
Programming Languages

CSCI-GA.2110-001
Summer 2012

Dr. Cory Plock

What this course is

2 / 28

■ A study of programming language paradigms

◆ Imperitive
◆ Functional
◆ Logical
◆ Object-oriented

■ Tour of programming language history & roots.
■ Introduction to core language design & implementation concepts.
■ Exposure to languages/paradigms you may not have used before.
■ Reasoning about language benefits/pitfalls.
■ Explores programming language implementation.
■ Offers an appreciation of language standards.
■ Provides the ability to more quickly learn new languages.

What this course isn’t

3 / 28

■ A comprehensive study of particular languages.
■ An exercise in learning as many languages as possible.
■ A software engineering course.
■ A compiler course.

Introduction

4 / 28

The main themes of programming language design and use:

■ Paradigm (Model of computation)
■ Expressiveness

◆ control structures
◆ abstraction mechanisms
◆ types and their operations
◆ tools for programming in the large

■ Ease of use: Writeability / Readability / Maintainability

Language as a tool for thought

5 / 28

■ Role of language as a communication vehicle among programmers can be
just as important as ease of writing

■ All general-purpose languages are Turing complete (They can compute
the same things)

■ But languages can make expression of certain algorithms difficult or easy.

◆ Try multiplying two Roman numerals

■ Idioms in language A may be useful inspiration when writing in language
B.

Idioms

6 / 28

■ Copying a string q to p in C:

while (*p++ = *q++) ;

■ Removing duplicates from the list @xs in Perl:

my %seen = ();

@xs = grep { ! $seen{$_}++; } @xs;

■ Computing the sum of numbers in list xs in Haskell:

foldr (+) 0 xs

Is this natural? It is if you’re used to it

Programming paradigms

7 / 28

■ Imperative (von Neumann): Fortran, Pascal, C, Ada

◆ programs have mutable storage (state) modified by assignments
◆ the most common and familiar paradigm

■ Functional (applicative): Scheme, Lisp, ML, Haskell

◆ functions are first-class values
◆ side effects (e.g., assignments) discouraged

■ Logical (declarative): Prolog, Mercury

◆ programs are sets of assertions and rules

■ Object-Oriented: Simula 67, Smalltalk, C++, Ada95, Java, C#

◆ data structures and their operations are bundled together
◆ inheritance

■ Functional + Logical: Curry
■ Functional + Object-Oriented: O’Caml, O’Haskell

The Beginnings

8 / 28

■ Before FORTRAN/COBOL/ALGOL, programs were written in assembly.
■ FORTRAN

◆ Invented by John Backus et al., released in 1957.
◆ First successful high-level programming language.
◆ Primary use: scientific computing and mathematics.
◆ Example:

A = C + D

■ COBOL

◆ Designed by committee, released late 1960.
◆ Common or Business-Oriented Language.
◆ Data processing, business, finance, administrative systems.
◆ Example:

ADD C TO D GIVING A

The Beginnings (Continued)

9 / 28

■ ALGOL

◆ Invented by a group of European & American computer scientists,
released in 1958.

◆ Popularized many PL concepts still in use today.

■ BNF
■ Compound statements using blocks
■ case statement
■ Call-by-reference
■ Orthogonality

◆ Was not a commercial success (e.g., no standard I/O).

IF Ivar > Jvar THEN Ivar ELSE Jvar FI := 3;

Genealogy

10 / 28

■ FORTRAN (1957) ⇒ Fortran90, HP
■ COBOL (1960) ⇒ COBOL 2000
■ Algol60 ⇒ Algol68/Algol W ⇒ Pascal ⇒ Ada
■ Algol60 ⇒ BCPL ⇒ C ⇒ C++
■ Algol60 ⇒ Simula ⇒ Smalltalk
■ APL ⇒ J
■ Snobol ⇒ Icon
■ Lisp ⇒ Scheme ⇒ ML ⇒ Haskell

with lots of cross-pollination: e.g., Java is influenced by C++, Smalltalk,
Lisp, Ada, etc.

Predictable performance vs. ease of
writing

11 / 28

■ Low-level languages mirror the physical machine:

◆ Assembly, C, Fortran

■ High-level languages model an abstract machine with useful capabilities:

◆ ML, Setl, Prolog, SQL, Haskell

■ Wide-spectrum languages try to do both:

◆ Ada, C++, Java, C#

■ High-level languages have garbage collection, are often interpreted, and
cannot be used for real-time programming. The higher the level, the
harder it is to determine cost of operations.

