Problem Set 1

Assigned: May 27
Due: June 3

Problem 1

For each of the following pairs of functions \(f(n) \) and \(g(n) \), state whether \(f \) is \(o(g) \), \(f \) is \(\Theta(g) \); or \(g \) is \(o(f) \). (Exactly one of these is true in all cases.)

a. \(f(n) = n^{10}; g(n) = 2^{n/2} \).

b. \(f(n) = n^{3/2}; g(n) = n \log^2(n) \).

c. \(f(n) = \log(n^3); g(n) = \log(n) \).

d. \(f(n) = \log(3^n); g(n) = \log(2^n) \).

e. \(f(n) = (\log(n))^3; g(n) = (\log(n)) \).

f. \(f(n) = 2^n; g(n) = 2^{n/2} \).

g. \(f(n) = n^2; g(n) = (n/2)^2 \).

h. \(f(n) = n^2; g(n) = (n + 2)^2 \).

i. \(f(n) = 2^n; g(n) = 2^{n+2} \).

j. \(f(n) = n!; g(n) = (n + 2)! \).

Problem 2

The following two functions both compute the same thing. They take as arguments two arrays \(A \) and \(B \) and return TRUE if every element of \(A \) is less than every element of \(B \).

```cpp
AllLessThan1(int[] A, B) return bool {
    for (i=1 to |A|)
        for (j=1 to |B|)
            if (A[i] >= B[j]) return FALSE;
    return TRUE;
}

AllLessThan2(int[] A, B) return bool {
    largeA = A[1]
    for (i = 2 to |A|)
        if (A[i] > largeA) largeA = A[i];
    for (j = 1 to |B|)
        if (largeA >= B[j]) return FALSE;
    return TRUE;
}
```
A. Give the asymptotic worst-case running time of each algorithm as a function of $|A|$ and $|B|$. When does the worst case occur?

B. Give the asymptotic best-case running time of each algorithm as a function of $|A|$ and $|B|$. When does the best case occur?

C. Design an algorithm whose best-case running time is as good as the best-case for both of these algorithms, and whose worst-case running time is as good as the worst-case both of these algorithms.