CSCI-UA.0480-003
Parallel Computing

Lecture 13: OpenMP II

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com

Scope

* In serial programming, the scope of a
variable consists of those parts of a
program in which the variable can be
used.

* In OpenMP, the scope of a variable
refers to the set of threads that can
access the variable in a parallel block.

Scope in OpenMP

* A variable that can be accessed by all the
threads in the team has shared scope.

* A variable that can only be accessed by a
single thread has private scope.

* The default scope for variables
declared before a parallel block
is shared.

Copyright © 2010, Elsevier Inc.
All rights Reserved

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

void Hello(void); /% Thread function %/

int main(int argc, chars argv[]) {

/+ Get nu r_of threads from command line =/
int Chread_count)= strtol(argv[1], NULL, 10);

pragma omp parallel
Hello():

nu hreads(thread_count)

shared

return 0;
} /% main =/

private

void Hello(void) {

get_thread_num();
int thread count = omp_get_num_threads ();

printf("Hello from thread %d of %d\n", my_rank, thread_count);

} /¥ Hello */

void Trap(double az, double b, int n, doublex global_result_p) {
double h, . my_result;
double local a, local b;
int i, local n;
int my_rank = omp_get_thread_num();

int thread_count = omp_get_num_threads ();

h = (b—a)/n; Do you remember
local_ n = n/thread_count; _l_h + d |—>
local_a = a + my_rankxlocal_n#h; € r‘C(F)ZZOI al:

local b = local a + local n#*h;
my_result = (f(local_a) + f(local_b))/2.0;
for (1 = 1; 1 <= local_n—1; i++) {

X = local a + 1i=#h;
my_result += f£(x);

}

my_result = my_resultx*h;

pragma omp critical
*global_result_p += my_result;
Y. /% Trap. =/

Copyright © 2010, Elsevier Inc.
All rights Reserved

We need this more complex version to add each
thread’s local calculation to get global_result.

void Trap(double a. double b, int n, doublex glcbal_ result_p):

Although we’d prefer this.

double Trap(double a, double b, int n);

.

global_result = Trap(a, b, n):

Copyright © 2010, Elsevier Inc.
All rights Reserved

How about this:

double Local_trap(double z, double b, int n);

and we use it like this:

global result = 0.0;
pragma omp parallel num_threads(thread_count)

{
pragma omp critical
global result += Local trap(double a. double b. int n):
¥

... we force the threads to execute sequentially.
It is now slower than a version with single thread!

How can we fix this?

We can avoid this problem by:
1. declaring a private variable inside the parallel block
2. moving the critical section after the function call

global result = 0.0;
pragma omp parallel num_threads(thread_count)

{

double my_result = 0.0; /* private =/

my_result += Local_trap(double z, double b, int n);
pragma omp critical
global_result += my_result;

Can we do better?

Copyright © 2010, Elsevier Inc.
All rights Reserved

Reduction operators

 Is a binary operation

A reduction is a computation that
repeatedly applies the same reduction
operator to a sequence of operands in
order to get a single result (we have
seen that in MPI)).

* All of the intermediate results of the
operation should be stored in the same
variable: the reduction variable.

A reduction clause can be added to a parallel
directive.

reduction(<operator>: <variable list>)

Be careful of:
e subtraction
* floating points

+; *I_I &1 |/A; &&1 ||

And the code becomes:

global_result = 0.0;
pragma omp parallel num_threads(thread_count) \
reduction(+: global_result)
global result += Local_trap(double z, double b, int n);

Copyright © 2010, Elsevier Inc.
All rights Reserved

How Does OpenMP Do it?

The reduction variable is shared.

OpenMP create a local variable for each
thread

Those local variables are initialized to
the identity value for the reduction
operator

When the parallel block ends, the values
in the private variables are combined
intfo the shared variable.

#pragma omp parallel for

* Forks a team of threads to execute the
following structured block.

» The structured block following the
parallel for directive must be a for loop.

» The system parallelizes the for loop by
dividing the iterations of the loop among
the threads.

