CSCI-UA.0380-001
Programming Challenges

Sean McIntyre
Class 09: Graphs
Homework
Babelfish

• Given: key-pairs of words, the second of which translates to the first.
 – dog ogday
 – cat atcay
 – pig igpay

• Given: list of translated words, for each word output the original word
 – Or “eh” if it doesn't exist
Walking on the Safe Side

- On a grid count how many ways there are to walk from (1, 1) to (N, M) in the quickest amount of time
 - Obstacles are placed along the way
- “Do not want to walk more than the required number of blocks”
 - i.e., no more than N+M blocks
 - Travel only down and right
Walking on the Safe Side

- Recurrence:
 - Each cell in \(dp[\text{row}][\text{column}] \) is the number of ways to get from \((1, 1)\) to \((\text{row}, \text{column})\)
 - 1-based indices
 - \(dp[\text{row}][\text{column}] = dp[\text{row}-1][\text{column}] + dp[\text{row}][\text{column}-1] \)
 - i.e., the number of ways to get to \((\text{row}, \text{column})\) is the sum of the number of ways to the get to \((\text{row}-1, \text{column})\) and \((\text{row}, \text{column}-1)\)
Walking on the Safe Side

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Base case entrance
Walking on the Safe Side
Walking on the Safe Side

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Walking on the Safe Side

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>2</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Base case entrance
Walking on the Safe Side

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Base case entrance
Dividing Coins

• Given m coins, split the coins in two piles as evenly as possible
 – Output the minimal difference between the two piles
 – $m \leq 100$, coins are between 1 and 500

• Observations:
 – Same problem as Bowen's
 – Each pile can be at most 25,000 cents
Dividing Coins

• Recurrence:
 - 2D table $dp[\text{coinIndex}][\text{totalAmount}]$
 - Mark $dp[\text{coinIndex}][\text{totalAmount}]$ true if and only if it is possible to reach totalAmount in bag A by adding some combination of coins $i = 1, 2, \ldots, \text{coinIndex}$
 - Easy to deduce bag B's totalAmount by knowing bag A's totalAmount
Dividing Coins

Coins used

- 0
- 1
- 2
- 3

Coins used (1-based index)

Coins: \{ 2, 3, 5 \}

Total amount in bag A

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Dividing Coins

Coins used (1-based index)

Total amount in bag A

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Coins: \{ 2, 3, 5 \}
Dividing Coins

Coins used (1-based index)

<table>
<thead>
<tr>
<th>Coins used</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Total amount in bag A

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Coins: \{ 2, 3, 5 \}
Dividing Coins

Coins used (1-based index)

<table>
<thead>
<tr>
<th>Coins: {2, 3, 5}</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Total amount in bag A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
Dividing Coins

It's possible to place half of the value of the coins in bag A.

Coins used (1-based index):

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T</td>
</tr>
</tbody>
</table>

Coins: \{2, 3, 5\}

Total amount in bag A
Forming Quiz Teams

• Given $2N$ points on a grid, make N pairs so that the sum of the distances of the paired points is minimized

 - $1 \leq N \leq 8$, so 16 points
Forming Quiz Teams

• Example:

(2, 2)
(4, 6)
(5, 2)
(5, 4)
(6, 8)
(7, 5)
(8, 3)
(8, 6)
Forming Quiz Teams

• Recurrence:
 - $dp[\text{used grid points}] = \text{the minimum sum of distances between all remaining grid points}$
 - The answer is $dp[\text{all grid points}]$
 - The recursive step is to find the minimum sum by trying matching each pair of remaining grid points
 - There are a lot of overlapping states, so store the subresults
Forming Quiz Teams

- **Example:**

Recursion depth 0

What is the minimum sum for all the points?
Forming Quiz Teams

• Example:

Recursion depth 1

What is the minimum sum for the 2nd, 3rd, 4th, 5th, 6th, and 7th points?
Forming Quiz Teams

- Example:

Recursion depth 2

What is the minimum sum for the 4th, 5th, 6th, and 7th points?
Forming Quiz Teams

● Example:

Recursion depth 3

What is the minimum sum for the 6th and 7th points?
Forming Quiz Teams

- Example:

```
Recursion depth 4

What is the minimum sum no points?

Answer: Base case, 0
```
Forming Quiz Teams

- **Example:**

![Graph with points](image)

Recursion depth 3

What is the minimum sum for the 6th and 7th points?

