Solution to Practice Exam

Problem 1. (20 points) Rank the following functions by order of growth; that is, find an arrangement f_1, f_2, \ldots, f_n of the functions satisfying $f_1 = \Omega(f_2)$, $f_2 = \Omega(f_3)$, \ldots, $f_{n-1} = \Omega(f_n)$.

\[
\begin{align*}
\text{n!} & 4^{\lg n} & n \cdot 2^n & \sqrt{n} \\
\text{e}^n & 3^n & 2^n & n^2 \\
\lg^2 n & n^3 & 2^{\lg n} & n \log n \\
\log \log n & \log n & n^{1/\lg n} & 2
\end{align*}
\]

Solution:

\[
\begin{align*}
n! &= \Omega(3^n), \\
3^n &= \Omega(e^n), \\
e^n &= \Omega(n \cdot 2^n), \\
n \cdot 2^n &= \Omega(2^n), \\
2^n &= \Omega(n^3), \\
n^3 &= \Omega(n^2), \\
4^{\lg n} &= n^2 = \Omega(n \log n), \\
2^{\lg n} &= n = \Omega(\sqrt{n}), \\
\sqrt{n} &= \Omega(\lg^2 n), \\
\lg^2 n &= \Omega(\lg n), \\
\log n &= \Omega(\log \log n), \\
\log \log n &= \Omega(2), \\
n^{1/\lg n} &= 2.
\end{align*}
\]

Problem 2. (20 points) The integer square root problem is to determine the integer portion p of the square root of integer n; that is, find $p = \lfloor \sqrt{n} \rfloor$.

Solution:

(a) Give a linear-time algorithm to solve the integer square root problem. Prove your algorithm correct using a loop invariant.

INTEGER-SQRT-LINEAR(n)
1. \textbf{assert} $n \geq 0$
2. $p = 1$
3. \textbf{while} $p \times p \leq n$
4. \hspace{1em} $p = p + 1$
5. \textbf{return} $p - 1$
We prove the algorithm correct using the following loop invariant:

At the start of each iteration of the while loop on lines 6-7, \(p \leq \sqrt{n} + 1 \).

 Initialization: Before the first iteration, \(n \geq 0 \) and \(p = 1 \), so the invariant holds.

 Maintenance: Upon entering the loop body, \(p \leq \sqrt{n} \) due to the loop entry condition and \(\sqrt{n} \leq \sqrt{n} + 1 \), so the invariant holds. Before leaving the loop body, \(p \) is increased to \(p + 1 \). Adding 1 to both sides of the loop entry condition gives \(p + 1 \leq \sqrt{n} + 1 \), so the invariant holds again.

 Termination: Upon termination, we must have \(p > \sqrt{n} \) due to the loop entry condition. Combining with \(p \leq \sqrt{n} + 1 \) from maintenance gives:

\[
\sqrt{n} < p \leq \sqrt{n} + 1,
\]
\[
\sqrt{n} - 1 < p - 1 \leq \sqrt{n},
\]
\[
p - 1 = [\sqrt{n}].
\]

Therefore, the algorithm correctly returns \([\sqrt{n}]\).

The algorithm runs in \(O(p) \) or, equivalently, \(O(\sqrt{n}) \) time.

(b) Give a logarithmic-time algorithm to solve the integer square root problem. Prove your algorithm correct using a loop invariant.

\begin{verbatim}
INTEGER-SQRT-LOGARITHMIC(n)
1 assert n >= 0
2 lo = 0
3 hi = n + 1
4 while lo < hi
5 mid = [(lo + hi)/2]
6 square = mid * mid
7 if square == n
8 return mid
9 elseif square < n
10 lo = mid + 1
11 elseif square > n
12 hi = mid
13 return lo - 1
\end{verbatim}

Note that we are less worried about overflow on \(lo + hi \) as we already have a more dangerous \(mid * mid \).

