1. **Half-priced hash.** In class, we studied a family of hash functions based on taking inner products. That family was a family of hash functions from \mathbb{Z}_m^t to \mathbb{Z}_m indexed by \mathbb{Z}_m^t. For each hash function index $\lambda = (\lambda_1, \ldots, \lambda_t) \in \mathbb{Z}_m^t$, and each key $a = (a_1, \ldots, a_t) \in \mathbb{Z}_m^t$, the hash function was defined as $h_\lambda(a) := \sum_i a_i \lambda_i$, which requires t multiplications to evaluate. In this problem, you are to analyze a variant hash which cuts the number of multiplications in half.

Assume t is even, so $t = 2s$. Hash function indices and keys have the same structure as above, but the hash function is defined as follows:

$$h'_\lambda(a) := \sum_i (a_{2i-1} + \lambda_{2i-1}) (a_{2i} + \lambda_{2i}).$$

So, for example, for $t = 4$, we have

$$h'_\lambda(a) = (a_1 + \lambda_1)(a_2 + \lambda_2) + (a_3 + \lambda_3)(a_4 + \lambda_4).$$

Your task is to show that the family of hash functions $\{h'_\lambda\}_{\lambda \in \mathbb{Z}_m^t}$ is a universal family.

Hint: Your proof should mimic the one given in class for the inner-product based family. Namely, consider two distinct keys $a = (a_1, \ldots, a_t)$ and $b = (b_1, \ldots, b_t)$, and show that the number of hash function indices $(\lambda_1, \ldots, \lambda_t)$ which satisfy

$$\sum_{i=1}^s (a_{2i-1} + \lambda_{2i-1})(a_{2i} + \lambda_{2i}) = \sum_{i=1}^s (b_{2i-1} + \lambda_{2i-1})(b_{2i} + \lambda_{2i}).$$

is at most m^{t-1}. To keep the notation simple, you may first want to do the calculation for the case $t = 4$.

2. **Pretty good hash.** Let $h : \mathcal{U} \to \mathcal{V}$ be a hash function, mapping from some (finite) universe \mathcal{U} of keys to a (finite) set of slots \mathcal{V}. For a set $Q \subseteq \mathcal{U}$ and an element $a \in Q$, we say that h isolates a in Q if the only element of Q that hashes to the slot $h(a)$ is a itself, i.e.,

$$\text{for all } b \in Q: \quad h(a) = h(b) \implies a = b.$$

Now recall the notion of a perfect hash function. Using the above terminology, we can say that h is a perfect hash function for Q if h isolates every element of Q. Consider the following, weaker property: let us say that h is a pretty good hash function for Q if h isolates at least $|Q|/2$ elements of Q.

Your task is to design an efficient, probabilistic algorithm that takes as input a set $Q = \{a_1, \ldots, a_n\}$ of n distinct keys, and finds a hash function that is pretty good for Q.

To this end, assume that $\{h_\lambda\}_{\lambda \in \Lambda}$ is a universal family of hash functions from \mathcal{U} to \mathcal{V}. Assume that $\mathcal{V} = \{0, \ldots, m\}$, where $4n \leq m \leq 8m$. You may assume that you can choose $\lambda \in \Lambda$ uniformly at random in time $O(1)$, and that you can evaluate $h_\lambda(a)$ at any point $a \in \mathcal{U}$ in time $O(1)$.

On input Q as above, your algorithm should find $\lambda \in \Lambda$ such that h_λ is pretty good for Q. The expected running time of your algorithm should be $O(n)$.

You may wish to follow the following outline:

(a) Suppose R is uniformly distributed over Λ. Let X be the number of a_i’s that are not isolated by h_R.

Show that $E[X] \leq n(n-1)/m$.

Hint: use indicator variables and linearity of expectation.

(b) Now use Markov’s inequality and the assumption that $m \geq 4n$, to show that a random hash function h_R is pretty good with probability at least $1/2$.

(c) Using part (b), and the assumption that $m \leq 8n$, design an algorithm that actually finds a pretty good hash function in expected time $O(n)$.

Due: May 8
3. **Composed hash.** Suppose \(h_\lambda \lambda \in \Lambda \) is an \(\epsilon \)-universal family of hash functions from \(U \) to \(V \). Further, suppose that \(\{h'_\lambda\}_\lambda \in \Lambda' \) is an \(\epsilon' \)-universal family of hash functions from \(U' \) to \(V' \), where \(V \subseteq U' \). Show that

\[
\{h'_\lambda \circ h_\lambda\}_{(\lambda, \lambda') \in \Lambda \times \Lambda'}
\]

is an \((\epsilon + \epsilon')\)-universal family of hash functions from \(U \) to \(V' \). (Here, \(h'_\lambda \circ h_\lambda \) is the usual composition of functions \(h'_\lambda \) and \(h_\lambda \), so that \((h'_\lambda \circ h_\lambda)(a) = h'_\lambda(h_\lambda(a)) \).)

