Problem Set 3

Assigned: June 11
Due: June 18

Problem 1

Suppose that you are given the problem of returning in sorted order the k smallest elements in an array of size n, where k is much smaller than n, but much larger than 1.

a. Describe how each of the following algorithms can be modified to solve this problem: selection sort, insertion sort, heapsort, mergesort (you may use the simple recursive version), quicksort. Your description need not give the pseudo-code for the modified algorithms; it is enough simply to describe what changes should be made, as long as your description is clear.

b. Give the worst case running time as a function of k and n for all your modified algorithms except quicksort.

Problem 2

Consider the implementation of a heap as a dynamic binary tree (rather than an array implementation) where each node is an object with a pointer to the parent and the two children.

It will not suffice to have just pointers to parent and children nodes, and a global pointer to the root. Why not? Describe how the standard tree implementation can be extended to support the heap operations add and deleteMin, and describe briefly how these to operations can be implemented in this data structure.

Problem 3.

(CLR&S 7.5-6)

Give an $O(n \cdot \lg(k))$ time algorithm to merge k sorted lists into one sorted list, where n is the total number of elements in all the input lists. (Hint: Use a heap for k-way merging.)

Problem 4.

(Modified from Siegel 5.24.) Design an efficient algorithm to determine whether two unsorted sets of m and n integers are disjoint. Assume that $m < n$. Full credit will be given for an algorithm that runs in time $O(n \log m)$; half credit will be given for an algorithm that runs in time $O(n \log n + m \log m)$ (which is the same thing as $O(n \log n)$.)