Problem 1

Euler’s sieve is a souped-up version of the sieve of Eratosthenes, which finds the prime numbers. It works as follows:

L = the list of numbers from 2 to N;
P = 2; /* The first prime */
while (P^2 < N) {
 L1 = the list of all X in L such that P <= X <= N/P.
 L2 = P*L1;
 delete everything in L2 from L;
P = the next value after P in L;
}
return L;

For instance, for N=27, successive iterations proceed as follows:

Initialization
L = [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27]
P = 2

First iteration
L1 = [2 3 4 5 6 7 8 9 10 11 12 13]
L2 = [4 6 8 10 12 14 16 18 20 22 24 26]
L = [2 3 5 7 9 11 13 15 17 19 21 23 25 27]
P = 3

Second iteration
L1 = [3 5 7 9]
L2 = [9 15 21 27]
L = [2 3 5 7 11 13 15 17 19 23 25]
P = 5

Third iteration
L1 = [5]
L2 = [25]
L = [2 3 5 7 11 13 17 19 23]

A. Write a MATLAB function EulerSieve1(N) which constructs the Euler sieve, implementing L, L1, L2 as arrays of integers, as above.

B. Write a MATLAB function EulerSieve2(N) which constructs the Euler sieve, implementing L, L1, and L2 as Boolean arrays, where L[i] = 1 if i is currently in the set L. Thus, the final value returned in the above example would be the array

[0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0]
Problem 2:

There is a theorem that states that, if you carry out the following procedure:

\[P = \text{any polygon (this can be concave or even cross itself)}. \]

\[\text{loop} \{
\hspace{1cm} \text{compute the midpoint of each side of } P \\
\hspace{1cm} P = \text{the polygon formed by connecting these midpoints in sequence}; \\
\} \]

Then \(P \) will converge toward a series of points that lie on an ellipse. Picture on the next page.

A. Assume that \(P \) is represented as a \(2 \times n \) matrix, where each column is the coordinates of one vertex of \(P \). For example, the polygon with vertices at \((0,0), (2,8), (4,0), (-2,6), (6,6) \) would be represented as the array,

\[
\begin{bmatrix}
0 & 2 & 4 & -2 & 6 \\
0 & 8 & 0 & 6 & 6
\end{bmatrix}
\]

Write a MATLAB function \texttt{ConnectMidpoints(P)} that, given a polygon \(P \) constructs the polygon that results from connecting the midpoints of \(P \) in sequence. For instance if \(P \) is the matrix above then \texttt{ConnectMidpoints(P)} would return the array

\[
\begin{bmatrix}
1 & 3 & 1 & 2 & 3 \\
4 & 4 & 3 & 6 & 3
\end{bmatrix}
\]

Each column of \(Q \) is constructed by taking the average of two consecutive columns of \(P \) and dividing by 2; e.g. \(Q[:,1] = 1/2(P[:,1]+P[:,2]) \). The last column of \(Q \) is the average of the last and first column of \(P \); i.e. \(Q[:,1] = 1/2(P[:,5]+P[:,1]) \).

Your code should of course work for polygons with any number of points, not just polygons with 5 points.

B. Write a MATLAB function \texttt{ConvergingPolygons(P,N)} which takes as input a polygon \(P \) and a number \(N \) and draws pictures of the first \(N \) polygons in this sequence, starting with \(P \). Let MATLAB adjust the scale on each successive picture, or the picture will soon become too small to see. Also, as always with geometric drawings in MATLAB, call \texttt{axis equal} to make sure that the x and y axes have the same scale.

Note: To make multiple plots on a single figure, use \texttt{hold on} and \texttt{hold off}. To make multiple figure, use \texttt{figure()}. So the code inside the loop that generated each figure on the next page had the form

\[
\begin{align*}
\text{figure()} \\
h\text{old on } \\
\text{plot(A(1,:), A(2,:))} \\
\text{plot(B(1,:), B(2,:), '--')} \\
\text{axis equal} \\
h\text{old off}
\end{align*}
\]

where \(A \) and \(B \) are the appropriate matrices.
Output of ConvergingPolygons(P,6) with

\[P = \begin{bmatrix} 1 & 5 & 8 & -4 & 6 & 2 \\ 2 & 7 & 16 & 10 & 3 & 9 \end{bmatrix} \]