Answer: \(0 + \text{dist}(P[6], P[7]) = 3\)
Forming Quiz Teams

- Example:

Recursion depth 2

What is the minimum sum for the 4th, 5th, 6th, and 7th points?

So far: $3 + \text{dist}(P[4], P[5]) = 3 + 3.16 = 6.16$
Forming Quiz Teams

- Example:

Recursion depth 3

What is the minimum sum for the 5th and 7th points?
Forming Quiz Teams

• Example:

Recursion depth 3

What is the minimum sum for the 5th and 7th points?

Answer: $0 + \text{dist}(P[5], P[7]) = 1.41$
Forming Quiz Teams

• Example:

Recursion depth 2

What is the minimum sum for the 4th, 5th, 6th, and 7th points?
From before: 6.16
Just computed: $1.41 + \text{dist}(P[4], P[6]) = 1.41 + 5.39 = 6.80$
Still: 6.16
Forming Quiz Teams

- Example:

Recursion depth 3

What is the minimum sum for the 5th and 6th points?
Forming Quiz Teams

• Example:

Recursion depth 3

What is the minimum sum for the 5th and 6th points?
Answer: 2.24
Forming Quiz Teams

Example:

Recursion depth 2

What is the minimum sum for the 4th, 5th, 6th, and 7th points?

From before: 6.16

Just computed: $2.24 + \text{dist}(P[4], P[7]) = 5.07$

Now: 5.07
Forming Quiz Teams

- Example:

Recursion depth 2

What is the minimum sum for the 4th, 5th, 6th, and 7th points? We have tried everything, so we can definitively answer 5.07.
Forming Quiz Teams

• Example:

Recursion depth 1

What is the minimum sum for the 2nd, 3rd, 4th, 5th, 6th, and 7th points?

So far: 5.07 + \text{dist}(P[2], P[3]) = 7.07
Forming Quiz Teams

- Fast-forward...
Forming Quiz Teams

• Example:

Recursion depth 1

What is the minimum sum for the 1st, 3rd, 4th, 5th, 6th, and 7th points?
Forming Quiz Teams

- Example:

Recursion depth 2

What is the minimum sum for the 4th, 5th, 6th, and 7th points?
Forming Quiz Teams

- **Example:**

What is the minimum sum for the 4th, 5th, 6th, and 7th points?

Answer: 5.07 (from the memoization table)
Forming Quiz Teams

- How to implement:
 - Use bitmasks!
 - Use a memoization table with 2^{16} elements
 - Each entry in the table is considered a bitmask representing the set of all grid points chosen
 - Another similar DP solution is the $O(2^n \times n)$ solution to the Traveling Salesman Problem
Forming Quiz Teams

```java
int N;
int x[] = new int[16], y[] = new int[16]; // grid coordinates
double dp[] = new double[1 << 16]; // 2^16 entries

public double solve(int mask) {
    if (dp[mask] >= 0) return dp[mask]; // memoization step
    double res = INFINITY;
    for (int i = 0; i < 2*N; i++) {
        for (int j = i+1; j < 2*N; j++) { // filters out permutations
            if (((1 << i) | (1 << j)) & mask) == 0) { // unused set elmnts
                double dist = sqrt(pow(x[i] - x[j], 2) + pow(y[i] - y[j], 2));
                res = min(res, solve(mask | (1 << i) | (1 << j));
            }
        }
    }
    return dp[mask] = res; // store the solution in memo table
}

public void main() { // left out the parsing details
    dp[(1 << (N*2)) – 1] = 0.0; // base case: all points used = 0 min dist
    System.out.printf(solve(0)); // 0 = empty bit mask = all points rem
```
Happy Number

- Square the digits of a number
 - If the result is 1, it's a happy number
 - If the result loops, it's an unhappy number
 - If it's unclear, then repeat the process
- Have to store the subresults as you go
Super Number

- If the x leftmost digits of N divide x for $x = n, n+1, n+2, \ldots, m$, then N is a super number.
- Find the lexicographically smallest N for n and m.
 - $0 < n < m < 30$
- Kind of a trick question.
 - The brute force approach is a little out of the runtime, but the number of possible inputs is $30 \times 30 = 900$.
 - so pre-compute the answers and submit a table :)
Lecture
Graph Traversal Algorithms

