
Programming Languages

Subprograms

CSCI-GA.2110-003

Fall 2011



Subprograms

2 / 28

■ the basic abstraction mechanism

◆ promotes code reuse
◆ increases readability & maintainability

■ two kinds: functions vs. procedures.
■ functions correspond to the mathematical notion of computation:

input −→ output

■ procedures affect the environment, and are called for their side-effects
■ side-effects refer to a change in program state beyond the scope of the

procedure.
■ pure functional model possible but rare (Haskell, Clean)
■ hybrid model most common: functions can have side effects



Environment of the computation

3 / 28

■ declarations introduce names that denote entities
■ at execution-time, entities are bound to values or to locations:

name −→ value functional
name −→ location −→ value imperative

■ exceptions exist:
C++ e.g., #define NINE 9

■ value binding takes place during function invocation
■ names are bound to locations on scope entry
■ locations are bound to values by assignment



Parameter passing

4 / 28

The rules that describe the binding of arguments to formal parameters, i.e.,
the meaning of a reference to a formal in the execution of the subprogram.

function f (a, b, c) ... // parameters: a, b, c

f(i, 2/i, g(i,j)); // arguments: i, 2/i, g(i,j)

■ by value: formal is bound to value of actual
■ by reference: formal is bound to location of actual
■ by copy-return: formal is bound to value of actual; upon return from

routine, actual gets copy of formal
■ by name: formal is bound to expression for actual; expression evaluated

whenever needed; writes to parameter are allowed (and can affect other
parameters!)

■ by need: formal is bound to expression for actual; expression evaluated the
first time its value is needed; cannot write to parameters



Parameter passing in Ada

5 / 28

■ goal: separate semantic intent from implementation
■ parameter modes:

◆ in : read-only in subprogram (default)
◆ out : write in subprogram
◆ in out : read-write in subprogram

■ independent of whether binding by value, by reference, or by copy-return
■ functions can only have in parameters



Syntactic sugar

6 / 28

■ Default values for in-parameters (Ada)

function Incr (Base: Integer;

Inc: Integer := 1) return Integer;

■ Incr(A(J)) equivalent to Incr(A(J), 1)

■ also available in C++

int f (int first ,

int second = 0,

char *handle = 0);

■ named associations (Ada):

Incr(Inc => 17, Base => A(I));



Parameter passing in C

7 / 28

■ C: parameter passing by value, no semantic checks. Assignment to formal
is assignment to local copy

■ if argument is pointer, effect is similar to passing designated object by
reference

void incr (int *x) {

(*x)++;

}

incr(& counter ); /* pointer to counter */

■ no need to distinguish between functions and procedures:
void return type indicates side-effects only



Parameter-passing in C++

8 / 28

■ default is by-value (same semantics as C)
■ explicit reference parameters:

void incr (int& y) {

y++;

}

incr(counter ); // compiler knows profile of incr ,

// builds reference

■ semantic intent indicated by qualifier:

void f (const double& val); // passed by reference ,

// cannot be unbound



Parameter-passing in Java

9 / 28

■ by value only
■ semantics of assignment differs for primitive types and for classes:

◆ primitive types have value semantics
◆ objects have reference semantics

■ consequence: methods can modify objects
■ for formals of primitive types: assignment allowed, affects local copy
■ for objects: final means that formal is read-only



Parameter-passing performance

considerations

10 / 28

■ by value: the value of the actual is copied to the stack frame.

◆ Copying can be expensive for large objects.
◆ Once copied, modification/access is same as a local variable.

■ by reference: the address of the actual is copied to the stack frame.

◆ Copying is fast, since only a memory address is copied.
◆ Modification/access requires 2 levels of indirection: all accesses must

be preceded by a dereference.



Block structure

11 / 28

procedure Outer (X: Integer) is

Y: Boolean;

procedure Inner (Z: Integer) is

X: Float := 3.0; -- hides outer x

function Innermost (V: Integer) return Float is

begin

return X * Float(V * Outer.X); -- use Inner.X

-- and Outer.X

end Innermost;

begin

X := Innermost(Z); -- assign to Inner.X

end Inner;

begin

Inner(X); -- Outer.X, the other one is out of scope

end;



Parameter passing anomalies

12 / 28

program example;

var

global: integer := 10;

another: integer := 2;

procedure confuse (var first , second: integer );

begin

first := first + global;

second := first * global;

end;

begin

confuse(global , another ); /* first and global */

/* are aliased */

end

■ different results if by reference or by copy-return
■ semantics should not depend on implementation of parameter passing
■ passing by value with copy-return is less error-prone



Storage outside of the block

13 / 28

■ with block structure, the lifetime of an entity usually coincides with the
invocation of the enclosing construct

■ if the same entity is to be used for several invocations, it must be global
to the construct

◆ in C,C++, can be declared static instead

■ simplest: declare in the outermost context
■ three storage classes:

◆ static
◆ stack-based (automatic)
◆ heap-allocated



Bounded Nesting

14 / 28

■ C, C++, Java:

◆ no nested functions
◆ blocks are merged with activation record of enclosing function
◆ static storage available

■ Pascal, Ada:

◆ arbitrary nesting of packages and subprograms
◆ packages provide static storage