4. **2D hash.** In class, we presented a \((t - 1)/m\)-universal hash family based on polynomial evaluation. This exercise develops a two-dimensional variant. The universe of keys \(\mathcal{U} \) consists of all \(t \times t \) matrices over \(\mathbb{Z}_m \), where \(m \) is prime. We write such a matrix \(A \in \mathcal{U} \) as \(A = (a_{ij}) \), where the indices \(i \) and \(j \) run from 0 to \(t - 1 \). The set of hash function indices \(\Lambda \) consists of pairs \((\lambda_1, \lambda_2) \in \mathbb{Z}_m \times \mathbb{Z}_m \). For \(\lambda = (\lambda_1, \lambda_2) \in \Lambda \) and \(A = (a_{ij}) \in \mathcal{U} \), define

\[
h_\lambda(A) = \sum_{i=0}^{t-1} \sum_{j=0}^{t-1} a_{ij} \lambda_1^i \lambda_2^j. \tag{1}
\]

Show that \(\{h_\lambda\}_{\lambda \in \Lambda} \) is \(2(t - 1)/m \)-universal.

Hint: re-write the right-hand side of (1) as

\[
\sum_{i=0}^{t-1} \lambda_1^i \left(\sum_{j=0}^{t-1} a_{ij} \lambda_2^j \right),
\]

and then apply the result of the previous exercise (with \(V = \mathcal{U}' = \mathbb{Z}_m^t \)), making use of the fact that the usual polynomial evaluation hash is \((t - 1)/m\)-universal.

5. **2D pattern matching.** In the 2D pattern matching problem, you are given an \(n \times n \) array \(A \) and a \(t \times t \) array \(B \), where \(t \leq n \), and you want to determine if \(B \) appears as a subarray within \(A \). For example, the array

\[
B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
\]

appears as a subarray of

\[
A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 3 \\ 2 & 3 & 4 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}.
\]

Adapt the Karp/Rabin pattern matching algorithm using the 2D hash function from the previous exercise to give a probabilistic algorithm that solves this problem. The expected running time should be \(O(n^2 + n^2t^3/m) \), where \(m \) is the prime used in the above hash function. For reasonable choices of \(t \) and \(m \), the first term will dominate, and so the expected running time will be \(O(n^2) \).

Hint: you will have to somehow adapt the “rolling hash” idea of Karp/Rabin to the 2D hash.

6. **Cuckoo hashing.** We have a cuckoo graph \(G \) with \(m \) vertices \(0, \ldots, m-1 \) (corresponding to hash table slots) and \(n \) edges \(e_1, \ldots, e_n \) (corresponding to keys). Each (undirected) edge \(e_i \) is chosen at random as \(\{u_i, v_i\} \) by selecting the endpoints \(u_i \) and \(v_i \) uniformly and independently from \(\{0, \ldots, m-1\} \). Define \(\alpha := n/m \), which is the “load factor”.

(a) For \(k \geq 1 \), define \(p_k \) to be the probability that \(G \) contains a simple cycle of length \(k \). Here, a simple cycle of length \(k \) is a path \((s_0, s_1, \ldots, s_{k-1}, s_0)\), where the vertices \(s_0, \ldots, s_{k-1} \) are distinct.

Show that \(p_1 \leq \alpha \) and \(p_2 \leq \alpha^2 \).

(b) Show that \(p_k \leq (2\alpha)^k/k \) for all \(k \geq 1 \), with \(p_k \) defined as in part (a).

Notes: The results from part (a) already imply this bound for \(k = 1 \) and \(k = 2 \). We proved this bound for \(k = 3 \) in class. Generalize that proof to arbitrary \(k \).

(c) Prove that for every fixed vertex \(s_0 \), and every \(\ell \geq 1 \), the probability that \(G \) contains a “simple loop” of length \(\ell \) starting at \(s_0 \) is at most \(\ell(2\alpha)^\ell/m \).

Here, a “simple loop” of length \(\ell \) starting at \(s_0 \) is a path \((s_0, \ldots, s_{\ell-1}, s_j)\), where \(j < \ell \) and the vertices \(s_0, \ldots, s_{\ell-1} \) are distinct.