- Many problems rely on traversing elements in a graph
 - e.g., UVa 469 – Wetlands of Florida
 - You're given a 2D grid, each cell of which can be “water” or “land”
 - Cells adjacent on the major axes or diagonals are adjacent
 - For a given water (x, y) coordinate on the grid, determine the area of the connected water
 - These problems look hard if you're not familiar with graph traversals
Graph Traversal Algorithms

- Depth-first search
 - The first and most natural way to solve this problem is by visiting every node using recursion
 - As the name implies, visit the furthest nodes from the originating node
 - Perform backtracking
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Stack
dfs(0)
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Stack
dfs(0)
dfs(1)
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Stack
dfs(0)
dfs(1)
dfs(3)
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Stack
dfs(0)
dfs(1)
dfs(3)
dfs(2)
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Stack
dfs(0)
dfs(1)
dfs(3)
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Stack
dfs(0)
dfs(1)
dfs(3)
dfs(4)
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Stack
dfs(0)
dfs(1)
dfs(3)
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Stack
dfs(0)
dfs(1)
dfs(3)
dfs(5)
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Stack
dfs(0)
dfs(1)
dfs(3)
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Stack
dfs(0)
dfs(1)
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Stack
dfs(0)
Graph Traversal Algorithms

```java
ArrayList<ArrayList<Integer>> adjList; // prefilled with adjacents

int dfs(int node) { // returns # of nodes visited from node idx
    int res = 0;

    visited[node] = true; // mark this node as visited

    for (int i = 0; i < adjList.get(node).size(); i++) {
        int neighbor = adjList.get(node).get(i);
        if (!visited[neighbor]) {
            res += dfs(neighbor); // add number of dfs nodes visited
        }
    }

    return res+1; // the +1 refers to visiting the present node
}

System.out.println(dfs(0));
```
Graph Traversal Algorithms

- Breadth-first search
 - Visit nodes closest to the originating node before diving down into the tree
 - Implemented using Queue
 - Typically used to solve “shortest path” problems in special cases
 - More later
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Queue
0
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Queue
1
2
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Queue
2
3
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Queue
3
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Queue
4
5
Graph Traversal Algorithms

Adjacency list
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Queue
5
Graph Traversal Algorithms

Adjacency list:
0: 1, 2
1: 1, 3
2: 0, 3
3: 1, 2, 4, 5
4: 3
5: 3

Queue
Graph Traversal Algorithms

ArrayList<ArrayList<Integer>> adjList; // prefilled with adjacents

Queue<Integer> q = new LinkedList<Integer>();
boolean visited[] = new boolean[N]; // keep track of visited nodes

q.add(0); visited[0] = true; // add to traversal queue and mark
int count = 1; // example: keep count of nodes traversed

while (!q.isEmpty()) {
 int node = q.poll();

 for (int i = 0; i < adjList.get(node).size(); i++) {
 int neighbor = adjList.get(node).get(i);
 if (!visited[neighbor]) { // do not visit nodes twice
 q.add(neighbor); // add to traversal queue
 visited[neighbor] = true; // mark as visited
 count++;
 }
 }
}
Exercise

- UVa 352: The Seasonal War
 - Given a graph, find how many blobs of connected 1s there are
 - Connections are on the major axes or diagonals
 - Major hint: Use DFS or BFS
 - Both work, pick the one more natural to you
 - 10 minutes
Minimum Spanning Trees

• Spanning tree
 • Given: a connected, undirected graph $G = (V, E)$
 • V is the set of vertices
 • E is the set of edges
 • A spanning tree is a set of edges that is a tree and “covers” all vertices V
 • There can be several trees
 • The spanning tree with the minimum cost (sum of edge weights) is called the Minimum Spanning Tree
Minimum Spanning Trees
Minimum Spanning Trees

A spanning tree
Cost: $4 + 4 + 6 + 6 = 20$
Minimum Spanning Trees

Minimum spanning tree
Cost: 4 + 2 + 6 + 6 = 18
Minimum Spanning Trees

- Algorithms for finding the MST
 - Prim's algorithm
 - Not covered, see Wikipedia for a good overview
 - Kruskal's algorithm
 - Repeatedly finds edges with minimum costs that does not form a cycle
 - Greedy algorithm, provably correct
 - In a nutshell...
Minimum Spanning Trees

- Kruskal's algorithm pseudocode
 1) Sort edges by increasing weight
 2) While there are unprocessed edges left
 1) Pick an edge e with minimum cost
 2) If adding e to the MST does not form a cycle, add e to MST

