Problem 1. (1 point) Illustrate the operation of randomized quicksort on the array:

\[A = (19, 2, 11, 14, 7, 17, 4, 3, 5, 15) \]

By showing the values in array \(A \) after each call to partition.

Solution:

\[
\begin{align*}
A &= [15, 2, 11, 14, 7, 17, 4, 3, 5, 19] \quad \text{# Partitioned around 19} \\
A &= [5, 2, 11, 7, 4, 14, 17, 15, 19] \quad \text{# Partitioned around 14} \\
A &= [2, 5, 11, 7, 4, 3, 14, 17, 15, 19] \quad \text{# Partitioned around 2} \\
A &= [2, 3, 4, 5, 11, 7, 14, 17, 15, 19] \quad \text{# Partitioned around 5} \\
A &= [2, 3, 4, 5, 11, 7, 14, 17, 15, 19] \quad \text{# Partitioned around 4} \\
A &= [2, 3, 4, 5, 7, 11, 14, 17, 15, 19] \quad \text{# Partitioned around 7} \\
A &= [2, 3, 4, 5, 7, 11, 14, 15, 17, 19] \quad \text{# Partitioned around 15}
\end{align*}
\]

Problem 2 (CLRS 7.2-5). (2 points) Suppose that the splits at every level of quicksort are in the proportion \(1 - \alpha \) to \(\alpha \), where \(0 < \alpha \leq 1/2 \) is a constant. Show that the minimum depth of a leaf in the recursion tree is approximately \(-\frac{\log n}{\log \alpha}\) and the maximum depth is approximately \(-\frac{\log n}{\log(1-\alpha)}\). (Don't worry about integer round-off.)

Solution: With \(0 < \alpha \leq 1/2 \) we have \(\alpha \leq 1 - \alpha \), indicating that \(\alpha \) corresponds to a greater or equal reduction in the problem size than \(1 - \alpha \). Thus, the minimum depth of a leaf in the recursion tree will be observed along the path where the problem of size \(n \) is reduced to \(\alpha n \), and the maximum depth – along the path where the problem size is reduced to \((1-\alpha)n \).

We can view the length of each path as the number of times the initial problem size \(n \) can be divided by \(1/\alpha \) and \(1/(1-\alpha) \) respectively before reaching the base case \(n = 1 \) (the problem statement allows us to ignore integer round-off):

\[
\begin{align*}
L_{\min} &\approx \log_{1/\alpha} n = \log_{\alpha^{-1}} n = -\frac{\log n}{\log \alpha}, \\
L_{\max} &\approx \log_{1/(1-\alpha)} n = \log_{(1-\alpha)^{-1}} n = -\frac{\log n}{\log(1-\alpha)}.
\end{align*}
\]

Problem 3 (CLRS 7.2-6). (3 points) Argue that for any constant \(0 < \alpha \leq 1/2 \), the probability is approximately \(1 - 2\alpha \) that on a random input array, partition produces a split more balanced than \(1 - \alpha \) to \(\alpha \).

Solution: Let us rename the elements of the initial array as \(z_1, z_2, ..., z_n \) with \(z_i \) being the \(i \)-th smallest element. Observing that taking \(z_i \) as a pivot results in a split \(i : n - i \), and defining \(S_i \)
as the set of splits resulting from taking pivots from the set \(\{ z_i \mid i \in I \} \), we get:

\[
\begin{align*}
S_L &= S_{\{1, \ldots, an\}} = \{1 : n - 1, \ldots, an : n - an\}, \\
S_M &= S_{\{an + 1, \ldots, (1 - \alpha)n - 1\}} = \{an + 1 : n - an - 1, \ldots, (1 - \alpha)n - 1 : n - (1 - \alpha)n + 1\}, \\
S_H &= S_{\{(1 - \alpha)n, \ldots, n\}} = \{(1 - \alpha)n : n - (1 - \alpha)n, \ldots, n : 0\}.
\end{align*}
\]

That is, the splits:

- Start with unbalanced \(1 : n - 1 \) at \(z_1 \) and grow increasingly balanced.
- Become as balanced as \(\alpha : 1 - \alpha \) at \(z_{an} \).
- Grow increasingly balanced up to \(n/2 : n/2 \) at \(z_{n/2} \) and grow less balanced from there.
- Become as balanced as \(1 - \alpha : \alpha \) at \(z_{(1 - \alpha)n} \).
- End with unbalanced \(n : 0 \) at \(z_n \).

We then observe that only splits in \(S_M \) are more balanced than \(1 - \alpha : \alpha \) and therefore the probability \(P_{\alpha} \) of getting a split more balanced than \(1 - \alpha : \alpha \) is the probability that a pivot, selected uniformly at random among \(n \) elements, has index \(i \in M, M = \{ an + 1, \ldots, (1 - \alpha)n - 1 \} : \)

\[
P_{\alpha} = \frac{|M|}{n} = \frac{(1 - \alpha)n - 1 - (an + 1) + 1}{n} = \frac{n - 2an - 1}{n} = 1 - 2\alpha - \frac{1}{n} \approx 1 - 2\alpha \quad \text{for sufficiently large } n.
\]

Problem 4 (CLRS 7.4-3). (2 points) Show that the expression \(q^2 + (n - q - 1)^2 \) achieves a maximum over \(q = 0, 1, \ldots, n - 1 \) when \(q = 0 \) or \(q = n - 1 \).

