Problem 1 (CLRS 11.2-1). (1 point) Suppose we use a hash function \(h \) to hash \(n \) distinct keys into an array \(T \) of length \(m \). Assuming simple uniform hashing, what is the expected number of collisions? More precisely, what is the expected cardinality of \(\{ \{ k, l \} : k \neq l \text{ and } h(k) = h(l) \} \)?

Problem 2 (CLRS 11.3-3). (3 points) Consider a version of the division method in which
\(h(k) = k \mod m \), where \(m = 2^p - 1 \) and \(k \) is a character string interpreted in radix \(2^p \). Show that if we can derive string \(x \) from string \(y \) by permuting its characters, then \(x \) and \(y \) hash to the same value. Give an example of an application in which this property would be undesirable in a hash function.

Problem 3 (CLRS 11.4-2). (2 points) Write pseudocode for Hash-Delete as outlined in the text, and modify Hash-Insert to handle the special value Deleted.

Problem 4 (CLRS 11.2). (5 points) Suppose that we have a hash table with \(n \) slots, with collisions resolved by chaining, and suppose that \(n \) keys are inserted into the table. Each key is equally likely to be hashed to each slot. Let \(M \) be the maximum number of keys in any slot after all the keys have been inserted. Your mission is to prove an \(O(\log n / \log \log n) \) upper bound on \(E[M] \), the expected value of \(M \).

(a) Argue that the probability \(Q_k \) that exactly \(k \) keys hash to a particular slot is given by
\[
Q_k = \left(\frac{1}{n} \right)^k \left(1 - \frac{1}{n} \right)^{n-k} \binom{n}{k}.
\]

(b) Let \(P_k \) be the probability that \(M = k \), that is, the probability that the slot containing the most keys contains \(k \) keys. Show that \(P_k \leq nQ_k \).

(c) Use Stirling’s approximation, equation (3.18) in CLRS, to show that \(Q_k < e^k/k^k \).

(d) Show that there exists a constant \(c > 1 \) such that \(Q_{k_0} < 1/n^2 \) for \(k_0 = c \log n / \log \log n \). Conclude that \(P_k < 1/n^2 \) for \(k \geq k_0 = c \log n / \log \log n \).

(e) Argue that
\[
E[M] \leq \Pr\{ M > \frac{c \log n}{\log \log n} \} \cdot n + \Pr\{ M \leq \frac{c \log n}{\log \log n} \} \cdot \frac{c \log n}{\log \log n}.
\]
Conclude that \(E[M] = O(\log n / \log \log n) \).