Note that a complete proof would require showing that the loop terminates. Informally, the half-open range \([lo, hi)\) the loop iterates over is reduced by at least one on each iteration, so eventually \(lo \geq hi \). See problem 3 in homework 2 for a more detailed way to show termination.

We prove the algorithm correct using the following loop invariant:
At the start of each iteration of the while loop on lines 4-12, \(lo - 1 < \sqrt{n} \leq hi \).

Initialization: Before the first iteration, \(n \geq 0, lo = 0, hi = n + 1 \), so \(-1 < \sqrt{n} \leq n + 1\), and the invariant holds.

Maintenance: If \(mid = \sqrt{n} \), the algorithm correctly returns \(mid \) at line 8, the loop terminates, and we don’t need to show maintenance.

If \(mid < \sqrt{n} \), line 10 sets \(lo = mid + 1, hi \) remains unchanged, and the invariant reads \(mid < \sqrt{n} \leq hi \), which holds by the entry condition \(mid < \sqrt{n} \) and unchanged \(hi \).

If \(mid > \sqrt{n} \), line 12 sets \(hi = mid, lo \) remains unchanged, and the invariant reads \(lo - 1 < \sqrt{n} \leq mid \), which holds by the entry condition \(mid > \sqrt{n} \) and unchanged \(lo \).

Termination: Upon termination, we must have \(lo = hi \) due to the loop entry condition. Combining with \(lo - 1 < \sqrt{n} \leq hi \) from maintenance gives:

\[
lo - 1 < \sqrt{n} \leq hi \leq lo,
lo - 1 < \sqrt{n} \leq lo,
lo = \lfloor \sqrt{n} \rfloor.
\]

\(n \) is not a perfect square, as otherwise the loop would have terminated with the return at line 8. Therefore, \(\sqrt{n} \) is not an integer and \(lo - 1 = \lfloor \sqrt{n} \rfloor \).

The algorithm runs in \(O(\lg n) \) time.

Problem 3. (20 points) Suppose that we have a hash table with \(m \) slots.

Solution:

(a) Describe two ways to resolve collisions.

Two common ways to resolve collisions are chaining and open addressing. In chaining, all elements hashing to the same table slot are put into a linked list. In open addressing, the table slots are repeatedly examined until a free slot (if inserting) or the desired element (if searching) is found.

(b) If collisions are resolved by chaining and \(n \) keys are inserted into the table, assuming simple uniform hashing, what is the expected number of collisions?

The probability of two keys hashing to the same location is \(\frac{1}{m} \), and there are \(\binom{n}{2} \) ways to pick two keys, leading to the expected number of collisions \(N_c = \frac{1}{m} \binom{n}{2} \).

(c) Under the same assumptions, what is the probability that exactly \(k \) keys hash to a particular slot?

The probability of \(k \) keys hashing to the same location is \(\left(\frac{1}{m} \right)^k \), the probability of remaining \(n - k \) keys hashing somewhere else is \(\left(1 - \frac{1}{m} \right)^{n-k} \), and there are \(\binom{n}{k} \) ways to pick \(k \) keys out of \(n \), making the probability that exactly \(k \) keys hash to a particular slot \(P_k = \left(\frac{1}{m} \right)^k \left(1 - \frac{1}{m} \right)^{n-k} \binom{n}{k} \).
Problem 4. (20 points) Give an algorithm to determine whether a given node is a root of a valid binary search tree. Analyze the running time of your algorithm.

Solution: One possible approach is to recurse on both subtrees, checking the values encountered for being in the allowed range \([\text{min}, \text{max}]\) in the algorithm below.

\[
\text{Is-BST}(\text{node}, \text{min}, \text{max})
\]

1. if \(\text{node} = \text{NIL}\)
2. return TRUE
3. if \(\text{node.key} < \text{min}\) or \(\text{node.key} \geq \text{max}\)
4. return FALSE
5. return Is-BST(\text{node.left}, \text{min}, \text{node.key}) and Is-BST(\text{node.right}, \text{node.key}, \text{max})

The algorithm assumes the initial call is made as Is-BST(\text{node}, -\infty, \infty).

