Problem 1. (1 point) Illustrate the operation of randomized quicksort on the array:
\[A = (19, 2, 11, 14, 7, 17, 4, 3, 5, 15) \]
By showing the values in array \(A \) after each call to \textit{partition}.

Problem 2 (CLRS 7.2-5). (2 points) Suppose that the splits at every level of quicksort are in
the proportion \(1 - \alpha \) to \(\alpha \), where \(0 < \alpha \leq 1/2 \) is a constant. Show that the minimum depth of a
leaf in the recursion tree is approximately \(-\log n / \log \alpha \) and the maximum depth is approximately
\(-\log n / \log(1 - \alpha) \). (Don't worry about integer round-off.)

Problem 3 (CLRS 7.2-6). (3 points) Argue that for any constant \(0 < \alpha \leq 1/2 \), the probability is
approximately \(1 - 2\alpha \) that on a random input array, \textit{partition} produces a split more balanced
than \(1 - \alpha \) to \(\alpha \).

Problem 4 (CLRS 7.4-3). (2 points) Show that the expression \(q^2 + (n - q - 1)^2 \) achieves a
maximum over \(q = 0, 1, ..., n - 1 \) when \(q = 0 \) or \(q = n - 1 \).

Problem 5 (CLRS 7.4-2). (3 points) Show that quicksort's best-case running time is \(\Omega(n \log n) \).