Halting Problem

• There is no computer algorithm that will accept any algorithm X and data set D as input and then will output “halts” or “loops forever” to indicate whether X terminates in a finite number of steps when X is run with data set D.

• Proof is by contradiction (Read this pg 222, and we will review later)
Generic Functions

• A function $f: X \rightarrow Y$ is a relationship between elements of X to elements of Y, when each element from X is related to a unique element from Y

• X is called domain of f, range of f is a subset of Y so that for each element y of this subset there exists an element x from X such that $y = f(x)$

• Sample functions:
 – $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = x^2$
 – $f: \mathbb{Z} \rightarrow \mathbb{Z}$, $f(x) = x + 1$
 – $f: \mathbb{Q} \rightarrow \mathbb{Z}$, $f(x) = 2$
Generic Functions

- Arrow diagrams for functions
- Non-functions
- Equality of functions:
 - \(f(x) = |x| \) and \(g(x) = \sqrt{x^2} \)
- Identity function
- Logarithmic function
One-to-One Functions

• Function \(f : X \rightarrow Y \) is called one-to-one (injective) when for all elements \(x_1 \) and \(x_2 \) from \(X \) if \(f(x_1) = f(x_2) \), then \(x_1 = x_2 \)

• Determine whether the following functions are one-to-one:
 – \(f : \mathbb{R} \rightarrow \mathbb{R} \), \(f(x) = 4x - 1 \)
 – \(g : \mathbb{Z} \rightarrow \mathbb{Z} \), \(g(n) = n^2 \)

• Hash functions
Onto Functions

• Function $f : X \rightarrow Y$ is called onto (surjective) when given any element y from Y, there exists x in X so that $f(x) = y$

• Determine whether the following functions are onto:
 – $f : \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = 4x - 1$
 – $f : \mathbb{Z} \rightarrow \mathbb{Z}$, $g(n) = 4n - 1$

• Bijection is one-to-one and onto
• Reversing strings function is bijective
Inverse Functions

• If \(f : X \rightarrow Y \) is a bijective function, then it is possible to define an inverse function \(f^{-1} : Y \rightarrow X \) so that \(f^{-1}(y) = x \) whenever \(f(x) = y \)

• Find an inverse for the following functions:
 – String-reverse function
 – \(f : \mathbb{R} \rightarrow \mathbb{R}, f(x) = 4x - 1 \)

• Inverse function of a bijective function is a bijective function itself
Composition of Functions

- Let $f : X \to Y$ and $g : Y \to Z$, let range of f be a subset of the domain of g. Then we can define a composition of $g \circ f : X \to Z$
- Let $f,g : Z \to Z$, $f(n) = n + 1$, $g(n) = n^2$. Find $f \circ g$ and $g \circ f$. Are they equal?
- Composition with identity function
- Composition with an inverse function
- Composition of two one-to-one functions is one-to-one
- Composition of two onto functions is onto
Pigeonhole Principle

- If n pigeons fly into m pigeonholes and $n > m$, then at least one hole must contain two or more pigeons.
- A function from one finite set to a smaller finite set cannot be one-to-one.
- In a group of 13 people must there be at least two who have birthday in the same month?
- A drawer contains 10 black and 10 white socks. How many socks need to be picked to ensure that a pair is found?
- Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. If 5 integers are selected must at least one pair have sum of 9?
Pigeonhole Principle

• Generalized Pigeonhole Principle: For any function $f : X \rightarrow Y$ acting on finite sets, if $n(X) > k \times N(Y)$, then there exists some y from Y so that there are at least $k + 1$ distinct x’s so that $f(x) = y$

• “If n pigeons fly into m pigeonholes, and, for some positive k, $m > k \times m$, then at least one pigeonhole contains $k+1$ or more pigeons”

• In a group of 85 people at least 4 must have the same last initial.

• There are 42 students who are to share 12 computers. Each student uses exactly 1 computer and no computer is used by more than 6 students. Show that at least 5 computers are used by 3 or more students.
Cardinality

- Cardinality refers to the size of the set
- Finite and infinite sets
- Two sets have the same cardinality when there is a bijective function associating them
- Cardinality is reflexive, symmetric, and transitive
- Countable sets: set of all integers, set of even numbers, positive rationals (Cantor diagonalization)
- Set of real numbers between 0 and 1 has the same cardinality as the set of all reals
- Computability of functions
Algorithms

- Algorithm is step-by-step method for performing some action
- Cost of statements execution
 - Simple statements
 - Conditional statements
 - Iterative statements
Division Algorithm

- Input: integers \(a\) and \(d\)
- Output: quotient \(q\) and remainder \(r\)
- Body:

 \[
 r = a; \quad q = 0; \\
 \text{while} \ (r \geq d) \\
 \quad r = r - d; \\
 \quad q = q + 1; \\
 \text{end while}
 \]
Greatest Common Divisor

- The greatest common divisor of two integers a and b is another integer d with the following two properties:
 - $d \mid a$ and $d \mid b$
 - if $c \mid a$ and $c \mid b$, then $c \leq d$

- Lemma 1: $\gcd(r, 0) = r$
- Lemma 2: if $a = b \times q + r$, then $\gcd(a, b) = \gcd(b, r)$
Euclidean Algorithm

