Solution to Homework 10

Problem 1 (CLRS 32.1-2). (1 point) Suppose that all characters in the pattern P are different. Show how to accelerate Naive-String-Matcher to run in time $O(n)$ on an n-character text T.

Solution: A character mismatch $P[i] \neq T[s+i]$ for $i > 1$ indicates that characters in $P[1..i)$ and $T[s+1..s+i)$ matched successfully. As all characters in P are distinct, this partial match means that only $P[1] = T[s+1]$ and thus none of $T(s+1..s+i)$ could match $P[1]$ and start a new potentially valid match. Taking advantage of this fact, our algorithm can skip to character $T[s+i]$ – the first character that can potentially match $P[1]$:

```plaintext
DISTINCT-CHARS-PATTERN-MATCHER(T, P)
1 n = T.length
2 m = P.length
3 s = 0
4 while s ≤ n - m
5   i = 1
6   while i ≤ m and P[i] = T[s + i]
7     i = i + 1
8   if i = m + 1
9      print "Pattern occurs with shift" s
10   s = max(s + 1, s + i - 1)
```

Problem 2 (CLRS 32.1-4). (2 points) Suppose we allow the pattern P to contain occurrences of a gap character ♦ that can match an arbitrary string of characters (even one of zero length). For example, the pattern $ab♦ba♦c$ occurs in the text $cabccbacab$ as $cabccbacab$ and as $cabccbacab$.

Note that the gap character may occur an arbitrary number of times in the pattern but not at all in the text. Give a polynomial-time algorithm to determine whether such a pattern P occurs in a given text T, and analyze the running time of your algorithm.

Solution: We start with a simpler problem of determining whether the entire T matches P.

Let us define $match[i, j]$ to be true if T_i matches P_j, and false otherwise. Then:

- $match[0, 0] = true$, as an empty text matches an empty pattern.
- $match[0, j] = match[0, j - 1]$ if $P[j] = ♦$ for $1 \leq j \leq m$, as an empty text matches ♦ as long as the previous characters match.
- If $P[j] = ♦$, we can either treat ♦ as an empty string and skip it: $match[i, j] = match[i, j - 1]$, or assume it matched the last character of T_i: $match[i, j] = match[i - 1, j]$.
• If $P[j] = T[i]$, the problem reduces to matching T_{i-1} and P_{j-1}: $\text{match}[i, j] = \text{match}[i - 1, j - 1]$.

• $\text{match}[i, j] = \text{FALSE}$ in all other cases.

This allows us to formulate the following recursive definition:

$$
\text{match}[i, j] = \begin{cases}
\text{TRUE} & \text{if } i = 0 \text{ and } j = 0, \\
\text{match}[0, j - 1] & \text{if } i = 0 \text{ and } P[j] = \diamond, \\
\text{match}[i, j - 1] \lor \text{match}[i - 1, j] & \text{if } P[j] = \diamond, \\
\text{match}[i - 1, j - 1] & \text{if } P[j] = T[i], \\
\text{FALSE} & \text{otherwise.}
\end{cases}
$$

And an associated dynamic programming algorithm:

MATCH-WITH-GAPS(T, P)

1. $n = T\. \text{length}$
2. $m = P\. \text{length}$
3. let $\text{match}[0..n, 0..m]$ be a new array initialized to FALSE
4. $\text{match}[0, 0] = \text{TRUE}$
5. for $j = 1$ to m
6. if $P[j] = \diamond$
7. $\text{match}[i, j] = \text{match}[0, j - 1]$
8. for $i = 1$ to n
9. for $j = 1$ to m
10. if $P[j] = \diamond$
11. $\text{match}[i, j] = \text{match}[i, j - 1] \lor \text{match}[i - 1, j]$
12. elseif $P[j] = T[i]$
13. $\text{match}[i, j] = \text{match}[i - 1, j - 1]$
14. else
15. $\text{match}[i, j] = \text{FALSE}$
16. return $\text{match}[n, m]$

The algorithm fills an $n \times m$ table, spending constant time on each cell, so the running time and space are both $\Theta(nm)$ (we note that faster algorithms are possible).

We can solve the original problem of finding P anywhere in T by calling MATCH-WITH-GAPS with $P' = \diamond P \diamond$.

Problem 3 (CLRS 32.2-1). (1 point) Working modulo $q = 11$, how many spurious hits does the Rabin-Karp matcher encounter in the text $T = 3141592653589793$ when looking for the pattern $P = 26$?

Solution: A spurious hit occurs when $t_s = p \mod q = 26 \mod 11 = 4$, but s is not a valid shift. This happens three times for the given input: for $t_3 = 15$, $t_4 = 59$, and $t_5 = 92$. $t_6 = 26$ indicates a valid shift. (Values given before mod 11.)
Problem 4 (CLRS 32.3-1). (1 point) Construct the string-matching automaton for the pattern $P = aabab$ and illustrate its operation on the text string $T = aaababaababaababaab$.

