Problem 1. (20 points) Prove or disprove the following conjectures:

(a) $n^{\log c} = O(c^{\log n})$.
(b) $2^{n+1} = O(2^n)$.
(c) $2^{2^n} = O(2^n)$.
(d) $T(n) = T(n-1) + n = O(n^2)$.
(e) $T(n) = 16T(n/4) + n^2 = O(n^2)$.

Solution:

(a) $n^{\log c} = O(c^{\log n})$ is true, as:

$$n^{\log c} = (2^{\log n})^{\log c} = 2^{\log n \cdot \log c} = (2^{\log c})^{\log n} = c^{\log n}.$$

(b) $2^{n+1} = O(2^n)$ is true, as:

$$2^{n+1} = 2 \cdot 2^n = O(2^n)$$

is satisfied for any $c \geq 2$.

(c) $2^{2^n} = O(2^n)$ is false, as:

$$2^{2^n} = 2^n \cdot 2^n = O(2^n)$$

requires $c \geq 2^n$.

(d) $T(n) = T(n-1) + n = O(n^2)$ is true, as for the guess $T(k) \leq ck^2$, $0 < k < n$, we have:

$$T(n) = T(n-1) + n$$
$$\leq c(n-1)^2 + n$$
$$= c(n^2 - 2n + 1) + n$$
$$= cn^2 - (2cn - c - n)$$
$$\leq cn^2$$

that holds when:

$$2cn - c - n \geq 0$$
$$c(2n - 1) \geq n$$
$$c \geq \frac{n}{2n - 1}$$
$$c \geq 1 \text{ (as } n \geq 1).$$
(e) $T(n) = 16T(n/4) + n^2 = O(n^2)$ is false, as $n^{\log_b a} = n^2 = \Theta(f(n))$ and by the master method $T(n) = \Theta(n^2 \log n)$.

Problem 2. (20 points) Integer division n/d produces quotient q and remainder r, and can be implemented using repeated subtraction of d from n. Give pseudocode for $\text{DIVIDE}(n, d)$ that uses this method to compute q and r. Prove your algorithm correct using a loop invariant.

Solution: For $n \geq 0$ and $d > 0$:

```
DIVIDE(n, d)
1  q = 0
2  r = n
3  while r ≥ d
4      q = q + 1
5      r = r - d
6  return q, r
```

We prove the algorithm correct using the following loop invariant: before any iteration of the `while` loop, $q \cdot d + r = n$.

Initialization. Before the first iteration, $q = 0$, $r = n$, so $0 \cdot d + n = n$ and the invariant holds.

Maintenance. The new values are $q' = q + 1$ and $r' = r - d$, and the invariant reads

$$q' \cdot d + r' = (q + 1) \cdot d + (r - d) = q \cdot d + r.$$

We know that the invariant was true for previous values q and r (that is, $q \cdot d + r = n$), so $q' \cdot d + r' = n$ and the invariant holds.

Termination. At termination, $q \cdot d + r = n$ by the loop invariant. Under these circumstances, for q and r to not be the quotient and remainder of n/d respectively, one of two conditions must be true:

(a) $r \geq d$, so we can have q smaller than the actual quotient. However, the loop terminates only when $r < d$.

(b) $r < 0$, so we can have q greater than the actual quotient. However, in the one before last iteration $r \geq d$ and in the last iteration r becomes $r - d$, so $r \geq 0$.

Thus, q and r are the quotient and remainder of n/d respectively, and the algorithm is correct.

Problem 3. (20 points) Suppose that you want to output 0 or 1, each with probability $1/2$. At your disposal is a procedure BIASED-RANDOM that outputs 0 or 1 with probability p and $1 - p$ respectively ($0 < p < 1$), but you don't know what p is. Give an algorithm that uses BIASED-RANDOM as a subroutine and returns an unbiased answer. State the expected running time of your algorithm as a function of p.

Solution: We can exploit the fact that $p(1-p) = (1-p)p$ and write:
Unbiased-Random

1 while TRUE
2 x = Biased-Random
3 y = Biased-Random
4 if x ≠ y
5 return x

Viewing each iteration as a Bernoulli trial, where success means that the iteration returns a value, the probability of success is the probability that 0 is returned plus the probability that 1 is returned, or \(p(1 - p) + (1 - p)p = 2p(1 - p) \).

The number of trials until a success occurs is given by the geometric distribution \(\Pr\{X = k\} = q^{k-1}p \), where \(q = 1 - p \) is the probability of failure (so the formula captures the probability of \(k - 1 \) failures before the one success). We can find its expectation as:

\[
E[X] = \sum_{k=1}^{\infty} kq^{k-1}p \\
= \frac{p}{q} \sum_{k=0}^{\infty} kq^k \\
= \frac{p}{q} \cdot \frac{q}{(1 - q)^2} \\
= \frac{p}{q} \cdot \frac{q}{q} \cdot \frac{1}{p} \\
= \frac{1}{p}.
\]

In our case, \(E[X] = \frac{1}{2p(1-p)} \) and the expected running time of Unbiased-Random is \(\Theta\left(\frac{1}{2p(1-p)}\right) \).

