞ Norm) Let (G, r, c) be a single-commodity
instance with cost functions in C, f a subpath-optimal Nash flow under the ℓ∞ norm, and f∗ a fea-
sible flow. Then C(f) ≤ α(C) · C(f∗).

Proof: Define the s-t cut S as in the Minimal Cut Lemma (Lemma 3.4). We now define an instance
on a network of parallel edges. Let V ′ = {s′, t′} and let E′ be a set of parallel edges (all directed
from s′ to t′) in one-to-one correspondence with the edges of δ+(S). Edges of E′ inherit cost
functions c from their counterparts in δ+(S).

Let G′ = (V ′, E′) and consider the instance (G′, r, c). Parts (a) and (d) of the Minimal Cut
Lemma imply that f routes precisely r units of flow on the edges of δ+(S); it therefore naturally
induces (by projection) a flow g feasible for (G′, r, c). Moreover, parts (b) and (c) of Lemma 3.4
imply that g is a Nash flow for (G′, r, c) with cost r · c(f)—the same cost as f in (G, r, c) with
the ℓ∞ path norm. Note that when we discuss the cost of flows in the network of parallel links
(G′, r, c), the path norm is irrelevant.

The feasible flow f∗ for (G, r, c) might route strictly more than r units of flow on the edges
of δ+(S), if some flow path of f∗ contains more than one edge of δ+(S). In this case, we define
g∗e ≤ f∗

e for all e ∈ δ+(S) in the following way: a path P ∈ P with f∗
P > 0 only contributes to the

g∗-value of the most expensive (i.e., largest value of ce(f
∗
e )) edge in P ∩ δ+(S), with ties broken

arbitrarily. (Since P is an s-t path and S is an s-t cut, P ∩ δ+(S) 6= ∅.) Then g∗ can be viewed as
a flow feasible for (G′, r, c) satisfying

∑

e∈E′

ce(g
∗
e )g∗e ≤

∑

e∈E′

ce(f
∗
e )g∗e ≤

∑

P∈P

cP (f∗)f∗
P = C(f∗).

Thus the cost of g∗ in (G′, r, c) is at most that of f∗ in (G, r, c) under the ℓ∞ path norm.
We have established that the price of anarchy in (G, r, c) is at most that in (G′, r, c). Since the

latter can be viewed as a basic instance, its price of anarchy is at most α(C). �

As discussed in Section 2.4, the upper bound in Theorem 3.5 is the best possible. Simple
examples [23] also show that the following bicriteria bound is optimal.
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Theorem 3.6 (Bicriteria Bound for the ℓ∞ Norm) Let (G, r, c) be a single-commodity instance
and f a subpath-optimal Nash flow under the ℓ∞ norm. If f∗ is feasible for (G, 2r, c), then
C(f) ≤ C(f∗).

Proof: Define the cut S, the instance (G′, r, c) and the flow g feasible for it, the instance (G′, 2r, c)
and the flow g∗ feasible for it, as in the proof of Theorem 3.5. The bicriteria bound for basic
instances [23] implies that the cost of g∗ in (G′, r, c) is at least that of g in (G′, r, c). Since the
cost of g∗ in (G′, 2r, c) is at most that of f∗ in (G, 2r, c) under the ℓ∞ path norm and the cost of g
in (G′, r, c) equals that of f in (G, r, c) under the ℓ∞ path norm, the proof is complete. �

3.3 The ℓp Norms

While the ℓ1 and ℓ∞ norms are the best motivated ones, it is also interesting to consider the ℓp

path norms with p < ∞. This section extends Theorems 3.5 and 3.6 to these path norms. The
proofs here are more involved as the Minimal Cut Lemma (Lemma 3.4) has only weak analogues
for the ℓp path norms with p < ∞. We instead argue about many cuts, and then aggregate the
results into a bound on the overall cost of a Nash flow. Since Nash flows under the ℓp norm with
p < ∞ are automatically subpath-optimal, we can bound their cost without any extra restrictions.

The first step is to linearly order the vertices of a network so that the cost of a Nash flow breaks
down nicely across several cuts. The following three propositions were previously known for the ℓ1

path norm (e.g. [21]); extending their proofs to the general ℓp case requires only cosmetic changes,
which we omit here.