• Input: integers \(a \) and \(b \)
• Output: greatest common divisor \(\text{gcd} \)
• Body:
 \[
 \begin{align*}
 r & = b; \\
 \text{while (} b > 0 \text{)} & \\
 & \begin{aligned}
 r & = a \mod b; \\
 a & = b; \\
 b & = r;
 \end{aligned} \\
 \text{end while}
\]
\(\text{gcd} = a; \)
Exercise

• Least common multiple: \text{lcm}
• Prove that for all positive integers \(a\) and \(b\),
 \(\gcd(a, b) = \text{lcm}(a, b)\) iff \(a = b\)
Correctness of Algorithms

• Assertions
 – Pre-condition is a predicate describing initial state before an algorithm is executed
 – Post-condition is a predicate describing final state after an algorithm is executed

• Loop guard

• Loop is defined as correct with respect to its pre- and post-conditions, if whenever the algorithm variables satisfy the pre-conditions and the loop is executed, then the algorithm satisfies the post-conditions as well
Loop Invariant Theorem

Let a while loop with guard G be given together with its pre- and post-conditions. Let predicate I(n) describing loop invariant be given. If the following 4 properties hold, then the loop is correct:

- Basis Property: I(0) is true before the first iteration of the loop
- Inductive Property: If G and I(k) is true, then I(k + 1) is true
- Eventual Falsity of the Guard: After finite number of iterations, G becomes false
- Correctness of the Post-condition: If N is the least number of iterations after which G becomes false and I(N) is true, then post-conditions are true as well
Correctness of Some Algorithms

• Product Algorithm:
 pre-conditions: $m \geq 0$, $i = 0$, $\text{product} = 0$
 while ($i < m$) {
 $\text{product} += x$;
 $i++$;
 }
 post-condition: $\text{product} = m \times x$
Correctness of Some Algorithms

• Division Algorithm
 pre-conditions: \(a \geq 0, \ d > 0, \ r = a, \ q = 0 \)
 while \((r \geq d) \) {
 \[
 r -= d;
 q++;
 \]
 }
 post-conditions: \(a = q \times d + r, \ 0 \leq r < d \)
Correctness of Some Algorithms

- Euclidean Algorithm
 pre-conditions: $a > b \geq 0, \ r = b$
 while $(b > 0)$ {
 $r = a \mod b;$
 $a = b;$
 $b = r;$
 }
 post-condition: $a = \gcd(a, b)$
Matrices

• Sum of two matrices A and B (of size mxn) – Ex.
• Product of mxk matrix A and kxn matrix B is a mxn matrix C – Examples.
• Body:
 for i := 1 to m
 for i := 1 to n
 c_{ij} := 0
 for q := 1 to k
 c_{ij} := c_{ij} + a_{iq}*b_{qj}
 end
 end
 end
Return C
Sequences

• Sequence is a set of (usually infinite number of) ordered elements: \(a_1, a_2, \ldots, a_n, \ldots\)
• Each individual element \(a_k\) is called a term, where \(k\) is called an index
• Sequences can be computed using an explicit formula: \(a_k = k \times (k + 1)\) for \(k > 1\)
• Alternate sign sequences
• Finding an explicit formula given initial terms of the sequence: 1, -1/4, 1/9, -1/16, 1/25, -1/36, …
• Sequence is (most often) represented in a computer program as a single-dimensional array
Sequence Operations

- Summation: \sum, expanded form, limits (lower, upper) of summation, dummy index
- Change of index inside summation
- Product: \prod, expanded form, limits (lower, upper) of product, dummy index
- Factorial: $n!$, $n! = n \times (n - 1)!$
Sequences

• Geometric sequence:
a, ar, ar^2, ar^3, ..., ar^n

• Arithmetic sequence:
a, a+d, a +2d, ..., a+nd

• Sum of geometric sequence:
\[\sum_{0->n} ar^k \]

• Sum of arithmetic sequence:
\[\sum_{0->n} a+kd \]
Review Mathematical Induction

- Principle of Mathematical Induction:
 Let $P(n)$ be a predicate that is defined for integers n and let a be some integer. If the following two premises are true:

 - $P(a)$ is a true
 - $\forall k \geq a, P(k) \rightarrow P(k + 1)$

 then the following conclusion is true as well:

 - $P(n)$ is true for all $n \geq a$
Applications of Mathematical Induction

• Show that $1 + 2 + \ldots + n = n \times (n + 1) / 2$
 (Prove on board)
• Sum of geometric series:
 $r^0 + r^1 + \ldots + r^n = (r^{n+1} - 1) / (r - 1)$
 (Prove on board)
Examples that Can be Proved with Mathematical Induction

• Show that $2^{2n} - 1$ is divisible by 3 (in book)
• Show (on board) that for $n > 2$: $2n + 1 < 2^n$
• Show that $x^n - y^n$ is divisible by $x - y$
• Show that $n^3 - n$ is divisible by 6 (similar to book problem)
Strong Mathematical Induction

• Utilization of predicates $P(a)$, $P(a + 1)$, ..., $P(n)$ to show $P(n + 1)$.

• Variation of normal M.I., but basis may contain several proofs and in assumption, truth assumed for all values through from base to k.

• Examples:
 • Any integer greater than 1 is divisible by a prime
 • Existence and Uniqueness of binary integer representation (Read in book)
Well-Ordering Principle

- Well-ordering principle for integers: a set of integers that are bounded from below (all elements are greater than a fixed integer) contains a least element
- Example:
- Existence of quotient-remainder representation of an integer \(n \) against integer \(d \)