
Parallel Computing

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-UA.0480-003

Lecture 13: OpenMP II

Scope

• In serial programming, the scope of a
variable consists of those parts of a
program in which the variable can be
used.

• In OpenMP, the scope of a variable
refers to the set of threads that can
access the variable in a parallel block.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Scope in OpenMP

• A variable that can be accessed by all the
threads in the team has shared scope.

• A variable that can only be accessed by a
single thread has private scope.

• The default scope for variables
declared before a parallel block
is shared.

Copyright © 2010, Elsevier Inc.
All rights Reserved

shared

private

Copyright © 2010, Elsevier Inc.
All rights Reserved

Do you remember
the trapezoidal?

Copyright © 2010, Elsevier Inc.
All rights Reserved

We need this more complex version to add each
thread’s local calculation to get global_result.

Although we’d prefer this.

How about this:

and we use it like this:

… we force the threads to execute sequentially.

It is now slower than a version with single thread!

How can we fix this?

Copyright © 2010, Elsevier Inc.
All rights Reserved

We can avoid this problem by:

1. declaring a private variable inside the parallel block

2. moving the critical section after the function call

Can we do better?

Reduction operators

• Is a binary operation
• A reduction is a computation that

repeatedly applies the same reduction
operator to a sequence of operands in
order to get a single result (we have
seen that in MPI!).

• All of the intermediate results of the
operation should be stored in the same
variable: the reduction variable.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Copyright © 2010, Elsevier Inc.
All rights Reserved

A reduction clause can be added to a parallel
directive.

+, *, -, &, |, ˆ, &&, ||

And the code becomes:

Be careful of:
• subtraction
• floating points

How Does OpenMP Do it?

• The reduction variable is shared.
• OpenMP create a local variable for each

thread
• Those local variables are initialized to

the identity value for the reduction
operator

• When the parallel block ends, the values
in the private variables are combined
into the shared variable.

#pragma omp parallel for

• Forks a team of threads to execute the
following structured block.

• The structured block following the
parallel for directive must be a for loop.

• The system parallelizes the for loop by
dividing the iterations of the loop among
the threads.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Copyright © 2010, Elsevier Inc.
All rights Reserved

In a loop that is parallelized with
parallel for the default scope of
a loop variable is private

Legal forms for parallelizable
for statements

OpenMP won’t parallelize while loops or do-while loops.

Number of iterations MUST be known
prior to the loop execution.

There can be a call to exit in the loop body.

Caveats

• The variable index must have integer or
pointer type (e.g., it can’t be a float).

• The expressions start, end, and incr
must have a compatible type. For
example, if index is a pointer, then incr
must have integer type.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Caveats

• The expressions start, end, and incr
must not change during execution of the
loop.

• During execution of the loop, the
variable index can only be modified by
the “increment expression” in the for
statement.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Data dependencies

Copyright © 2010, Elsevier Inc.
All rights Reserved

1 1 2 3 5 8 13 21 34 55

1 1 2 3 5 8 0 0 0 0this is correct

but sometimes
we get this

fibo[0] = fibo[1] = 1;

for (i = 2; i < n; i++)

fibo[i] = fibo[i ð1] + fibo[i ð2];

fibo[0] = fibo[1] = 1;

pragma omp parallel for num_threads(2)

for (i = 2; i < n; i++)

fibo[i] = fibo[i ð1] + fibo[i ð2];

note 2 threads

What happened?
1. OpenMP compilers don’t

check for dependences
among iterations in a loop
that’s being parallelized
with a parallel for
directive.

2. A loop in which the results
of one or more iterations
depend on other iterations
cannot, in general, be
correctly parallelized by
OpenMP.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Question

Do we have to worry about the following:

#pragma omp parallel for num_threads(2)

for(i =0 ; i < n; i++) {

x[i] = a + i*h;

y[i] = exp(x[i]);

}

Estimating π

Copyright © 2010, Elsevier Inc.
All rights Reserved

OpenMP solution #1

Copyright © 2010, Elsevier Inc.
All rights Reserved

Is this a good solution?

OpenMP solution #2

Copyright © 2010, Elsevier Inc.
All rights Reserved

How about this one?

OpenMP solution #3

Copyright © 2010, Elsevier Inc.
All rights Reserved

ensures factor has
private scope.

The default clause

• Lets the programmer specify the scope
of each variable in a block.

• With this clause the compiler will
require that we specify the scope of
each variable we use in the block and
that has been declared outside the
block.

Copyright © 2010, Elsevier Inc.
All rights Reserved

The default clause

Copyright © 2010, Elsevier Inc.
All rights Reserved

Conclusions

• To make the best use of OpenMP try to
have programs with for-loops

• Scope is an error prone concept here.
So be careful!
– It may be a good idea to specify the scope

of each variable in the parallel (or parallel
for) block

