Problem Set 6

Assigned: July 3
Due: July 10

Problem 1.

Let \(G \) be a DAG where the vertices are labelled with numerical values.

A. Write a function \(\text{MaxReachable}(u) \) which returns the maximum label on a vertex reachable from vertex \(u \) (including \(u \) itself.)

B. Write a function \(\text{TotalReachable}(u) \) which returns the sum of the labels on vertices reachable from vertex \(u \).

C. Write a function \(\text{MaxPathFrom}(u) \) which returns the maximum sum of the labels on any path starting at \(u \).

All these should run in time linear in the size of \(G \).

For example, in the graph below:

\[
\begin{array}{cccc}
A & C & E & G \\
15 & 7 & 8 & 8 \\
B & D & F & H \\
3 & 1 & 10 & -2
\end{array}
\]

\(\text{MaxReachable}(B) = 10 \) (corresponding to F).
\(\text{TotalReachable}(B) = 35 \) (B+C+D+E+F+G+H)
\(\text{MaxPathFrom}(B) = 27 \) (corresponding to B-D-C-E-G).

Problem 2

Suppose that you have two DAGs \(G \) and \(H \), with the same vertices and with different edges. We say that \(G \) and \(H \) are \textit{incompatible} if there is a pair of vertices \(u \neq v \) such that there is a path from \(u \) to \(v \) in \(G \) and a path from \(v \) to \(u \) in \(H \). If there is no such pair, then \(G \) and \(H \) are compatible.

Write a function to test whether two DAGs \(G \) and \(H \) are compatible. This should run in linear time.
Problem 3

Trace the execution of Dijkstra’s algorithm on the following graph, taking A as the starting vertex. Show the successive states of the array $D[i]$ and of the set of vertices whose distance has been determined.