Problem Set 6

Assigned: July 1
Due: July 8

Problem 1

Trace the execution of Dijkstra’s algorithm on the following graph, taking A as the starting vertex. Show the successive states of the array $D[i]$ and of the set of vertices whose distance has been determined.

Problem 2 (Siegel Ex. 8.2)

Write an enhancement to the Floyd-Warshall algorithm that saves, in $\text{Intermediate}[i,j]$, the last vertex before j on the shortest path from i to j. Notice that proper initialization makes the algorithm easier.

Problem 3

Consider the following problem. You are given a directed graph G with two disjoint subsets P and Q. A path is considered invalid if it goes first through a vertex in P and then through a vertex in Q. For example P and Q may be points in enemy countries, and Q may prohibit travellers whose passport has a visa to P. Or in an epidemic of a communicable disease, one may want to block people who have been through Q from entering B.

For example, in the graph in problem 1, if $U = \{B,C\}$ and $V = \{D,E\}$ then the path $A \rightarrow B \rightarrow F \rightarrow E \rightarrow H \rightarrow I$ is invalid, because it first goes through U at vertex B and then later goes through V, at vertex E. The path $A \rightarrow D \rightarrow B \rightarrow F \rightarrow I$ is valid, because D in V comes before B in U.

Describe how the method of cloning can be used to find the optimal valid path.