
CSCI-UA.0480-003

Parallel Computing
Final Exam

 Spring 2016 - May 16th (90 minutes)

NAME: NetID:
• If you have to make assumptions to continue solving a problem, state your assumptions clearly.

• You answer on the question sheet. You can use extra white papers if you want.

1. [1] We know that a block cannot be assigned to an SM until it gets all the

resources it needs beforehand. What is the advantage of doing so?

2. We have seen that if-else may lead to branch divergence in a warp due to

lockstep execution of instructions. Now, suppose there is a kernel that has an if

without else.

a. [2] Can this also lead to performance loss in some cases, relative to non-

branch divergence? Justify your answer. No need to write code, just explain.

b. [2] Can this also lead to NO performance loss in some cases, relative to

non-branch divergence? Justify your answer. No need to write code, just

explain.

3. [2] Can we have a race condition among threads belonging to the same warp?

 Justify your answer.

4. [6] For each variable in the following code: identify the scope of the variable,

justify your choice, and for each variable identify potential race condition, if any.

You can assume that a, b, c, i, N, and j have been defined somewhere before the

parallel block.
#pragma omp parallel for private(a,b)

for (i = 0; i < N; i++) {

int x = 0;

c--;

for (j = i; j < N; j++)

x += func(c, b[j]);

a[i] = x;

}

Variable Private/

shared

Why? race

cond?

(Y/N)

Why?

a[]

b[]

c

i

j

x

5. [2]State two shortcomings of Amadahl’s law.

•

•

6. For the following piece of code (assume very large number of cores):

 …

 int globalvalue = 0;

 int main() {

 int numprocs, rank;

 int i = 0;

 MPI_Init(NULL, NULL);

 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 #pragma omp parallel for shared(result) reduction(+:globalvalue)

 for(i = 0; i < 2+rank ; i++)

 {

 globalvalue ++;

 …rest of loop body …

 }

 MPI_Finalize();

 }

We execute the above code with: mpirun -n 4 progname

a. [2]How many threads we will end up having in the whole system? Explain.

b. [1] Just before executing MPI_Finalize(), how many instances of globalvalue

 do we have in the system?

c. [2] Is there a potential race condition in globalvalue++ ? Justify

