Midterm Preparation

Adam Meyers
New York University
Administrative Details

• Time: Thursday March 9, 2017
• Ask clarification questions during test
 – I especially want to fix errors such as typos
• Open Book, Open Notes
 – You can bring materials
 – Search the web
 – Do simple calculations with a calculator
 – **DO NOT:**
 • communicate with others (texting, email, phone)
 • write/run actual programs
• Put your name and ID number on all test materials
• I will take attendance: please bring your ID
The Purpose of the Midterm?

• Pedagogical purposes
 – Track whether students learned parts of curriculum and what may need further clarification
 – Provide a motivating force for students to study the “important” parts of the curriculum
 – Clarify how to prepare students to do final projects
• Administrative purpose: determine 1/4 of grade
• Possible conflict
 – A difficult test makes pedagogical sense
 – An “acceptable” average grade may make administrative sense
• Current Strategy: Motivate test based on pedagogical objectives, but make it as open book as possible
 – You can bring materials, search the web, etc., but I will want you to solve the problems posed by the test
Outline

• Linguistic Resources & Descriptive Linguistics
 – Especially Corpus Annotation
• Rules used by Automated Procedures
 – Ones covered in Class
• Algorithms Discussed in Class
• How does Evaluation Work
• Sample Midterm
Annotation

• You should be able to write usable specifications
• You should be able to annotate based on specifications
• You should understand some of the mechanics
 – Character offsets
 – A Markup language
 – BIO tags
• You should understand the difference between training, development and test corpora
Descriptive Linguistics

• The basic parts of speech and phrasal categories.
 – The difference between a determiners and an adjective
 – Verbs, prepositions, coordinate conjunctions

• How to manually divide sentences into tokens

• You should know how to identify the head of a phrase

• You should be able to draw a phrase structure tree modeling the linguistic analysis of a sentence
Common Difficulties with Phrase Structure

- **SBAR → IN S**
 - that this is a sentence.

- **PP → IN NP**
 - *in the house, for freedom, on the clock, of chocolate, ...*

- **Coordinate conjunctions** (*and, or, but*) **link 2 constituents of the same type together**
 - [NP [NP …] *and* [NP …]]
 - [VP [VP …] *or* [VP …]]
 - [S [S …] *but* [S]]

- **To infinitives are VPs**, e.g. [VP *to* [VP *go to the movies*]]
Rules: Regular Expressions

• You should know how to write a basic regular expression
 – Decent coverage, but not over-generate too much
• You should know how to write a phrase structure rule including at least:
 – Context free rules
 – Left (or right) regular rules
• For a regular expression, you should be able to identify a set of phrase structure rules that describe the same language (set of strings)
Algorithms: Deterministic Finite State Machine

• Given:
 – Finite State Machine (FSM)
 – Input String
• Would the FSM recognize the string?
• Which sequence of states would be entered before recognition was complete?
• How would the FSM on the next slide process:
 – AababAB
 – AABB
DFSA for Regexp: $A(ab)^*ABB$?
Algorithms: Context-Free Generator

• Show steps for randomly generating a sentence given a lexicon and context-free grammar with start symbol S
• The start symbol is inserted into a stack.
• Repeat until stack is empty:
 – If the top most item is a terminal, pop it off and include it in the output.
 – Else, replace the top most item in the stack with the right hand of a rule of the form \(X \rightarrow \text{Right Hand Side} \)
Example of Generator

- Add S to top of empty stack
 - Stack is now: S

- Substitute NP VP for S
 - Stack is now: NP VP

- Substitute DT N PP for NP
 - Stack is now: DT N PP VP

- Substitute DT with the, pop off the (terminal)
 - Stack is now: N PP VP

- Etc.
Algorithms: The CKY parsing algorithm

• Fill in the triangular chart given a (short) sentence and a set of context free rules

• Remember
 – How the chart encodes start and end positions
 – That each rule is in Chomsky Normal Form
 • i.e., is binary branching

• See the next slide
6th Iteration of CKY Algorithm

<table>
<thead>
<tr>
<th>The</th>
<th>clam</th>
<th>'s</th>
<th>group</th>
<th>had</th>
<th>knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>D [0,1]</td>
<td>NP [0,2]</td>
<td>POSSP [0,3]</td>
<td>NP [0,4]</td>
<td>S [0,5]</td>
</tr>
<tr>
<td>1</td>
<td>N, NP [1,2]</td>
<td>POSSP [1,3]</td>
<td>NP [1,4]</td>
<td>S [1,5]</td>
<td>S [1,6]</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>POSS [2,3]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>V, VP [4,5]</td>
<td>VP [4,6]</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N,NP [5,6]</td>
</tr>
</tbody>
</table>
Viterbi Decoding of HMM for *rose pickles*

- **Likelihood:**
 - *rose*: NNP .01, NN .02, VBD .05
 - *pickles*: NNP .001, NNS .03, VBZ .05