Proposition 3.7 Let (G, r, c) be a single-commodity instance with path norm ℓp for some p ∈
[1,∞). Let f be a flow feasible for (G, r, c) and for a vertex v, let d(v) denote the minimum cost of
an s-v path with respect to f .

(a) For every edge e = (v,w), d(w) ≤ (d(v)p + ce(fe)
p)1/p.

(b) The flow f is at Nash equilibrium if and only if d(w) = (d(v)p+ce(fe)
p)1/p whenever e = (v,w)

is an edge with fe > 0.

Proposition 3.8 Let (G, r, c) be a single-commodity instance with path norm ℓp for some p ∈
[1,∞). If f is a Nash flow for (G, r, c), then there is an acyclic Nash flow f̃ with C(f̃) = C(f).

Proposition 3.9 Let (G, r, c) be a single-commodity instance with path norm ℓp for some p ∈
[1,∞), and let f be an acyclic Nash flow. Define d(v) as in Proposition 3.7. Then the vertices of G
can be ordered, with s first, such that: (i) every edge e with fe > 0 travels forward in the ordering;
and (ii) the values d(v) induced by f are non-decreasing in the ordering.

The next definition provides a sequence of cost functions, where the ith set of cost functions is
designed to isolate the cost of a flow across the ith cut of the network. We require two properties.
First, the ith set of cost functions should be “uniform” in some sense. Second, the cost of an edge
should be accurately accounted for over the sequence of cost functions, no matter how many of the
cuts the edge participates in.

Definition 3.10 (Cut Cost Functions) Let (G, r, c) be a single-commodity instance with path
norm ℓp for some p ∈ [1,∞), and let f be an acyclic Nash flow. Define d(v) as in Proposition 3.7, sort
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the vertices v1, . . . , vn as in Proposition 3.9, and define Si = {v1, . . . , vi} for each i = 1, 2, . . . , n−1.

For an edge e and an integer i ∈ {1, 2, . . . , n−1}, the ith cost function c
(i)
e of e is defined as follows:

• if e /∈ δ+(Si), then c
(i)
e is zero everywhere;

• if e ∈ δ+(Si), then c
(i)
e = λ

(i)
e ce, where λ

(i)
e is the unique number such that

d(vi+1) = (d(vi)
p + [λ(i)

e ce(fe)]
p)1/p.

For a flow f∗ feasible for (G, r, c), we then define c
(i)
P (f∗) = (

∑

e∈P [c
(i)
e (f∗

e )]p)1/p.

The second part of Definition 3.10 is not well defined if ce(fe) = 0; in this case Propositions 3.7(a)

and 3.9 imply that d(v) = d(w), so we can take λ
(i)
e = 0.

The next lemma states that the cost functions c
(i)
e do indeed serve the purposes described prior

to Definition 3.10.

Lemma 3.11 (Properties of Cut Cost Functions) With the assumptions and notation of Def-
inition 3.10, the following statements hold.

(a) For every i = 1, 2, . . . , n − 1, there is a constant Ai ≥ 0 such that c
(i)
e (fe) = Ai for every

e ∈ δ+(Si) and c
(i)
e is identically zero for every other edge. Moreover, every path P with fP > 0

includes either one edge of δ+(Si) (if Si is an s-t cut) or no edges of δ+(Si) (otherwise); and
includes no edge of δ−(Si).

(b) For each i = 0, 1, . . . , n − 1, d(vi+1) = ‖A1, . . . , Ai‖, where each Aj is defined as in (a).

(c) For every feasible flow f∗ for (G, r, c) and every path P ∈ P, cP (f∗) ≥ ‖c
(1)
P (f∗), . . . , c

(n−1)
P (f∗)‖.

Proof: For part (a), fix i ∈ {1, 2, . . . , n−1}. The first assertion holds by construction — only edges
of δ+(Si) have non-zero cost under the cost functions c(i) — with Ai the unique number satisfying
d(vi+1)

p = d(vi)
p +Ap

i . The second holds because the vertices are sorted topologically with respect
to f .