Copyright © 2010, Elsevier Inc.
All rights Reserved

h = (b—a)/n:

approx = (f(a) + £(b))/2.0;

for (i = 1; 1 <= n—1; i++)
approx += f(a + ix*h);

approx = h*xapprox;

h = (b—a)/n:
approx = (f(a) + £(b))/2.0;
pragma omp parallel for num_threads(thread_count)
reduction(+: approx) . . .
for (i = 1: i <= n—1: i++) | Inaloop that is parallelized with
approx += f(a + ixh); parallel for the default scope of

approx = hxapprox; a loop variable is private

Copyright © 2010, Elsevier Inc.
All rights Reserved

Legal forms for parallelizable
for statements

(index++ \
++index
index < end 1ndex——
index <= end ——-1ndex
for | index = start :; index >»>= end ; index += incr
index > end index -= incr
index = index + incr
index = incr + 1index
\ index = index - incr)

Number of iterations MUST be known
prior to the loop execution.

There can be a call to exit in the loop body.

OpenMP won't parallelize while loops or do-while loops.

Caveats

* The variable index must have integer or
pointer type (e.g., it can't be a float).

» The expressions start, end, and incr
must have a compatible type. For
example, if index is a pointer, then incr
must have integer type.

Caveats

« The expressions start, end, and incr
must not change during execution of the
loop.

» During execution of the loop, the
variable index can only be modified by
the "increment expression” in the for
statement.

Data dependencies

fibo[O] = fibo[1] = 1;
for I = 2, 1 < n; i++)
fibo[1] = fibo[i d1] + fibo[i d2];

note 2 threads

fibo[0] = fibo[l] = 1 /

pragmaomp parallel for num_threadsg)
for (I = 2, 1 < n; 1++)
fibo[i] = fibo[i d1] + fibo[i d2];

but sometimes

11235813213455 i
we get this
this is correct 1123580000

Copyright © 2010, Elsevier Inc.
All rights Reserved

What happened?

1. OpenMP compilers don't
check for dependences
among iterations in a loop
that's being parallelized
with a parallel for
directive.

2. A loop in which the results
of one or more iterations
depend on other iterations
cannot, in general, be

correctly parallelized by
OpenMP.

Question

Do we have to worry about the following:

#pragma omp parallel for num_threads(2)
for(i=0;i<n;i++)({
x[i]=a+ i*h;
yli] = exp(x[i]):
}

T=4]|1-

Estimating Tt

1 = (—1)F
LTI I e SV
7")T

L
J k=0

1

3

double factor = 1.0;

double sum = 0.0;

for (k = 0; k < n; k++) {
sum += factor/(2xk+1);
factor = —factor:

;

pl_approx 4.0 sum;

Copyright © 2010, Elsevier Inc.

All rights Reserved

OpenMP solution #1

double factor = 1.0;

double sum = 0.0:

pragma omp parallel for num_threads(thread_count) \
reduction(+:sum)

for (k = 0; k < n:; k++) {
sum += factor/(2xk+1):
factor = —factor;

h

pi_approx = 4.0%xsum;

Is this a good solution?

Copyright © 2010, Elsevier Inc.
All rights Reserved

OpenMP solution #2

double sum = 0.0;
pragma omp parallel for num_threads(thread_count) \
reduction(+:sum)
for (k = 0; k < n; k++) {
if (k% 2 == 0)
factor = 1.0;
else
factor = —1.0;

sum += factor/(2xk+1):

How about this one?

Copyright © 2010, Elsevier Inc.
All rights Reserved

OpenMP solution #3

double sum = 0.0;
pragma omp parallel for num_threads(thread_count) \
reduction(+:sum) private(factor)

for (k = 0; k < n: k++) {
if (k% 2 == 0)
1.0;

factor =
else ensures factor has
factor = —1.0: private scope.

sum += factor/(2xk+1):

Copyright © 2010, Elsevier Inc.
All rights Reserved

The default clause

* Lets the programmer specify the scope
of each variable in a block.
default(none)

« With this clause the compiler will
require that we specify the scope of
each variable we use in the block and
ﬂl\a’rkhas been declared outside the
block.

The default clause

double sum = 0.0;

pragma omp parallel for num_threads(thread_count) \
default (none) reduction(+:sum) private(k, factor) \
shared(n)

for (k = 0; k < n; k++) {
if (k % 2 == 0)
factor = 1.0;
else
factor = —1.0;
sum += factor/(2+xk+1);

Copyright © 2010, Elsevier Inc.
All rights Reserved

Conclusions

* To make the best use of OpenMP try to
have programs with for-loops

« Scope is an error prone concept here.
So be carefull

— It may be a good idea to specify the scope

of each variable in the parallel (or parallel
for) block