Common Ideas

12 / 28

Modern imperative languages (e.g., Ada, C++, Java) have similar
characteristics:

■ large number of features (grammar with several hundred productions, 500
page reference manuals, . . .)

■ a complex type system
■ procedural mechanisms
■ object-oriented facilities
■ abstraction mechanisms, with information hiding
■ several storage-allocation mechanisms
■ facilities for concurrent programming
■ facilities for generic programming

Language standards

13 / 28

Developed by working groups of standards bodies (ANSI, ISO).

■ Pro: Discourages countless language flavors (ala LISP)
■ Con: Places creative freedom in the hands of a few people.
■ Major compiler manufacturers generally align to the standards.
■ Main goal: increases portability.
■ Specifies universal language syntax.
■ Defines, but does not enforce, syntactic and semantic correctness.

Example: incorrect code, but GNU C++ compiler doesn’t warn by default:

int x;

int y = x + 2; // x is undefined

Language libraries

14 / 28

The programming environment may be larger than the language.

■ The predefined libraries are indispensable to the proper use of the
language, and its popularity.

■ The libraries are defined in the language itself, but they have to be
internalized by a good programmer.

Examples:

■ C++ standard template library
■ Java Swing classes
■ Ada I/O packages

Syntax and semantics

15 / 28

■ Syntax refers to external representation:

◆ Given some text, is it a well-formed program?

■ Semantics denotes meaning:

◆ Given a well-formed program, what does it mean?
◆ Often depends on context.

The division is somewhat arbitrary.

■ Note: It is possible to fully describe the syntax and sematics of a
programming language by syntactic means (e.g., Algol68 and
W-grammars), but this is highly impractical.

Typically use a grammar for the context-free aspects, and different
method for the rest.

■ Similar looking constructs in different languages often have subtly (or
not-so-subtly) different meanings

Compilation overview

16 / 28

Major phases of a compiler:

1. lexer: text −→ tokens
2. parser: tokens −→ parse tree
3. semantic analyzer: parse tree −→ abstract syntax tree
4. intermediate code generation
5. optimization (machine independent): local & global redundancy

elimination, loop optimization
6. target code generation
7. optimization (machine dependent): instruction scheduling, register

allocation, peephole optimization

Grammars

17 / 28

A grammar G is a tuple (Σ, N, S, δ)

■ Σ is the set of terminal symbols (alphabet)
■ N is the set of non-terminal symbols
■ S is the distinguished non-terminal: the root symbol
■ δ is the set of rewrite rules (productions) of the form:

ABC . . . ::= XYZ . . .

where A,B,C,X,Y,Z are terminals and non terminals.
■ The language is the set of sentences containing only terminal symbols

that can be generated by applying the rewriting rules starting from the
root symbol (let’s call such sentences strings)

BNF: notation for context-free grammars

18 / 28

(BNF = Backus-Naur Form) Some conventional abbreviations:

■ alternation: Symb ::= Letter | Digit
■ repetition: Id ::= Letter {Symb}

or we can use a Kleene star: Id ::= Letter Symb∗

for one or more repetitions: Int ::= Digit+

■ option: Num ::= Digit+[. Digit∗]

■ abbreviations do not add to expressive power of grammar
■ need convention for metasymbols – what if “|” is in the language?

Grammar Example (partial)

19 / 28

<typedecl> ::= type <typedeflist>

<typedeflist> ::= <typedef> [<typedeflist>]

<typedef> ::= <typeid> = <typespec> ;

<typespec> ::= <typeid> |

<arraydef> | <ptrdef> | <rangedef> |

<enumdef> | <recdef>

<typeid> ::= <ident>

<arraydef> ::= [packed] array ‘[’ <rangedef> ‘]’ of <typeid>

<ptrdef> ::= ^ <typeid>

<rangedef> ::= <number> .. <number>

<number> ::= <digit> [<number>]

<enumdef> ::= (<idlist>)

<idlist> ::= <ident> { , <ident> }

<recdef> ::= record <vardecllist> end ;

The Chomsky hierarchy

20 / 28

■ Regular grammars (Type 3)

◆ all productions can be written in the form: N ::= TN
◆ one non-terminal on left side; at most one on right

■ Context-free grammars (Type 2)

◆ all productions can be written in the form: N ::= XYZ
◆ one non-terminal on the left-hand side; mixture on right

■ Context-sensitive grammars (Type 1)

◆ number of symbols on the left is no greater than on the right
◆ no production shrinks the size of the sentential form

■ Type-0 grammars

◆ no restrictions

Regular expressions

21 / 28

Regular expressions can be used to generate or recognize regular languages.