We next establish part (b) by induction on i. Since v1 = s and d(s) = 0, the base case (i = 0)
holds. For i > 0, we have

d(vi+1)
p = d(vi)

p + Ap
i =

i
∑

i=1

Ap
i = ‖A1, . . . , Ai‖

p,

where the first equality follows from the definition of Ai and the second from the inductive hypoth-
esis. The inductive step and part (b) thus hold.

Part (c) requires a non-trivial proof. Fix a feasible flow f∗ and an s-t path P ∈ P. Let P ′ be
the edges of P that travel forward with respect to the given topological ordering of the vertices
of G. We first claim that for every edge e = (vi, vj) ∈ P ′,

ce(f
∗
e )p ≥

j−1
∑

q=i

[

c(q)
e (f∗

e )
]p

. (3)
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To see this, fix an edge e = (vi, vj) ∈ P ′ with i < j. We can assume that ce(f
∗
e ) > 0. For every

q ∈ {i, . . . , j − 1}, the definitions of λ(q) and c(q) ensure that

d(vq+1)
p − d(vq)

p =
(

λ(q)
e ce(fe)

)p
=

(

λ(q)
e ce(f

∗
e )

)p
·

ce(fe)
p

ce(f∗
e )p

=
(

c(q)
e (f∗

e )
)p

·
ce(fe)

p

ce(f∗
e )p

.

Summing over all q ∈ {i, . . . , j − 1} then gives

d(vj)
p − d(vi)

p =





j−1
∑

q=i

(

c(q)
e (f∗

e )
)p



 ·
ce(fe)

p

ce(f∗
e )p

. (4)

Finally, Proposition 3.7(a) implies that

d(vj)
p − d(vi)

p ≤ ce(fe)
p = ce(f

∗
e )p ·

ce(fe)
p

ce(f∗
e )p

. (5)

Combining (4) and (5) then verifies (3).
Next, we can apply (3) to obtain

(cP (f∗))p =
∑

e∈P

ce(f
∗
e )p

≥
∑

e∈P ′

ce(f
∗
e )p

≥
∑

e=(vi,vj)∈P ′

j−1
∑

q=i

[c(q)
e (f∗

e )]p.

Reversing the order of summation and recalling the definition of c(i) then completes the proof:

(cP (f∗))p ≥
n−1
∑

i=1

∑

e∈P∩δ+(Si)

[c(i)
e (f∗

e )]p

=

n−1
∑

i=1

[c
(i)
P (f∗

e )]p

= ‖c
(1)
P (f∗), . . . , c

(n−1)
P (f∗)‖

p
.

�

The proofs of the next two lemmas, which analyze the inefficiency of a Nash flow according to a
single set of the cost functions described in Definition 3.10, are analogous to those for Theorems 3.5
and 3.6, respectively, where Lemma 3.11(a) plays the role originally served by the Minimal Cut
Lemma. In the statements of the lemmas, we use C(i) to denote the cost of a flow with respect to
the cost functions c(i).

Lemma 3.12 Let (G, r, c) be a single-commodity instance with the ℓp path norm (p ∈ [1,∞)) and
cost functions in the set C. Let f and f∗ be acyclic Nash and feasible flows for (G, r, c), respectively,

and define the cost functions c
(i)
e as in Definition 3.10. Then for each i = 1, 2, . . . , n − 1,

C(i)(f∗) ≥
C(i)(f)

α(C)
.

13



Proof: Let the sink t of G appear as the mth vertex in the topological ordering of the vertices with
respect to the acyclic flow f . If i ≥ m, then C(i)(f) = 0 and the lemma holds. Otherwise, consider
the s-t cut Si = {v1, . . . , vi}. Define the instance (G′, r, c(i)) on a network of parallel links as in
the proof of Theorem 3.5, with edges of G′ corresponding to those of δ+(Si). Restricting f to the
edges of δ+(Si) induces a flow g in G′. Using the notation and the assertions in Lemma 3.11(a), g
is feasible and at Nash equilibrium for (G′, r, c(i)), and its cost is r · Ai = C(i)(f). As in the proof
of Theorem 3.5, the flow f∗ induces a flow g∗ feasible for (G′, r, c(i)) with cost at most that of f∗

in (G, r, c(i)) under the ℓp path norm. The instance (G′, r, c(i)) can be viewed as a basic instance
with cost functions that are scalar multiples of functions in C. Taking the closure of a set of cost
functions under multiplication by positive scalars does not change its Pigou bound [20]. Thus, the
cost of g∗ in (G′, r, c(i)), and hence of f∗ in (G, r, c(i)), is at least C(g)/α(C) = C(i)(f)/α(C). �

Modifying the proof of Lemma 3.12 in the obvious way (as in the proof of Theorem 3.6) yields
the following.

Lemma 3.13 Let (G, r, c) be a single-commodity instance with the ℓp path norm (p ∈ [1,∞)).
Let f be an acyclic Nash flow for (G, r, c) and f∗ a feasible flow for (G, 2r, c), and define the cost

functions c
(i)
e as in Definition 3.10. Then for each i = 1, 2, . . . , n − 1,

C(i)(f∗) ≥ C(i)(f).

We now prove bounds on the price of anarchy and a bicriteria bound by aggregating the “cut-
by-cut” bounds of Lemmas 3.12 and 3.13 into a bound for the entire network.

Theorem 3.14 (Price of Anarchy Bound for the ℓp Norm) Let (G, r, c) be a single-commodity
instance with the ℓp norm (p < ∞) and cost functions in C. If f and f∗ are Nash and feasible flows
for (G, r, c), respectively, then C(f) ≤ α(C) · C(f∗).

Proof: We can assume without loss of generality that f is acyclic (Proposition 3.8). We first
use Lemma 3.11 to lower bound the cost of f∗ in terms of the corresponding cost functions c(i).
Specifically, write

C(f∗) =
∑

P∈P

f∗
P cP (f∗)

≥
∑

P∈P

f∗
P

∥

∥

∥
c
(1)
P (f∗), . . . , c

(n−1)
P (f∗)

∥

∥

∥
(6)

=
∑

P∈P

∥

∥

∥
f∗

P · c
(1)
P (f∗), . . . , f∗

P · c
(n−1)
P (f∗)

∥

∥

∥
(7)

≥

∥

∥

∥

∥

∥

∑

P∈P

f∗
P · c

(1)
P (f∗), . . . ,

∑

P∈P

f∗
P · c

(n−1)
P (f∗)

∥

∥

∥

∥

∥

, (8)

where (6) follows from Lemma 3.11(c), and (7) and (8) follow since ‖·‖ is a norm, and thus is linear
under scalar multiplication and satisfies the Triangle inequality. Applying Lemma 3.12 and the
monotonicity of ‖·‖, we obtain

C(f∗) ≥

∥

∥

∥

∥

∥

1

α(C)

∑

P∈P

fP · c
(1)
P (f), . . . ,

1

α(C)

∑

P∈P

fP · c
(n−1)
P (f)

∥

∥

∥

∥

∥

. (9)
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We now reverse the argument to recover the cost of the Nash flow f . Since the Triangle
inequality is only useful in one direction, we instead use the stronger assertions of Lemma 3.11.
Precisely, let the sink t be the mth vertex in the underlying ordering of the vertices of G. Then,
for some non-negative constants A1, . . . , Am−1, we have

C(f∗) ≥

∥

∥

∥

∥

∥

1

α(C)

∑

P∈P

fP · A1, . . . ,
1

α(C)

∑

P∈P

fP · Am−1

∥

∥

∥

∥

∥

(10)

=

∑

P∈P fP

α(C)
‖A1, . . . , Am−1‖ (11)

=
1

α(C)

∑

P∈P

fP · d(t) (12)

=
C(f)

α(C)
, (13)

where (10) follows from (9) and Lemma 3.11(a), (11) from the linearity of ‖·‖ under scalar mul-
tiplication, (12) from Lemma 3.11(b) with i = m, and (13) from Definition 2.1 and the definition
of d(t). This completes the proof. �

An entirely analogous proof, combined with Lemma 3.13, establishes a bicriteria bound.

