Problem Set 4

Assigned: June 19
Due: June 26

Problem 1

A programmer proposes to implement a binary search tree using an array implementation similar to the array implementation of a heap. As in the implementation of a heap, the children of \(a[i] \) are at \(a[2i+1] \) and \(a[2i+2] \). For instance, the tree below would be implemented as the array \([15, 3, 24, -, 8, 22, 29, -, -, 7, 11, -, -, 26, -]\). (Another way of viewing this is that this is breadth-first search if you fill in all the missing spaces with null.)

![Binary Search Tree Diagram]

A. Describe the algorithm for searching for an element \(x \) in this tree.

B. This implementation is rarely if ever used in practice. What is the disadvantage of this method, as compared to constructing a binary search tree from dynamic objects?

C. Some time ago, I gave parts (A) and (B) as problems on an exam. A few of the students came up with the following answer to (B):

With this implementation, delete can be inefficient in the following case: Suppose that you delete node \(N \) with parent \(P \) and a single child \(C \) by making \(C \) a child of \(P \). Then all of the subtree under \(C \) will have to be moved in the array.

This answer is actually only half right. (I gave it full credit though, since it was certainly a good enough answer for an exam.)

C.a What is the worst case running time of deleting \(N \) if you implement delete as described above?
C.b Find a more efficient method of deleting an internal node with one child with this implementation.

In both C.a and C.b, running time should be given as a function of \(n \), the total number of elements, and \(h \), the height of the tree.

Problem 2

Modify the definition of a 2-3 tree so that it supports the following operations with the specified running times. You may assume that the reader understands the standard definition of a 2-3 (the one given in class, with all the values in the leaves); all you have to describe are the modifications that need to be made.

Note that we want a single (compound) data structure that supports all these operations, not different data structures for each operation.

- **add(x)**: Add element \(x \) to the set. Time: \(O(\log(n)) \)
- **delete(x)**: Delete element \(x \) from the set. Time: \(O(\log(n)) \).
- **element?(x)**: Is \(x \) in the set? Time: \(O(\log(n)) \).
- **index(i)**: Find the \(i \)th smallest element in the set. Time: \(O(\log(n)) \).
- **indexOf(x)**: Find the index of \(x \) in the set. Time: \(O(\log(n)) \).
- **subrange(i,k)**: Return \(k \) elements in the set in sequence starting with the \(i \)th. For instance, subrange(100,5) should return a list of the 100th, 101st, 102nd, 103rd, and 104th smallest elements. Time: \(O(k + \log(n)) \).
- **min()**: Find the smallest element in the set. Time: \(O(1) \).
- **max()**: Find the largest element in the set. Time: \(O(1) \).
- **median()**: Find the median element in the set. For instance if there are 99 or 100 elements in the set, return the 50th. Time: \(O(1) \).