We say that a regular expression R denotes the language [[R]].

Basic regular expressions:

■ ǫ denotes ∅
■ a character x, where x ∈ Σ, denotes {x}
■ (sequencing) a sequence of two regular expressions RS denotes

{αβ |α ∈ [[R]], β ∈ [[S]]}
■ (alternation) R|S denotes [[R]] ∪ [[S]]
■ (Kleene star) R∗ denotes the set of strings which are concatenations of

zero or more strings from [[R]]
■ parentheses are used for grouping

Shorthands:

■ R? ≡ ǫ|R
■ R+ ≡ RR∗

Regular grammar example

22 / 28

A grammar for floating point numbers:

Float ::= Digits | Digits .Digits
Digits ::= Digit | DigitDigits
Digit ::= 0|1|2|3|4|5|6|7|8|9

A regular expression for floating point numbers:

(0|1|2|3|4|5|6|7|8|9)+(.(0|1|2|3|4|5|6|7|8|9)+)?

Perl offer some shorthands:

[0 -9]+(\.[0 -9]+)?

or

\d+(\.\d+)?

Lexical Issues

23 / 28

Lexical: formation of words or tokens.

■ Described (mainly) by regular grammars
■ Terminals are characters. Some choices:

◆ character set: ASCII, Latin-1, ISO646, Unicode, etc.
◆ is case significant?

■ Is indentation significant?

◆ Python, Occam, Haskell

Example: identifiers

Id ::= Letter IdRest
IdRest ::= ǫ | Letter IdRest | Digit IdRest

Missing from above grammar: limit of identifier length

Parse trees

24 / 28

A parse tree describes the grammatical structure of a sentence

■ root of tree is root symbol of grammar
■ leaf nodes are terminal symbols
■ internal nodes are non-terminal symbols
■ an internal node and its descendants correspond to some production for

that non terminal
■ top-down tree traversal represents the process of generating the given

sentence from the grammar
■ construction of tree from sentence is parsing

Ambiguity

25 / 28

If the parse tree for a sentence is not unique, the grammar is ambiguous:

E ::= E + E | E ∗ E | Id

Two possible parse trees for “A+ B ∗ C”:

■ ((A + B) ∗ C)
■ (A + (B ∗ C))

One solution: rearrange grammar:

E ::= E + T | T
T ::= T ∗ Id | Id

Harder problems – disambiguate these (courtesy of Ada):

■ function call ::= name (expression list)
■ indexed component ::= name (index list)
■ type conversion ::= name (expression)

Dangling else problem

26 / 28

Consider:
S ::= if E then S
S ::= if E then S else S

The sentence

if E1 then if E2 then S1 else S2

is ambiguous (Which then does else S2 match?)

Solutions:

■ Pascal rule: else matches most recent if
■ grammatical solution: different productions for balanced and unbalanced

if-statements
■ grammatical solution: introduce explicit end-marker

The general ambiguity problem is unsolvable

Scanners and Parsers

27 / 28

■ Scanners (or tokenizers) read input, identify, and extract small input
fragments called tokens.

◆ Identifiers
◆ Constants
◆ Keywords
◆ Symbols: (,), [,], !, =, !=, etc.

■ Parsers attempt to match input tokens to grammar rules.

◆ LL (or: recursive descent, top-down) parsers are depth-first, begin at
the start symbol and recurse on each RHS non-terminal.

◆ LR (or: bottom-up) parsers

Tools for creating scanners and parsers

28 / 28

■ Lex (or Flex) is a lexical analyzer generator.

◆ Input: rules containing regular expressions.
◆ Output: a lexical analyzer.

■ Yacc (or Bison) is a parser generator.

◆ Input: Context-free grammar and Lex input (optional).
◆ Output: An LR parser.

	What this course is
	What this course isn't
	Introduction
	Language as a tool for thought
	Idioms
	Programming paradigms
	The Beginnings
	The Beginnings (Continued)
	Genealogy
	Predictable performance vs. ease of writing
	Common Ideas
	Language standards
	Language libraries
	Syntax and semantics
	Compilation overview
	Grammars
	BNF: notation for context-free grammars
	Grammar Example (partial)
	The Chomsky hierarchy
	Regular expressions
	Regular grammar example
	Lexical Issues
	Parse trees
	Ambiguity
	Dangling else problem
	Scanners and Parsers
	Tools for creating scanners and parsers