Theorem 3.15 (Bicriteria Bound for the ℓp Norm) Let (G, r, c) be a single-commodity in-
stance with the ℓp norm (p < ∞). If f and f∗ are Nash and feasible flows for (G, r, c) and
(G, 2r, c), respectively, then C(f) ≤ C(f∗).

4 Bounds on the Tragedy of the Commons with Elastic Traffic

This section shows that the worst-possible inefficiency arising from the tragedy of the commons has
no greater magnitude than that arising from the routing inefficiencies of selfish traffic. We establish
this by “reducing” networks with elastic traffic to those with inelastic traffic in the following sense.

Theorem 4.1 (Reduction from Elastic Traffic to Inelastic Traffic) For every instance (G,Γ, c)
with elastic traffic and cost functions in a set C, and every ℓp path norm with 1 ≤ p ≤ ∞, there
is an instance (Ĝ, r̂, ĉ) with inelastic traffic and cost functions that are either constant or in C, in
which the price of anarchy (under the ℓp path norm) is at least that of (G,Γ, c).

For the ℓ∞ path norm, this reduction also applies to the price of anarchy with respect to subpath-
optimal Nash flows.

Proof: Consider an instance (G,Γ, c) and an ℓp path norm with 1 ≤ p ≤ ∞. Let f be a Nash flow
and f∗ an optimal flow. Let r and r∗ denote the corresponding induced vectors of traffic rates.
For each commodity i, we can discard all traffic between max{ri, r

∗
i } and Ri: this decreases the

combined cost of f and f∗ by a common amount and can only increase the price of anarchy. We
can therefore assume that for each commodity i, either f or f∗ routes all of the traffic of that
commodity.

Obtain a network Ĝ from G as follows. For each commodity i, add new vertices ŝi and t̂i,
which are the source and sink vertices for commodity i in Ĝ. Add edges (ŝi, si) and (ti, t̂i) with
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constant cost ĉ(x) = 0. Finally, add the edge (ŝi, t̂i) with constant cost ĉ(x) = Γi(ri), and define r̂i

as max{ri, r
∗
i }. Observe that the ŝi-t̂i paths of Ĝ, excluding the direct ŝi-t̂i edge, enjoy a natural

and cost-preserving bijective correspondence with the si-ti paths of G.
We complete the proof by showing that the price of anarchy under the ℓp norm in the in-

stance (Ĝ, r̂, ĉ) with inelastic traffic is at least that in the original instance (G,Γ, c). First, observe
that f and f∗ naturally induce feasible flows f̂ and f̂∗ in (Ĝ, r̂, ĉ), with the traffic of a commodity i
that is not routed by a flow in (G,Γ, c) being sent on the direct (ŝi, t̂i) edge in (Ĝ, r̂, ĉ). Since the
cost of the direct ŝi-t̂i path is always Γi(ri), independent of the path norm, the induced flow f̂ is
at Nash equilibrium in (Ĝ, r̂, ĉ) under the ℓp path norm. Also, for the ℓ∞ path norm, the flow f̂
is subpath-optimal in (Ĝ, r̂, ĉ) provided f is subpath-optimal in (G,Γ, c). Since every Γi is non-
increasing, the cost of f̂ in (Ĝ, r̂, ĉ) is at least the combined cost of f in (G,Γ, c). For the same
reason, the cost of f̂∗ in (Ĝ, r̂, ĉ) is at most the combined cost of f∗ in (G,Γ, c). The price of
anarchy of (Ĝ, r̂, ĉ) is at least C(f̂)/C(f̂∗) ≥ CC(f)/CC(f∗), which completes the proof. �

Adding constant cost functions to a set C does not affect its Pigou bound α(C) (recall Sec-
tion 2.4). Thus, the following three corollaries follow immediately from Theorem 4.1 and from
known results for the ℓ1 path norm [11, 20] and Theorems 3.5 and 3.14.

Corollary 4.2 Let (G,Γ, c) be an instance with cost functions in C, f a Nash flow under the ℓ1

norm, and f∗ a feasible flow. Then CC(f) ≤ α(C) · CC(f∗).

