Problem Set 3

Assigned: June 12
Due: June 19

Problem 1

Suppose that you are given the problem of returning in sorted order the \(k \) smallest elements in an array of size \(n \), where \(k \) is much smaller than \(n \), but much larger than 1.

a. Describe how each of the following algorithms can be modified to solve this problem: selection sort, insertion sort, heapsort, mergesort (you may use the simple recursive version), quicksort. Your description need not give the pseudo-code for the modified algorithms; it is enough simply to describe what changes should be made, as long as your description is clear.

b. Give the worst case running time as a function of \(k \) and \(n \) for all your modified algorithms except quicksort.

Problem 2.

Show that any comparison method for solving the problem in problem 1 must take at least \(\Omega(k \cdot \lg(n)) \) in the worst case.

Problem 3

Consider the implementation of a heap as a dynamic binary tree (rather than an array implementation) where each node is an object with a pointer to the parent and the two children.

It will not suffice to have just pointers to parent and children nodes, and a global pointer to the root. Why not? Describe how the standard tree implementation can be extended to support the heap operations add and deleteMin, and describe briefly how these to operations can be implemented in this data structure.

Problem 4

One can modify the definition of a heap so that each node has \(k \) children, for any \(k \geq 2 \). Assume that \(k \ll n \).

a. What is the height of a heap with \(n \) elements, as a function of \(n \) and \(k \)?

b. What are the running times of the functions add\((x)\) and deleteMin\()\) as functions of \(n \) and \(k \)? What would be the running time of a heapsort, implemented with this kind of heap?