Solution to Homework 3

Problem 1. (1 point) Illustrate the operation of heapsort on the array:
A = (19, 2, 11, 14, 7, 17, 4, 3, 5, 15)
By showing the values in array A after initial heapification and after each call to max-heapify.

Solution:

A = [19, 15, 17, 14, 7, 11, 4, 3, 5, 2] # After initial heapification
A = [17, 15, 11, 14, 7, 2, 4, 3, 5, 19] # After extracting 19
A = [14, 7, 11, 5, 3, 2, 4, 15, 17, 19] # After extracting 17
A = [11, 7, 4, 5, 3, 2, 14, 15, 17, 19] # After extracting 15
A = [7, 5, 4, 2, 3, 11, 14, 15, 17, 19] # After extracting 14
A = [5, 3, 4, 2, 7, 11, 14, 15, 17, 19] # After extracting 7
A = [4, 3, 2, 5, 7, 11, 14, 15, 17, 19] # After extracting 5
A = [3, 2, 4, 5, 7, 11, 14, 15, 17, 19] # After extracting 4
A = [2, 3, 4, 5, 7, 11, 14, 15, 17, 19] # After extracting 3

Problem 2. (1 point) Illustrate the operation of counting sort on the array:
A = (4, 6, 3, 5, 0, 5, 1, 3, 5, 5)
By showing the values in array C after each loop, and the final array B.

Solution:

C = [0, 0, 0, 0, 0, 0, 0] # After initialization
C = [1, 1, 0, 2, 1, 4, 1] # After counting elements
C = [1, 2, 2, 4, 5, 9, 10] # After computing running sum
C = [0, 1, 2, 2, 4, 5, 9] # After producing sorted B
B = [0, 1, 3, 3, 4, 5, 5, 5, 6] # Sorted B

Problem 3. (1 point) Illustrate the operation of radix sort on the array:
A = (392, 517, 364, 931, 726, 912, 299, 250, 600, 185)
By showing the values in array A after each intermediate sort.

Solution:

A = [392, 250, 600, 185, 517, 600, 912, 250, 364, 931, 517, 299]
Problem 4. (1 point) Illustrate the operation of bucket sort on the array:
\[A = (0.88, 0.23, 0.25, 0.74, 0.18, 0.02, 0.69, 0.56, 0.57, 0.49) \]
By showing the final array \(B \) of sorted buckets.

Solution:
\[
B = \{0: [0.02],
 1: [0.18],
 2: [0.23, 0.25],
 3: [],
 4: [0.49],
 5: [0.56, 0.57],
 6: [0.69],
 7: [0.74],
 8: [0.88],
 9: []\}
\]

Problem 5. (3 points) Consider a \(d \)-ary heap – a generalization of a binary heap, in which all internal nodes (with at most one exception) have \(d \) children. Design a method to store a \(d \)-ary heap in an array and derive the expressions for:

(a) Parent of \(i \)-th node in a \(d \)-ary heap.
(b) \(j \)-th child of \(i \)-th node in a \(d \)-ary heap.
(c) Maximum number of nodes of height \(h \) in any \(n \)-element \(d \)-ary heap.
(d) Maximum height of any \(n \)-element \(d \)-ary heap.

Solution:
(a) Parent of \(i \)-th node in a \(d \)-ary heap.

(b) \(j \)-th child of \(i \)-th node in a \(d \)-ary heap.

Assuming 1-based indexing, we can extend the standard level-wise method of storing binary heaps to \(d \)-ary heaps by taking:

\[
\text{parent}(i) = \left\lfloor \frac{i - 1}{d} \right\rfloor, \\
\text{child}(i, j) = d(i - 1) + j + 1.
\]
(c) Maximum number of nodes of height h in any n-element d-ary heap.

As $\text{parent}(i) = \left\lceil \frac{i-1}{d} \right\rceil$, the parent of the last node is $\text{parent}(n) = \left\lceil \frac{n-1}{d} \right\rceil$. Defining n_h as the number of nodes of height h, and observing that the parent of the last node is the last non-leaf node, we can express the number of leaf nodes as:

$$n_0 = n - \left\lfloor \frac{n-1}{d} \right\rfloor.$$

Removing all leaf nodes from the heap of size n would result in a heap of size n':

$$n' = n - n_0 = \left\lfloor \frac{n-1}{d} \right\rfloor$$

with n'_0 leaves:

$$n'_0 = n' - \left\lfloor \frac{n'-1}{d} \right\rfloor$$

$$= \left\lfloor \frac{n-1}{d} \right\rfloor - \left\lfloor \frac{n-1}{d} - 1 \right\rfloor$$

$$= \left\lfloor \frac{n-1}{d} \right\rfloor - \left\lfloor \frac{n-1-d}{d^2} \right\rfloor.$$