Corollary 4.3 Let (G,Γ, c) be a single-commodity instance with cost functions in C, f a subpath-
optimal Nash flow under the ℓ∞ norm, and f∗ a feasible flow. Then CC(f) ≤ α(C) · CC(f∗).

Corollary 4.4 Let (G,Γ, c) be a single-commodity instance with cost functions in C, f a Nash flow
under the ℓp norm with p ∈ (1,∞), and f∗ a feasible flow. Then CC(f) ≤ α(C) · CC(f∗).

Corollary 4.2 also holds more generally for the nonatomic congestion games studied in [24].

5 Conclusions

This paper established bounds on the price of anarchy of selfish routing with nonlinear path ag-
gregation functions and with variable traffic. The worst-case price of anarchy is unbounded in
multicommodity networks with nonlinear aggregation functions, and even in single-commodity net-
works with the ℓ∞ path norm, even when every edge cost function is linear. On the positive side,
the worst-case price of anarchy in single-commodity networks with nonlinear aggregation functions
— and for the ℓ∞ norm, with attention restricted to the subclass of equilibria generated by dis-
tributed shortest-path routing protocols — is the same as that for the well-understood ℓ1 norm.
All of these bounds on the price of anarchy extend to networks with elastic traffic, for a natural
cost-minimization objective.
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[3] E. Anshelevich, A. Dasgupta, É. Tardos, and T. Wexler. Near-optimal network design with
selfish agents. Theory of Computing, 4(1):77–109, 2008.

[4] A. Banerjee and J. Yoo. Minimizing maximum logical link congestion in packet switched opti-
mal networks. In Proceedings of the 1997 IEEE International Conference on Communcations
(ICC), volume 3, pages 1298–1302, 1997.

[5] R. Banner and A. Orda. Bottleneck routing games in communication networks. IEEE Journal
on Selected Areas of Communication, 25(6):1173–1179, 2007.

[6] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, 1989. Second Edition, Athena Scientific, 1997.

[7] C. Busch and M. Magdon-Ismail. Atomic routing games on maximum congestion. Theoretical
Computer Science, 410(36):3337–3347, 2009.

[8] I. Caragiannis, C. Galdi, and C. Kaklamanis. Network load games. In Proceedings of the 16th
Annual Symposium on Algorithms and Computation (ISAAC), volume 3827 of Lecture Notes
in Computer Science, pages 809–818, 2005.

[9] J. H. Chang and L. Tassiulas. Energy conserving routing in wireless ad-hoc networks. In
Proceedings of INFOCOM, pages 22–31, 2000.

[10] C. K. Chau and K. M. Sim. The price of anarchy for non-atomic congestion games with
symmetric cost maps and elastic demands. Operations Research Letters, 31(5):327–334, 2003.

[11] J. R. Correa, A. S. Schulz, and N. E. Stier Moses. Selfish routing in capacitated networks.
Mathematics of Operations Research, 29(4):961–976, 2004.

[12] A. Epstein, M. Feldman, and Y. Mansour. Efficient graph topologies in network routing games.
Games and Economic Behavior, 66(1):115–125, 2009.

[13] N. H. Gartner. Optimal traffic assignment with elastic demands: A review; Part I. Analysis
framework. Transportation Science, 14(2):174–191, 1980.

[14] M. X. Goemans and D. P. Williamson. The primal-dual method for approximation algorithms
and its application to network design problems. In D. S. Hochbaum, editor, Approximation
Algorithms for NP-Hard Problems, chapter 4, pages 144–191. PWS Publishing Company, 1997.

[15] G. Hardin. The tragedy of the commons. Science, 162:1243–1248, December 13 1968.

[16] S. Keshav. An Engineering Approach to Computer Networking. Addison-Wesley, 1997.

[17] V. Mazalov, B. Monien, F. Schoppmann, and K. Tiemann. Wardrop equilibria and price of
stability for bottleneck games with splittable traffic. In Proceedings of the Second Annual
Workshop on Internet and Network Economics (WINE), volume 4286 of Lecture Notes in
Computer Science, pages 331–342, 2006.

17
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