CSCI-UA.0480-003 Parallel Computing Final Exam Spring 2016 - May 16th (90 minutes)

NAME:

NetID:

• If you have to make assumptions to continue solving a problem, state your assumptions clearly.

• You answer on the question sheet. You can use extra white papers if you want.

1. [1] We know that a block cannot be assigned to an SM until it gets all the resources it needs beforehand. What is the advantage of doing so?

2. We have seen that if-else may lead to branch divergence in a warp due to lockstep execution of instructions. Now, suppose there is a kernel that has an *if without else*.

a. [2] Can this also lead to **performance loss** in some cases, relative to nonbranch divergence? Justify your answer. No need to write code, just explain.

b. [2] Can this also lead to **NO performance loss** in some cases, relative to non-branch divergence? Justify your answer. No need to write code, just explain.

3. [2] Can we have a race condition among threads belonging to the same warp? Justify your answer.

4. [6] For each variable in the following code: identify the scope of the variable, justify your choice, and for each variable identify potential race condition, if any. You can assume that a, b, c, i, N, and j have been defined somewhere before the parallel block.

```
#pragma omp parallel for private(a,b)
for (i = 0; i < N; i++) {
    int x = 0;
    c--;
    for (j = i; j < N; j++)
        x += func(c, b[j]);
    a[i] = x;
}</pre>
```

Variable	Private/ shared	Why?	race cond? (Y/N)	Why?
a[]				
b[]				
с				
i				
j				
X				

- 5. [2]State two shortcomings of Amadahl's law.
 - •

```
•
```

6. For the following piece of code (assume very large number of cores):

```
. . .
int globalvalue = 0;
int main() {
     int numprocs, rank;
     int i = 0;
     MPI_Init(NULL, NULL);
     MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
     MPI_Comm_rank(MPI_COMM_WORLD, &rank);
     #pragma omp parallel for shared(result) reduction(+:globalvalue)
     for( i = 0; i < 2+rank ; i++)
     {
      globalvalue ++;
      ...rest of loop body ...
     }
     MPI_Finalize();
}
```

We execute the above code with: mpirun -n 4 progname

- a. [2] How many threads we will end up having in the *whole system*? Explain.
- b. [1] Just before executing MPI_Finalize(), how many instances of *globalvalue* do we have in the system?
- c. [2] Is there a potential race condition in globalvalue++ ? Justify