Solution: Applying the DFA construction method from section 32.3 with $P = aabab$ and $\Sigma = \{a, b\}$ gives the following transition table:

<table>
<thead>
<tr>
<th>state</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

With the following sequence of state transitions for $T = aaababaababaababaab$:

- $a : 0 \rightarrow 1$
- $a : 1 \rightarrow 2$
- $a : 2 \rightarrow 2$
- $b : 2 \rightarrow 3$
- $a : 3 \rightarrow 4$
- $b : 4 \rightarrow 5$ (match)
- $a : 5 \rightarrow 1$
- $a : 1 \rightarrow 2$
- $b : 2 \rightarrow 3$
- $a : 3 \rightarrow 4$
- $a : 4 \rightarrow 2$
- $b : 2 \rightarrow 3$
- $a : 3 \rightarrow 4$
- $b : 4 \rightarrow 5$ (match)
- $a : 5 \rightarrow 1$
- $a : 1 \rightarrow 2$
- $b : 2 \rightarrow 3$

Problem 5 (CLRS 32.3-3). (1 point) We call a pattern P nonoverlappable if $P_k \sqsubseteq P_q$ implies $k = 0$ or $k = q$. Describe the state-transition diagram of the string-matching automaton for a nonoverlappable pattern.

Solution: Recall that the state number indicates the number of successfully matched characters from P. On each transition, the state number can remain the same, be increased by 1 (successful match), decreased to a non-zero value (partial regress), or decreased to zero (complete regress). For a nonoverlappable pattern, remaining the same, being increased by 1, and being decreased to zero are valid options. Partial regress, however, is only possible to state 1 (in the case of two adjacent two pattern occurrences).
Problem 6 (CLRS 32.4-1). (1 point) Compute the prefix function \(\pi \) for the pattern \(ababbabababababb \).

Solution: Following the prefix function computing method from section 32.4 gives:

\(i \)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
\(P[i] \)	a	b	a	b	b	a	b	b	a	b	b	a	b	b	a	b	b	a	b
\(\pi[i] \)	0	0	1	2	0	1	2	0	1	2	3	4	5	6	7	8			

Problem 7 (CLRS 32.4-7). (1 point) Give a linear-time algorithm to determine whether a text \(T \) is a cyclic rotation of another string \(T' \). For example, arc and car are cyclic rotations of each other.

Solution: A few options:

- Observe that \(T \) is a cyclic rotation of \(T' \) if and only if \(T \) is a substring of \(T'T' \), use a linear time pattern matching algorithm, such as KMP.
- Use Booth's \(O(n) \) algorithm to compute lexicographically minimal string rotations of \(T \) and \(T' \), compare for equality. See https://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation.
- Modify a linear time pattern matching algorithm, such as KMP, to "wrap around" when the end of \(T \) is reached, match \(T \) against \(T' \).

Problem 8. (3 points) The longest palindromic substring is a maximum-length contiguous sub-string of a given string that is a palindrome. For example, the longest palindromic substring of ultramarine is ramar.

Give an efficient algorithm to determine the longest palindromic substring of a given string. Explain the algorithm and illustrate its operation on the string evenness.

Solution: What follows is a linear time algorithm for finding the longest palindromic substring, known as Manacher’s algorithm. The pseudocode and explanation are based on https://en.wikipedia.org/wiki/Longest_palindromic_substring and http://articles.leetcode.com/longest-palindromic-substring-part-ii.

We begin by making the following observations:

- It is convenient to refer to palindromes in terms of their center and length, instead of start and end positions.
- Palindromes of even length are centered at the empty string between characters, and it is convenient to view such empty strings as characters in their own right. We use \# to represent these special characters.
- Let us define \(P \) as an array of palindrome lengths, where \(P[i] = k \) indicates the existence of a length \(k \) palindrome centered at position \(i \). The problem can now be reduced to computing \(P \), finding the maximum element, and reconstructing the actual palindrome.
• We expect values in P to exhibit symmetry around a given $P[i]$, as $P[i] = k$ indicates that $[k/2]$ characters to the left of i, character at i, and $[k/2]$ characters to the right of i form a palindrome. For example, having computed $P[0..5]$ for $S = ababa$:

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>#</td>
<td>a</td>
<td>#</td>
<td>b</td>
<td>#</td>
<td>a</td>
<td>#</td>
<td>b</td>
<td>#</td>
<td>a #</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• To utilize the symmetry property correctly, we have to consider not only $P[i]$ around which we mirror the values, but also each $P[j]$ we are mirroring: if the palindrome centered at $P[j]$ extends past the palindrome centered at $P[i]$, we cannot rely on the symmetry property and have to expand palindrome character by character. See http://articles.leetcode.com/longest-palindromic-substring-part-ii for a good visual explanation.

Observations above lead to the following linear time algorithm for finding the longest palindromic substring:

MANACHER(T)

1. $S = \text{INSERT-SENTINELS}(T)$
2. $n = S.length$
3. let $P[0..n]$ be a new array initialized to 0
4. // Current palindrome's center and the right boundary respectively.
5. $center = 0$
6. $right = 0$
7. for $i = 1$ to n
8. $mirror = 2*center - i$
9. if $right > i$
10. // Can use the symmetry property.
11. $P[i] = \text{min}(right - i, P[mirror])$
12. // Attempt to expand current palindrome character by character.
13. while $S[i + P[i] + 1] = S[i - P[i] - 1]$
14. $P[i] = P[i] + 1$
15. // Adjust center and right boundary if we went past current ones.
16. $\text{newRight} = i + P[i]$
17. if $\text{newRight} > right$
18. $center = i$
19. $right = \text{newRight}$
20. $\text{PRINT-LONGEST}(T, P)$

Executed for string evenness, the algorithm produces the following array of lengths:

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>#</td>
<td>e</td>
<td>#</td>
<td>v</td>
<td>#</td>
<td>e</td>
<td>#</td>
<td>n</td>
<td>#</td>
<td>n</td>
<td>#</td>
<td>e</td>
<td>#</td>
<td>s</td>
<td>#</td>
<td>s</td>
<td>#</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>