- Test for cycles using disjoint sets and union-find
- Store all edges in an edge list, or possibly priority queue

- Runtime
 - Sort: $O(|E| \log |E|)$; Processing: $O(|E|)$
Minimum Spanning Trees

Weighted adjacency list by (index, weight)
0: (1, 4), (2, 4), (3, 6), (4, 6)
1: (0, 4), (2, 2)
2: (0, 4), (1, 2), (3, 8)
3: (0, 6), (2, 8), (4, 9)
4: (0, 6), (3, 9)
Minimum Spanning Trees

Pick smallest edge
Cycle formed, ignore

Pick smallest edge
No cycle

Pick smallest edge
No cycle

Weighted adjacency list by (index, weight)
0: (1, 4), (2, 4), (3, 6), (4, 6)
1: (0, 4), (2, 2)
2: (0, 4), (1, 2), (3, 8)
3: (0, 6), (2, 8), (4, 9)
4: (0, 6), (3, 9)
Minimum Spanning Trees

Algorithm not done! The edge list hasn't yet been exhausted

Weighted adjacency list by (index, weight)
0: (1, 4), (2, 4), (3, 6), (4, 6)
1: (0, 4), (2, 2)
2: (0, 4), (1, 2), (3, 8)
3: (0, 6), (2, 8), (4, 9)
4: (0, 6), (3, 9)

Pick smallest edge
Cycle formed, ignore

Pick smallest edge
Cycle formed, ignore
Minimum Spanning Tree

- More on Wikipedia
- Code will be on the class website
Single source shortest paths

- Classic problem in computer science
 - Given a node on a graph, find the shortest paths to all other nodes
Single source shortest paths

- For undirected, unweighted graphs:
 - Use BFS!
 - E.g., Uva 336 (A Node Too Far)
 - Given an undirected and unweighted graph $G = (V, E)$ and a vertex v in V, find the number of nodes unreachable in n hops
From node 5, find # of nodes > 3 hops away
From node 5, find # of nodes > 3 hops away
Single source shortest paths

From node 5, find # of nodes > 3 hops away

Queue
1
6
10

Distances
D[5] = 0
Single source shortest paths

Queue
0
2
9
11

Distances
D[5] = 0
D[1] = 1
D[6] = 1
D[10] = 1
D[0] = D[1] + 1 = 2

From node 5, find # of nodes > 3 hops away
Single source shortest paths

Queue
3
4
8
12

Distances
D[5] = 0
D[1] = 1
D[6] = 1
D[10] = 1
D[0] = 2
D[2] = 2
D[9] = 2
D[11] = 2
D[4] = D[0] + 1 = 3

From node 5, find # of nodes > 3 hops away
Single source shortest paths

From node 5, find # of nodes > 3 hops away

Queue
7

Distances
D[5] = 0
D[1] = 1
D[6] = 1
D[10] = 1
D[0] = 2
D[2] = 2
D[9] = 2
D[11] = 2
D[3] = 3
D[4] = 3
D[8] = 3
D[12] = 3
From node 5, find # of nodes > 3 hops away

Answer: 1
Single source shortest paths

- For directed, weighted graphs:
 - Use Dijkstra's! $O((|V| + |E|) \log |V|)$
 - This can be done using a priority queue
 - Works kind of like a greedy, modified BFS
 - Shown by example...
Single source shortest paths

Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)
{ (0, 2) }

Distance table

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d[i]</td>
<td>INF</td>
<td>INF</td>
<td>0</td>
<td>INF</td>
<td>INF</td>
</tr>
</tbody>
</table>
Single source shortest paths

Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)
{ (0, 2) }
{ (2, 1), (6, 0), (7, 3) }

Add all unvisited nodes from node 2 to the priority queue. The PQ sorts the distances so the “next closest” node floats to the top. Right now the closest node is 1, followed by 0, then 3.
Single source shortest paths

Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)

{ (0, 2) }
{ (2, 1), (6, 0), (7, 3) }
{ (5, 3), (6, 0), (7, 3), (8, 4) }

Poll from the PQ to get node 1.
Add all neighboring nodes to node 1 that haven't been polled yet.
BUT be sure to add all nodes that may already be in the queue with longer distances – there may be a shorter way to reach them.
Single source shortest paths

Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)

\{(0, 2)\}
\{(2, 1), (6, 0), (7, 3)\}
\{(5, 3), (6, 0), (7, 3), (8, 4)\}
\{(6, 0), (7, 3), (8, 4)\}