The algorithm visits each node of the tree at most once, so the running time is \(O(n)\).

Problem 5. (20 points) The transpose of a directed graph \(G = (V, E)\) is the graph \(G^T = (V, E^T)\), where \(E^T = \{(v, u) \in V \times V : (u, v) \in E\}\). Thus, \(G^T\) is \(G\) with all its edges reversed. Give efficient algorithms for computing \(G^T\) from \(G\), for:

Solution:

(a) Adjacency-list representation of \(G\).

\[
\text{TRANSPOSE-LIST}(G)
\]

1. for each \(u \in G.\text{adj}\)
2. \(G^T.\text{adj} = \emptyset\)
3. for each \(u \in G.\text{adj}\)
4. for each \(v \in G.\text{adj}[u]\)
5. INSERT(\(G^T.\text{adj}[v], u\))
6. return \(G^T\)

The algorithm runs in \(O(V + E)\) time.

(b) Adjacency-matrix representation of \(G\).

\[
\text{TRANSPOSE-MATRIX}(G)
\]

1. \(G^T.\text{adj} = \emptyset\)
2. for \(i = 1\) to \(|G.V|\)
3. for \(j = 1\) to \(|G.V|\)
4. \(G^T.\text{adj}[j, i] = G.\text{adj}[i, j]\)
5. return \(G^T\)

The algorithm runs in \(O(V^2)\) time.

Problem 6. (20 points) The knapsack problem is the following. A thief robbing a store finds \(n\) items. The \(i\)-th item is worth \(v_i\) dollars and weighs \(w_i\) pounds, where \(v_i\) and \(w_i\) are integers.
The thief wants to take as valuable a load as possible, but they can carry at most W pounds in their knapsack, for some integer W. Which items should they take?

Give a dynamic-programming solution to the knapsack problem.

Solution: We define $mv[i, w]$ to be the maximum value obtainable by considering items 1 through i with total weight no greater than w.

$mv[0, w] = 0$ and $mv[i, 0] = 0$ for all i and w, as no value can be obtained with zero items or with weight no greater than zero.

If the i-th item doesn’t fit, the maximum value with i items $mv[i, w]$ is the same as the maximum value with $i - 1$ items $mv[i - 1, w]$.

If the i-th item fits, we need to pick the greater of two values: the one that includes the i-th item, and the one that doesn’t.

We can provide a recursive definition for $mv[i, w]$, and associated dynamic-programming algorithms:

$$mv[i, w] = \begin{cases}
0 & \text{if } i = 0 \text{ or } w = 0, \\
mv[i-1, w] & \text{if } w_i > w, \\
\max(mv[i-1, w], mv[i-1, w-w_i] + v_i) & \text{otherwise.}
\end{cases}$$

Knapsack(W, n, v, w)

1. let $mv[0..n, 0..W]$ be a new array
2. for $k = 0$ to W
3. \hspace{1em} $mv[0, k] = 0$
4. for $k = 0$ to n
5. \hspace{1em} $mv[k, 0] = 0$
6. for $i = 1$ to n
7. \hspace{2em} for $j = 1$ to W
8. \hspace{3em} if $w_i > j$
9. \hspace{4em} $mv[i, j] = mv[i - 1, j]$
10. \hspace{3em} else
11. \hspace{4em} $mv[i, j] = \max(mv[i - 1, j], mv[i - 1, j - w_i] + v_i)$
12. return mv

Print-Knapsack(W, n, w, mv)

1. $j = W$
2. for $i = n$ to 1
3. \hspace{1em} if $mv[i, j] \neq mv[i - 1, j]$
4. \hspace{2em} print "Taking item " + i
5. \hspace{2em} $j = j - w_i$

The algorithm fills an $n \times W$ table, spending constant time on each cell, so the running time and space are both $\Theta(nW)$.

5