Problem Set 5

Assigned: June 24
Due: July 1

Problem 1.

Let G be a DAG. A vertex in G is a sink if it has no outarcs. A forward path from vertex U is a path that ends in a sink. Vertex V is a terminus of vertex U if V is a sink and there is a path from U to V.

A. Construct an algorithm $\text{NumForPaths}(G)$ that computes the number of forward paths from every node in DAG G in linear time. If U is itself a sink, then $\text{NumForPath}(G)[U]$ should be 1.

B. Construct an algorithm $\text{NumTerminus}(G,U)$ that computes the number of terminuses for vertex U in DAG G in linear time.

For instance in the following graph G

\begin{center}
\begin{tikzpicture}
 \node[draw] (A) at (0,0) {A};
 \node[draw] (B) at (1,1) {B};
 \node[draw] (C) at (1,-1) {C};
 \node[draw] (D) at (2,1) {D};
 \node[draw] (E) at (2,-1) {E};

 \draw[->] (A) -- (B);
 \draw[->] (B) -- (D);
 \draw[->] (C) -- (B);
 \draw[->] (C) -- (E);
 \draw[->] (A) -- (C);
 \draw[->] (A) -- (E);
\end{tikzpicture}
\end{center}

$\text{NumForPath}(G)[A] = 3$: $A \rightarrow B \rightarrow D$; $A \rightarrow B \rightarrow E$; and $A \rightarrow C \rightarrow E$
$\text{NumTerminus}(G,A) = 2$: D and E.

Problem 2

(Siegel). Write an algorithm that takes a DAG G as input and prints out all the possible topological sorts of G. For instance, given the graph in problem 1, the algorithm would output

A,B,C,D,E
A,B,C,E,D
A,B,D,C,E
A,C,B,D,E
A,C,B,E,D

It should print out each sort only once. Your algorithm does not have to produce the sorts in this order.
Problem 3

(Siegel). To see how essential marking is for graph traversal, consider the application of depth-first-traversal on a DAG G where node marking is not used. That is, the DFS code is rewritten in the form

```
procedure DFS(v) {
    for (each outarc v --> w) DFS(w)
}
```

Consider the complete DAG on n vertices; that is, the vertices are numbers $1 \ldots n$ and there is an arc from i to j for every pair $i < j$. What is the running time of this modified DFS on that graph?

Problem 4.

Let G be a DAG where the vertices are labelled with numerical values.

A. Write a function $\text{MaxReachable}(u)$ which returns the maximum label on a vertex reachable from vertex u (including u itself.)

B. Write a function $\text{TotalReachable}(u)$ which returns the sum of the labels on vertices reachable from vertex u.

C. Write a function $\text{MaxPathFrom}(u)$ which returns the maximum sum of the labels on any path starting at u.

All these should run in time linear in the size of G.

For example, in the graph below:

```
15
A

7
C

8
E

8
G

3
B

1
D

10
F

-2
H
```

$\text{MaxReachable}(B) = 10$ (corresponding to F).

$\text{TotalReachable}(B) = 35$ ($B+C+D+E+F+G+H$)

$\text{MaxPathFrom}(B) = 27$ (corresponding to B-D-C-E-G).