Poll from the PQ to get node 3.
Since we know there is a faster way to get node 4, don't bother adding node 4 to PQ
Single source shortest paths

Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)
{ (0, 2) }
{ (2, 1), (6, 0), (7, 3) }
{ (5, 3), (6, 0), (7, 3), (8, 4) }
{ (6, 0), (7, 3), (8, 4) }
{ (7, 3), (7, 4), (8, 4) }

Poll from the PQ to get node 0. Since we know there is a faster way to get node 4, don't bother adding node 4 to PQ

Distance table

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d[i]</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>
Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)
{(0, 2)}
{(2, 1), (6, 0), (7, 3)}
{(5, 3), (6, 0), (7, 3), (8, 4)}
{(6, 0), (7, 3), (8, 4)}
{(7, 3), (7, 4), (8, 4)}
{(7, 4), (8, 4)}

Now the (7, 3) state is ignored because it's been determined that 7 is a longer path than another existing path to node 3.
Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)

1. \{(0, 2)\}
2. \{(2, 1), (6, 0), (7, 3)\}
3. \{(5, 3), (6, 0), (7, 3), (8, 4)\}
4. \{(6, 0), (7, 3), (8, 4)\}
5. \{(7, 3), (7, 4), (8, 4)\}
6. \{(7, 4), (8, 4)\}
7. \{(8, 4)\}

Nowhere to go, so nothing is added to the PQ

Distance table

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d[i]</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>
Single source shortest paths

Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)

\{(0, 2)\}
\{(2, 1), (6, 0), (7, 3)\}
\{(5, 3), (6, 0), (7, 3), (8, 4)\}
\{(6, 0), (7, 3), (8, 4)\}
\{(7, 3), (7, 4), (8, 4)\}
\{(7, 4), (8, 4)\}
\{(8, 4)\}

Distance table

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d[i]</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

State (8, 4) is ignored because 8 > 7
Dijkstra's in code

```java
LinkedHashmap<Integer, LinkedhashMap<Integer, Integer>> adj;
// State is a pair (dist, index)
Priorityqueue<State> pq = new PriorityQueue<State>();
int dist[] = new int[V]; Arrays.fill(dist, 1 << 20); // INF
pq.add(new State(2, 0)); // Initial state

while (!pq.isEmpty()) {
    State s = pq.poll();
    if (s.dist == dist[s.index]) { // true if has not been updated
        LinkedhashMap<Integer, Integer> nbors = adj.get(s.index);
        for (Map.Entry<Integer, Integer> e : nbors.entrySet()) {
            int nbor = e.getKey();
            int nborDist = e.getValue();
            if (nborDist + dist[s.index] < dist[nbor]) {
                // have found a closer path
                dist[nbor] = nborDist + dist[s.index];
                pq.add(new State(nbor, nborDist + dist[s.index]));
            }
        }
    }
}
```
Single source shortest paths

- For directed, weighted graphs:
 - With negative cycles? Need to detect those, use Bellman Ford algorithm
 - Read about this in the text!
All pairs shortest paths

- What happens if you want to find the shortest distance between all pairs of nodes?
 - On a weighted, connected graph, use Floyd Warshall algorithm
 - Implement in ~4 lines of code
 - $O(V^3)$ instead of N Dijkstra's algorithm, which would be $O(V^3 \log V)$
 - Explained in detail in the book
Floyd Warshall in code

// inside int main()
// precondition: m[i][j] contains the weight of edge (i, j)
// or INF (1B) if there is no such edge
// (m is an adjacency matrix)

for (int k = 0; k < V; k++)
 for (int i = 0; i < V; i++)
 for (int j = 0; j < V; j++)
 m[i][j] = min(m[i][j], m[i][k] + m[k][j]);

// common error: remember that loop order is k->i->j
Graph algorithms

• Now you've seen the bread and butter of graph algorithms
 • There are many more problems associated with graphs
 • Find the width of a graph, find strongly connected components
 • There are special kinds of graphs and smarter algorithms for them
 • Trees, directed acyclic graphs (DAGs), bipartite graphs, eulerian graphs
Practice
For next class

- **Readings:**
 - Sections 4.1-4.5
 - Mostly what we went over in class, plus more
 - Section 4.7
 - Review this, special cases of graphs and algorithms on them

- **Exercises:**
 - Homework on the website