Problem 4. (20 points) Use heaps to design an \(O(n \lg k) \) algorithm to merge \(k \) sorted lists into one sorted list, where \(n \) is the total number of elements in all input lists. (You don’t need to implement basic heap operations.)

Solution:

We can use a min-heap to repeatedly select next smallest element among \(k \) candidates. Once we know that the smallest element \(x \) comes from list \(i \), we add \(x \) to the output array and add the next element from list \(i \) to the heap.
MERGE\((L, n, k)\)
1 let \(M[1..n]\) be a new array
2 let \(H[1..k]\) be a new min-heap
3 for \(i = 1\) to \(k\)
4 \(H\).insert\((L[i].\text{head})\)
5 for \(i = 1\) to \(n\)
6 \(\text{min} = H\).extract-min()
7 \(M[i] = \text{min}\)
8 if \(\text{min}.\text{next} \neq \text{NULL}\)
9 \(H\).insert\((\text{min}.\text{next})\)
10 return \(M\)

Heap \(H\) here has at most \(k\) elements, so both \text{EXTRACT-MIN} and \text{INSERT} take \(O(\lg k)\). The enclosing loop executes exactly \(n\) times, so the overall running time of the algorithm is \(O(n \lg k)\).

Problem 5. (20 points) Describe an algorithm that, given \(n\) integers in the range 0 to \(k\), preprocesses its input in \(\Theta(n + k)\) time and then answers any query about how many of the \(n\) integers fall into a range \([a..b]\) in \(O(1)\) time. Be mindful of edge cases. (Recall how counting sort computes the number of elements smaller than \(x\) for every input element \(x\).)

Solution: We can reuse the idea of counting sort that computes \(C[i]\) to be the number of input elements smaller than or equal to \(i\). Answering queries about the integers falling into a range \([a..b]\) is as easy as computing \(C[b] - C[a - 1]\) with \(C[-1] = 0\):

PREPROCESS\((A, n, k)\)
1 let \(C[-1..k]\) be a new array
2 for \(i = -1\) to \(k\)
3 \(C[i] = 0\)
4 for \(j = 1\) to \(n\)
5 \(C[A[j]] = C[A[j]] + 1\)
6 for \(i = 1\) to \(k\)
7 \(C[i] = C[i - 1]\)
8 return \(C\)

QUERY\((C, a, b)\)
1 return \(C[b] - C[a - 1]\)

Problem 6. (20 points) Recall the quicksort algorithm:

QUICKSORT\((A, p, r)\)
1 if \(p < r\)
2 \(q = \text{PARTITION}(A, p, r)\)
3 QUICKSORT\((A, p, q - 1)\)
4 QUICKSORT\((A, q + 1, r)\)
Partition(A, p, r)

1. $x = A[r]$
2. $i = p - 1$
3. **for** $j = p$ **to** $r - 1$
4.
 - **if** $A[j] \leq x$
 - $i = i + 1$
5. exchange $A[i]$ with $A[j]$
6. exchange $A[i + 1]$ with $A[r]$
7. **return** $i + 1$

And answer the following questions:

(a) What is the running time of **Partition**?

Each line of **Partition** takes constant time, so the overall running time is linear in the number of iterations, or $\Theta(r - p)$.

(b) What is the running time of **QuickSort** when all elements of A have the same value?

With all elements having the same value, condition on line 4 of **Partition** always evaluates to true, and i gets incremented $(r - p)$ times to become $(r - 1)$ at the end of the procedure. Thus, **Partition** always returns $i + 1 = r$, producing a split $(n - 1) : 0$ and resulting in a recurrence $T(n) = T(n - 1) + T(0) + \Theta(n)$ with a solution $T(n) = \Theta(n^2)$.

(c) What is the running time of **QuickSort** when A contains distinct elements sorted in decreasing order?

- On the first partition, the pivot is the smallest element in $A[p..r]$ and the resulting split is $0 : (n - 1)$. Note that partition ends with exchanging first and last elements of $A[p..r]$, which are the largest and smallest elements respectively.
- On the second partition, the pivot is the largest element in $A[p..r]$ and the split becomes $(n - 1) : 0$.
- On the third partition, we are back to $A[p..r]$ containing elements in decreasing order, the split becomes $0 : (n - 1)$, and the pattern recurs.

This pattern results in a recurrence $T(n) = T(n-1) + T(0) + \Theta(n)$ and gives $T(n) = \Theta(n^2)$.
