Comparing Word Occurrences across Documents: Information Retrieval, Terminology Extraction, etc.

Adam Meyers
New York University
2016
Outline

• Classifying Documents
 – Viewing “subject” of a document as a function of the set of words contained in the document
 – Similar documents → similar word distribution

• Search Query
 – Find document that is similar to query

• Terminology Extraction
 – Find words and word sequences that are significant, i.e., are valid search terms

• Other areas:
 – Cluster “similar documents”: topic modeling, sublanguage identification, sentiment analysis, …
Ad Hoc Information Retrieval

• Model of document = unordered set of terms contained in that document (ignore word order)
 – Term = word, bigram, trigram, noun group, or other small unit of consecutive items
• Query = user input, typically a set of terms
• Collection = set of documents that system
• Goal find documents that are “closest” to query
Vector Model

• Model documents and queries as vectors
• Feature values filled by the weight of terms
 – Values also called dimensions
• Example:
 – Terms: potato chip, chicken, sesame seed, coconut milk
 – Vector for query about Thai soups \(\vec{S} = (0, 20, 2, 100) \)
 – Vector for chicken and coconut soup recipe \(\vec{S} = (0, 40, 0, 100) \)
 – Vector for chicken noodle soup recipe \(\vec{S} = (0, 20, 0, 0) \)
 – Which soup vector is “closer” to the query?
• IR task: find documents that most closely “match” query
 – Matching via similarity metric defined on pairs of vectors
• Weights and Similarity Scores need to be defined
TFIDF = Common Weight for Vector

- Term Frequency – number of times term t occurs in document
- Inverse Document Frequency: Reciprocal of portion of large document set that contain term t, normalized with log function:

$$\log\left(\frac{\text{NumberOfDocuments}}{\text{NumberOfDocumentsContaining}(t)}\right)$$

- TFIDF(t) = TF(t) \times IDF(t)
 - Scores terms highly that occur frequently in a document or query
 - Scores terms highly that are infrequent in collection
Example: *coconut milk* vs. *tablespoon*

- **coconut milk**
 - occurs ~ 3 times in chicken and coconut soup recipe
 - Term frequency = 3
 - occurs in 4 out of 10,000 documents in collection
 - inverse document frequency = \(\log(10000/4) = \log(2500) = 7.82 \)
 - TFIDF = \(3 \times 7.82 = 23.46 \)
- **tablespoon**
 - occurs 4 times in chicken and coconut soup recipe
 - Term frequency = 4
 - occurs in 1200 out of 10,000 documents in corpus
 - inverse document frequency = \(\log(10000/1200) = \log(8.33) = 2.12 \)
 - TFIDF = \(4 \times 2.12 = 8.48 \)
- **coconut milk** is more highly weighted for Thai Soup recipes than *tablespoon*
- Note: Suitability of query term may depend on the nature of the collection
 - Is this a collection of recipes? – *tablespoon* not good search term
 - Is collection diverse: instructions, news, …? – tablespoon may be good search term
Cosine Similarity: Common Similarity Score

\[\text{Similarity}(A, B) = \frac{\sum_i a_i \times b_i}{\sqrt{\sum_i a_i^2 \times \sum_i b_i^2}} \]

- Cosine of the Angle Between the Vectors
- Numerator is Dot Product, Denominator is a normalizing factor, based on lengths of vectors
- If a query is A and a document is B
 - Cosine similarity high if values of a and b are similar
Example

• Vectors have values corresponding to terms:
 – potato chip, chicken, sesame seed, coconut milk, ground beef

• 2 Queries
 – Q1 chicken, coconut milk: (0,5,0,5,0)
 – Q2 ground beef, potato chip: (4,0,0,0,7)

• 2 Documents
 – D1 Chicken and Coconut Soup Recipe: (0,7,0,9,0)
 – D2 Hamburger Recipe: (3,0,2,0,9)

• Cosine similarities

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>99.2</td>
<td>0</td>
</tr>
<tr>
<td>D2</td>
<td>0</td>
<td>95.9</td>
</tr>
</tbody>
</table>
Other Factors

• Many more terms (possibly thousands) represented in each vector
• More weights, normalizations, etc.
• Other similarity measures and weighting functions
• Lists of “stop words”, e.g., the, a, in, to, does, …
• Stemming procedures that consider some terms to be the same, e.g., [cat, cats], [analyze, analyzes, analyzed, analysis, analyse, …]
• Identifying other similar words, e.g., synonyms
 – query expansion, term clustering, …
• Systems identify word sequences as terms: N-grams or chunking
Evaluation of Doc Extraction

• Output = A Ranked List of Documents
 – Some high-ranked errors “worse” than low-ranked
 – Ranking makes relevant/irrelevant distinction subtle
 – Mean Average Precision (MAP): average precision up to some cutoff (in terms of some ranking number, some recall number, etc.)

• Too Expensive to Create Gold Standard Manually
 – Collections can be millions or billions of documents
 – Precision can be approximated by taking samples of the text or evaluating the top N ranked terms manually.
 – Recall can also be approximated by some sort of sampling, e.g., only manually evaluating a subset of the collection

• Precision/Recall tradeoff curves based on numbers in the ranking
 – Typically, precision goes down and recall goes up as more documents in the ranking are considered
Mean Average Precision

• Computer precision at several intervals and average. Intervals can be based on rank numbers (e.g., 1-10, 11-20, etc.) or recall levels (e.g., 1-10%, 11-20%, etc.)

• Example of MAP for 1 query:
 – 100% precision at 10% recall; 70% at 20% recall; 50% at 30% recall
 – MAP at 30% recall with 10% intervals = average(1,.7,.5) = .73

• MAP for a set of queries is the average of MAP scores.
Sample Precision/Recall Tradeoff Based on Number of Search Results
Precision/Recall Curve
Final Remarks about Document Retrieval

• TFIDF weighting + Cosine similarity
 – standard in IR document retrieval for over 50 years

• Web Search Engines
 – use these methods to identify relevant documents
 – they use other metrics, e.g., PageRank, to rank documents by their “importance”

• Some areas of Opinion/Sentiment Extraction
 – Similar methods applied to differentiating positive/negative opinions in documents
 – More Difficult
 – Same terms linked to positive/negative in different contexts
 • low, high, small, large, thin, thick, visible, loud, soft, …
 – high/low quality, high/low interest, high/low resolution
Homework

- http://cs.nyu.edu/courses/spring17/CSCI-UA.0480-009/homework5.html
Terminology Talk

• Do Terminology Talk Now