Removing all leaf nodes from the heap of size n' would result in a heap of size n'':

$$n'' = n' - n'_0$$

$$= \left\lfloor \frac{n-1}{d} \right\rfloor - \left\lfloor \frac{n-1}{d} - 1 \right\rfloor + \left\lfloor \frac{n-1-d}{d^2} \right\rfloor$$

$$= \left\lfloor \frac{n-1-d}{d^2} \right\rfloor$$

with n''_0 leaves:

$$n''_0 = n'' - \left\lfloor \frac{n''-1}{d} \right\rfloor$$

$$= \left\lfloor \frac{n-1-d}{d^2} \right\rfloor - \left\lfloor \frac{n-1-d}{d^2} - 1 \right\rfloor$$

$$= \left\lfloor \frac{n-1-d}{d^2} \right\rfloor - \left\lfloor \frac{n-1-d-d^2}{d^3} \right\rfloor,$$

suggesting a general expression for a number of leaves in a heap obtained from a heap of size n by removing all leaf nodes k times:

$$n_0^{(k)} = \left\lfloor \frac{n-1-d-\ldots-d^{k-1}}{d^k} \right\rfloor - \left\lfloor \frac{n-1-d-\ldots-d^k}{d^{k+1}} \right\rfloor$$

$$= \left\lfloor \frac{n-d^{k-1}}{d^k} \right\rfloor - \left\lfloor \frac{n-d^{k+1}}{d^{k+1}} \right\rfloor$$

$$= \left\lfloor \frac{n-d^{k-1}}{d^k} \right\rfloor - \left\lfloor \frac{n-d^{k+1-1}}{d^{k+1}} \right\rfloor$$ for $d > 1$.

We now observe that the leaves in heap H', obtained from heap H by removing all leaf nodes, had height 1 in the original heap H. The leaves in heap H'', obtained from heap H' by removing all leaf nodes, had height 1 in H' and height 2 in H. In general, n_h – the number of nodes of height h in an n-element d-ary heap H – is the number of leaves in $H^{(h)}$, obtained from H by removing all leaf nodes h times:

$$n_h = \left\lfloor \frac{n - \frac{d^h - 1}{d - 1}}{d^h} \right\rfloor - \left\lfloor \frac{n - \frac{d^{h-1} - 1}{d - 1}}{d^{h+1}} \right\rfloor \quad \text{for } d > 1.$$

(d) Maximum height of any n-element d-ary heap.

We notice that a maximum number of nodes in a d-ary heap of height h is observed when the last level is full, and a minimum number of nodes – when the last level has only one node:

$$n_{\text{max}}(h) = d^0 + d^1 + \ldots + d^{h-1} + d^h = \frac{d^{h+1} - 1}{d - 1} \quad \text{for } d \neq 1,$n_{\text{min}}(h) = d^0 + d^1 + \ldots + d^{h-1} + 1 = \frac{d^h - 1}{d - 1} + 1 \quad \text{for } d \neq 1.

This allows us to provide a tight bound on the size of a d-ary heap of height h (we assume $d \neq 1$ for the rest of this problem):

$$\frac{d^h - 1}{d - 1} + 1 \leq n \leq \frac{d^{h+1} - 1}{d - 1}.$$

With integer n we can get rewrite and then reduce the inequality as follows:

$$\frac{d^h - 1}{d - 1} < n \leq \frac{d^{h+1} - 1}{d - 1},$$

$$d^h - 1 < n(d - 1) \leq d^{h+1} - 1,$$

$$d^h < n(d - 1) + 1 \leq d^{h+1},$$

$$h < \log_d (n(d - 1) + 1) \leq h + 1.$$

For integer n and real x:

$$n - 1 < x \leq n \quad \text{iff} \quad n = \lceil x \rceil,$$

and so:

$$h = \left\lfloor \log_d (n(d - 1) + 1) \right\rfloor - 1.$$

Problem 6. (4 points) Consider a min-priority queue representing a set of integers and supporting the following operations: $\text{insert}(k)$ to insert element with value k, $\text{get-min}()$ to return the minimum element, and $\text{extract-min}()$ to remove and return the minimum element.