Run-time organization

15 / 28

■ each subprogram invocation creates an activation record
■ recursion imposes stack allocation
■ activation record hold actuals, linkage information, saved registers, local

entities
■ caller: place actuals on stack, return address, linkage information, then

transfer control to callee
■ prologue: save registers, allocate space for locals
■ epilogue: place return value in register or stack position, update actuals,

restore registers, then transfer control to caller
■ binding of locations: actuals and locals are at fixed offsets from frame

pointers
■ complications: variable # of actuals, dynamic objects



Activation record layout

16 / 28

Frame pointer −→

Stack pointer −→

actual 1

actual 2

return addr

save area

local 1

local 2















Handled by caller







Handled by callee



Variable number of parameters

17 / 28

printf("this is %d a format %d string", x, y);

■ within body of printf, need to locate as many actuals as placeholders in
the format string

■ solution: place parameters on stack in reverse order
(actuals at positive offset from FP, locals at negative offset from FP)

actual n

actual n-1

...

actual 1 (format string)

return address



Objects of dynamic size

18 / 28

declare

X: String (1..N); -- N global , non -constant

Y: String (1..N);

begin ...

Where is the start of Y in the activation record?

■ Solution 1: use indirection: activation record holds pointers
simpler implementation, costly dynamic allocation/deallocation

■ Solution 2: local indirection: activation record holds offset into stack
faster allocation/deallocation, complex implementation



Run-time access to globals

19 / 28

procedure Outer is -- recursive

Gbl: Integer;

procedure Inner is -- recursive

Loc: Integer;

begin

...

if Gbl = Loc then -- how do we locate Gbl?

...

end;

begin

...

end;

■ Need run-time structure to locate activation record of statically enclosing
scopes.

■ Environment includes current activation record and activation records of
parent scopes.



Global linkage

20 / 28

■ static chain: pointer to activation record of statically enclosing scope
■ display: array of pointers to activation records
■ does not work for function values

◆ functional languages allocate activation records on heap

■ may not work for pointers to functions

◆ simpler if there is no nesting (C, C++, Java)
◆ can check static legality in many cases (Ada)



Static Links

21 / 28

Activation record holds pointer to activation record of enclosing scope.
Set up as part of call prologue.

outer

outer

outer

inner

inner

inner

inner

to enclosing scope

To retrieve entity n scopes out, need n dereference operations.



Display

22 / 28

Global array of pointers to current activation records

outer

outer

outer

inner

inner

inner

inner

outermost
...

display

To retrieve entity n scopes out, need 1 indexing operation.



Returning composite values

23 / 28

■ intermediate problem: functions that return values of non-static sizes:

function Conc3 (X, Y, Z: String) return String is

begin

return X & ":" & Y & ":" & Z;

end;

Str := Conc3(This , That , The_Other );

■ best not to use heap, but still need indirection
■ simple solutions: forbid it (Pascal, C) or use heap automatically (Java)



Subprogram parameters in Ada

24 / 28

procedure Outer (...) is

type Proc is access procedure (X: Integer );

procedure Perform (Helper: Proc) is begin

Helper (42);

end;

procedure Action (X: Integer) is ...

procedure Proxy is begin

Perform(Action ’access );

end;

begin

...

end;

Action’access creates pair: (ptr to Action, env of Action)

How does Proxy know what Action’s environment is?

Simplest implementation of environment is a pointer (static link);
can be display instead.



The limits of stack allocation

25 / 28

type Ptr is access function (X: Integer) return Integer;

function Make_Incr (X: Integer) return Ptr is

function Incr (Base: Integer) return Integer is

begin

return Base + X; -- reference to formal of Make_Incr

end;

begin

return Incr ’access; -- will it work?

end;

Add_Five: Ptr := Make_Incr (5);

Total: Integer := Add_Five (10); -- where does Add_Five

-- find X ?



First-class functions: implementation

implications

26 / 28

Allowing functions as first-class values forces heap allocation of activation
records.

■ environment of function definition must be preserved until the point of
call: activation record cannot be reclaimed if it creates functions

■ functional languages require more complex run-time management
■ higher-order functions: functions that take (other) functions as arguments

and/or return functions

◆ powerful
◆ complex to implement efficiently
◆ imperative languages restrict their use
◆ (a function that takes/returns pointers to functions can be considered

a higher-order function)



Higher-order functions

27 / 28

Both arguments and result can be (pointers to) subprograms:

type Func is access function (X: Integer) return Integer;

function Compose (First , Second: Func) return Func is

declare

function Result (X: Integer) return Integer is

begin

return Second(First(X)); -- implicit dereference

-- on call

end;

begin

return Result ’Access;

end;

This is illegal in Ada, because First and Second won’t exist at point of call.



Restricting higher-order functions

28 / 28

■ C: no nested definitions, so environment is always global
■ C++: ditto, except for nested classes
■ Ada: static checks to reject possible dangling references
■ Modula: pointer to function illegal if function not declared at top-level
■ ML, Haskell: no restrictions – compose is easily definable:

fun compose f g x = f (g x)


	Subprograms
	Environment of the computation
	Parameter passing
	Parameter passing in Ada
	Syntactic sugar
	Parameter passing in C
	Parameter-passing in C++
	Parameter-passing in Java
	Parameter-passing performance considerations
	Block structure
	Parameter passing anomalies
	Storage outside of the block
	Bounded Nesting
	Run-time organization
	Activation record layout
	Variable number of parameters
	Objects of dynamic size
	Run-time access to globals
	Global linkage
	Static Links
	Display
	Returning composite values
	Subprogram parameters in Ada
	The limits of stack allocation
	First-class functions: implementation implications
	Higher-order functions
	Restricting higher-order functions