Solution: Let us define the function \(f(q) \) and take the derivatives:

\[
\begin{align*}
f(q) &= q^2 + (n - q - 1)^2, \\
f'(q) &= 4q - 2n + 2, \\
f''(q) &= 4.
\end{align*}
\]

Setting the first derivative to zero and solving \(4q - 2n + 2 = 0 \) shows that the function has a single stationary point at \(q = \frac{n - 1}{2} \). The positive second derivative shows that \(q = \frac{n - 1}{2} \) is a minimum, and thus \(f(q) \) can only achieve a maximum at the endpoints of the interval \([0, n - 1]\). Evaluating the function at the endpoints confirms that \(f(q) \) achieves a maximum when \(q = 0 \) or \(q = n - 1 \):

\[
\begin{align*}
f(0) &= (n - 1)^2, \\
f(n - 1) &= (n - 1)^2.
\end{align*}
\]
Problem 5 (CLRS 7.4-2). (3 points) Show that quicksort’s best-case running time is \(\Omega(n \lg n) \).

Solution: We can formulate the recurrence for quicksort’s best case by always considering a split resulting in a minimum running time:

\[
T(n) = \min_{0 \leq q \leq n-1} (T(q) + T(n-q-1)) + \Theta(n).
\]

Let us prove by substitution that \(T(n) = \Omega(n \lg n) \). We start with the base case \(T(1) = \Theta(1) \), the inductive hypothesis:

\[
T(k) \geq ck \lg k \quad \text{for all} \quad 1 < k < n,
\]

and proceed with the inductive step:

\[
T(n) = \min_{0 \leq q \leq n-1} (T(q) + T(n-q-1)) + \Theta(n)
\]
\[
\geq \min_{0 \leq q \leq n-1} (c q \lg q + c(n-q-1) \lg(n-q-1)) + \Theta(n)
\]
\[
= c \cdot \min_{0 \leq q \leq n-1} (q \lg q + (n-q-1) \lg(n-q-1)) + \Theta(n).
\]

Let us define \(f(q) = q \lg q + (n-q-1) \lg(n-q-1) \) and take the derivatives:

\[
f'(q) = \frac{d}{dq} \left(q \frac{\ln q}{\ln 2} + (n-q-1) \frac{\ln(n-q-1)}{\ln 2} \right)
\]
\[
= \frac{1}{\ln 2} \left(\ln q - \ln(n-q-1) \right)
\]
\[
= \frac{\ln q - \ln(n-q-1)}{\ln 2},
\]

\[
f''(q) = \frac{\ln 2 \left(\frac{1}{q} + \frac{1}{n-q-1} \right)}{\ln^2 2}
\]
\[
= \frac{n-1}{q(n-q-1) \ln 2}.
\]

Setting the first derivative to zero gives a stationary point \(q = \frac{n-1}{2} \):

\[
\frac{\ln q - \ln(n-q-1)}{\ln 2} = 0
\]
\[
\ln q - \ln(n-q-1) = 0
\]
\[
\ln q = \ln(n-q-1)
\]
\[
q = n-q-1
\]
\[
q = \frac{n-1}{2},
\]
in which the second derivative is positive for all \(n > 1 \):

\[
 f'' \left(\frac{n-1}{2} \right) = \frac{n-1}{\frac{n-1}{2} (n - \frac{n-1}{2} - 1) \ln 2} = \frac{n-1}{(n-1)^2 \ln 2} = \frac{4}{(n-1) \ln 2} > 0 \quad \text{for all} \quad n > 1.
\]

Therefore, \(q = \frac{n-1}{2} \) is a minimum (we note that \(f(q) \) is undefined at both endpoints).

Returning to the substitution proof:

\[
 T(n) \geq c \cdot \min_{0 \leq q \leq n-1} (q \lg q + (n-q-1) \lg(n-q-1)) + \Theta(n)
\]

\[
 = c \left(\frac{n-1}{2} \lg \frac{n-1}{2} + \left(n - \frac{n-1}{2} - 1 \right) \lg \left(n - \frac{n-1}{2} - 1 \right) \right) + \Theta(n)
\]

\[
 = c \left(\frac{n-1}{2} \lg \frac{n-1}{2} + \frac{n-1}{2} \lg \frac{n-1}{2} \right) + \Theta(n)
\]

\[
 = c(n-1) \lg \frac{n-1}{2} + \Theta(n)
\]

\[
 = c(n-1) \lg(n-1) - c(n-1) \lg 2 + \Theta(n)
\]

\[
 = cn \lg(n-1) - c \lg(n-1) - c(n-1) + \Theta(n).
\]

As \(1 < k < n \), we know that \(n \geq 3 \) and thus:

\[
 T(n) \geq c n \lg(n-1) - c \lg(n-1) - c(n-1) + \Theta(n)
\]

\[
 \geq c n \lg \frac{n}{2} - c \lg(n-1) - c(n-1) + \Theta(n)
\]

\[
 = c n \lg n - c n - c \lg(n-1) - cn + c + \Theta(n)
\]

\[
 = cn \lg n + (- 2 cn - c \lg(n-1) + c + \Theta(n)).
\]

Our inductive step holds as long as the residual is non-negative:

\[
 - 2 cn - c \lg(n-1) + c + \Theta(n) \geq 0
\]

\[
 \Theta(n) \geq c (2n + \lg(n-1) - 1),
\]

and we can always pick a sufficiently small \(c \) for the inequality to hold.

Having completed the substitution proof, we conclude that \(T(n) = \Omega(n \lg n) \).