Give pseudocode and worst-case running time for each operation, assuming the priority queue is implemented with the following data structures:
(a) Unordered array.
(b) Ordered array.
(c) Unordered linked list.
(d) Ordered linked list.
(e) Min-heap.

Solution:

(a) Unordered array of size n referenced by variable array:

 - **insert(k):** Without the need to maintain order, we can insert in $O(1)$ by adding the new element to the end of the array.

     ```python
     def insert(k):
         array.append(k)
     ```

 We note that the true worst case is $O(n)$ and is observed when the array needs to be reallocated (though amortized running time is still constant).

 - **get-min():** With no order to rely upon, we have to resort to a $O(n)$ linear scan.

     ```python
     def get-min():
         assert len(array) > 0
         index = find-min(array) # O(n)
         return array[index]
     ```

 - **extract-min():** As with get-min(), we have no way around a $O(n)$ linear scan. We don't, however, need to spend another $O(n)$ closing the gap left after removing the element, as with no order to worry about we can just fill the hole with the last element.

     ```python
     def extract-min():
         assert len(array) > 0
         index = find-min(array) # O(n)
         value = array[index]
         exchange(array[index], array[len(array) - 1])
         array.delete(len(array) - 1) # O(1)
         return value
     ```

(b) Ordered array of size n referenced by variable array:

 - **insert(k):** One way to insert the element into a sorted array is to use modified binary search to find correct position in $O(\lg n)$ time, then insert and shift the elements in $O(n)$. An alternative is to "drag" the element into its correct position by successive exchanges (not unlike insertion sort). Both ways are $O(n)$ in the worst case.

     ```python
     def insert(k):
         index = find-insert-position(array, k) # O(\lg n)
     ```
array.insert(k, index) # O(n)

- get-min(): It is more convenient to represent a min-heap with an array sorted in non-increasing order (so we can delete the minimum element in O(1)). The minimum element is then in the last position and can be accessed in O(1).

 def get-min():
 assert len(array) > 0
 return array[len(array) - 1] # O(1)

- extract-min(): Deleting the last element does not require closing any gaps and can be done in O(1):

 def extract-min():
 assert len(array) > 0
 value = array[len(array) - 1] # O(1)
 array.delete(len(array) - 1) # O(1)
 return value

(c) Unordered linked list of size n referenced by variable list:

- insert(k): Without the need to maintain order, we can insert in O(1) by adding the new element to the head of the list.

 def insert(k):
 list.insert(k, list.head())

 We note that the linked list data does not have to be contiguous and we are unaffected by the array's "true worst case" when the storage needs to be reallocated.

- get-min(): As with the unordered array, we have to resort to a O(n) linear scan.

 def get-min():
 return find-min(list) # O(1)

- extract-min(): As with get-min(), we have no way around a O(n) linear scan. There are, however, no gaps to be closed – we can delete from any position in O(1).

 def extract-min():
 # O(n) to find, O(1) to remove
 return find-and-remove-min(list)

(d) Ordered linked list of size n referenced by variable list:

- insert(k): Linked lists do not support indexing, so we cannot use binary search to find the insertion position and have to resort to a linear scan. Once the position is found, however, we can insert in O(1) (assuming the position is given as a reference, not an index):

 def insert(k):
 ref = find-insert-position(list, k) # O(n)
 list.insert(k, ref) # O(1)
• get-min(): Assuming the list is sorted in a non-decreasing order, the minimum element is the head of the list and can be accessed in $O(1)$:

```python
def get_min():
    return list.head() # O(1)
```

• extract-min(): We can delete at any position in $O(1)$:

```python
def extract_min():
    min = list.head() # O(1)
    remove_head(list) # O(1)
    return min
```

(e) Min-heap referenced by variable heap:

• insert(k): We can insert an element into the heap in $O(\log n)$ by adding it as the last node and then percolating it up until the min-heap property is no longer broken:

```python
def insert(k):
    ++heap.size
    i = heap.size
    heap[i] = k
    while i > 0 and heap[parent(i)] > heap[i]: # O(\log n)
        exchange(heap[parent(i)], heap[i])
        i = parent(i)
```

• get-min(): The minimum element in a min-heap is at the root and can be accessed in $O(1)$:

```python
def get_min():
    return heap[0] # O(1)
```

• extract-min(): We can remove the minimum element from the heap by replacing the root element with the last element, excluding the last element from the heap, and rebuilding the heap, all in $O(\log n)$:

```python
def extract_min():
    min = heap[0]
    heap[0] = heap[heap.size - 1]
    --heap.size
    min(heapify(heap, 0) # O(\log n)
    return min
```