Problem 1.

Let G be a DAG where the vertices are labelled with numerical values.

A. Write a function $\text{MaxReachable}(u)$ which returns the maximum label on a vertex reachable from vertex u (including u itself.)

B. Write a function $\text{TotalReachable}(u)$ which returns the sum of the labels on vertices reachable from vertex u.

C. Write a function $\text{MaxPathFrom}(u)$ which returns the maximum sum of the labels on any path starting at u.

All these should run in time linear in the size of G.

For example, in the graph below:

$\text{MaxReachable}(B) = 10$ (corresponding to F).
$\text{TotalReachable}(B) = 35$ ($B+C+D+E+F+G+H$)
$\text{MaxPathFrom}(B) = 27$ (corresponding to $B-D-C-E-G$).
Problem 2

Trace the execution of Dijkstra’s algorithm on the following graph, taking A as the starting vertex. Show the successive states of the array $D[i]$ and of the set of vertices whose distance has been determined.

![Graph](image)

Problem 3

(Siegel Ex. 7.21). Write an algorithm that takes a DAG G as input and prints out all the possible topological sorts of G. For instance, given the graph below, the algorithm would output

- A, B, C, D, E
- A, B, C, E, D
- A, B, D, C, E
- A, C, B, D, E
- A, C, B, E, D

![Graph](image)

It should print out each sort only once. Your algorithm does not have to produce the sorts in this order.