Problem 1. (15 points) Rank the following functions by order of growth; that is, find an arrangement \(f_1, f_2, ..., f_n \) of the functions satisfying \(f_1 = \Omega(f_2), f_2 = \Omega(f_3), \ldots, f_{n-1} = \Omega(f_n) \).

\[
\begin{align*}
\text{n!} & \quad 4^{\lg n} & \quad n \cdot 2^n & \quad \sqrt{n} \\
\text{e}^n & \quad 3^n & \quad 2^n & \quad n^2 \\
\lg^2 n & \quad n^3 & \quad 2^{\lg n} & \quad n \log n \\
\log \log n & \quad \lg n & \quad n^{1/\lg n} & \quad 2
\end{align*}
\]

Problem 2. (20 points) The integer square root problem is to determine the integer portion \(p \) of the square root of integer \(n \); that is, find \(p = \lfloor \sqrt{n} \rfloor \).

(a) Give a linear-time algorithm to solve the integer square root problem. Prove your algorithm correct using a loop invariant.

(b) Give a logarithmic-time algorithm to solve the integer square root problem. Prove your algorithm correct using a loop invariant.

Problem 3. (10 points) Suppose that we have a hash table with \(m \) slots.

(a) Describe two ways to resolve collisions.

(b) If collisions are resolved by chaining and \(n \) keys are inserted into the table, assuming simple uniform hashing, what is the expected number of collisions?

(c) Under the same assumptions, what is the probability that exactly \(k \) keys hash to a particular slot?

Problem 4. (25 points) Give an algorithm to determine whether a given node is a root of a valid binary search tree. Analyze the running time of your algorithm.

Problem 5. (15 points) The transpose of a directed graph \(G = (V, E) \) is the graph \(G^T = (V, E^T) \), where \(E^T = \{(v, u) \in V \times V : (u, v) \in E\} \). Thus, \(G^T \) is \(G \) with all its edges reversed. Give efficient algorithms for computing \(G^T \) from \(G \), for:

(a) Adjacency-list representation of \(G \).

(b) Adjacency-matrix representation of \(G \).

Analyze the running times of your algorithms.

Problem 6. (25 points) The knapsack problem is the following. A thief robbing a store finds \(n \) items. The \(i \)-th item is worth \(v_i \) dollars and weighs \(w_i \) pounds, where \(v_i \) and \(w_i \) are integers. The thief wants to take as valuable a load as possible, but they can carry at most \(W \) pounds in their knapsack, for some integer \(W \). Which items should they take?

Give a dynamic-programming solution to the knapsack problem.