- **Transition Probabilities:**
Rose Pickles

- **Likelihood:**
 - *rose*: NNP .01, NN .02, VBD .05
 - *pickles*: NNP .001, NNS .03, VBZ .05
- **Fill in:** max (previous X transition X likelihood)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1: Rose</th>
<th>2: Pickles</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>1</td>
<td>![Arrow](0.42 * 0.01)</td>
<td>![Arrow](0.3 * 0.001)</td>
<td>![Arrow](0.3 * 0.001) * 0.001</td>
</tr>
<tr>
<td>NNP</td>
<td>![Arrow](0.20 * 0.02)</td>
<td>![Arrow](0.3 * 0.05)</td>
<td>![Arrow](0.5 * 0.03)</td>
<td>![Arrow](0.5 * 0.03) * 0.001</td>
</tr>
<tr>
<td>NNS</td>
<td></td>
<td>![Arrow](0.3 * 0.05)</td>
<td>![Arrow](0.1 * 0.05)</td>
<td>![Arrow](0.1 * 0.05) * 0.001</td>
</tr>
<tr>
<td>NN</td>
<td>![Arrow](0.05 * 0.05)</td>
<td></td>
<td>![Arrow](0.2 * 0.05)</td>
<td>![Arrow](0.2 * 0.05) * 0.001</td>
</tr>
<tr>
<td>VBD</td>
<td></td>
<td>![Arrow](0.05 * 0.05)</td>
<td></td>
<td>![Arrow](0.2 * 0.05) * 0.001</td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td></td>
<td> * 0.001</td>
</tr>
</tbody>
</table>

Midterm Preparation
2017
Rose/NNP Pickles/VBZ

- **Likelihood:**
 - *rose*: NNP .01, NN .02, VBD .05
 - *pickles*: NNP .001, NNS .03, VBZ .05
- **Fill in:** max (previous X transition X likelihood)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1: Rose</th>
<th>2: Pickles</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNP</td>
<td>.42 * .01</td>
<td>3.001=1.26*10⁻⁶</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>NNS</td>
<td></td>
<td>0.03</td>
<td>5.03=6*10⁻⁵</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td>.20 * .02</td>
<td></td>
<td>23.001</td>
<td></td>
</tr>
<tr>
<td>VBZ</td>
<td></td>
<td>3.05=6.3*10⁻⁵</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>VBD</td>
<td>.05 * .05</td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td>2=.5210⁻²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15 = 9.010⁻⁶</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45 = 2.8510⁻⁵</td>
<td></td>
</tr>
</tbody>
</table>

Midterm Preparation 2017
Common Evaluation Metrics

• If all instances are classified
 – Accuracy = Correct/All-Instances

• If only some instances are classified
 – Precision = Correct/Instances in System Output
 – Recall = Correct/Instances in Answer Key
 – F-measure = Mean of Precision and Recall
 • Harmonic Mean of Precision and Recall
 – $\frac{2}{\left(\frac{1}{\text{precision}} + \frac{1}{\text{recall}}\right)}$
Sample Precision and Recall

- System for finding holiday names
- Exactly 10 correct holiday names in hand-coded corpus (the answer key)
- The system marks 12 holiday names, 8 of which match the ones in the answer key.
 - Precision = 8/12 = .67
 - Recall = 8/10 = .80
 - F-measure = 2/(1/.80+1/.67) = .73
TFIDF

• TFIDF – Property of Term with respect to a document
 – keyword suitability, representativeness of a topic, etc.
 – Uses: Doc Retrieval, Term Extraction, etc.
• TF = frequency in a document
• IDF = number of documents in sample divided by number of documents containing word
• TFIDF = TF * log(IDF)
• Example: “rock” occurs 10 times in document X. It occurs in 100 out of 3000 documents in collection. TFIDF = 10*log(3000/100) = 34.01
• *Use natural logarithms just to be standard (easier to grade)
 – Systems get same results (e.g., same ranking) using any base
Cosine Similarity Between Query and Document

\[
\text{Similarity} (A, B) = \frac{\sum_i a_i \times b_i}{\sqrt{\sum_i a_i^2 \times \sum_i b_i^2}}
\]

Example:

- the terms in the vectors include: animal, vegetable, mineral, monkey, golf enthusiast
- The vector for the query is: [0, 0, 0, 34, .8]
- The vector for a given document is: [1, 2, 3, 4, 5]
- What is the similarity?
Sample Midterm

- Sample midterm & answers online
- The sample may take longer to complete than the actual in-class midterm – it serves a different function than the actual midterm.
- For example, there are 10 questions on the sample midterm, but there will only be 7 or 8 on the actual midterm
General Test-taking Advice

• Test is a game –
 – not worth getting tense about
 – Staying calm makes it easier to think clearly

• Time may be an issue
 – Finish as many questions as possible
 – Budget time
 • 75 minutes/7 questions \(\approx 10\) minutes/question

• Show your work
 – It makes it easier for me to give partial credit